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Abstract

Shotgun proteomics techniques infer the presence and quantity of proteins using peptide proxies 

produced by cleavage of the proteome with a protease. Most protein quantitation strategies 

assume that multiple peptides derived from a protein will behave quantitatively similar across 

treatment groups, but this assumption may be false due to (1) heterogeneous proteoforms and 

(2) technical artifacts. Here we describe a strategy called peptide correlation analysis (PeCorA) 

that detects quantitative disagreements between peptides mapped to the same protein. PeCorA 

fits linear models to assess whether a peptide’s change across treatment groups differs from 
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all other peptides assigned to the same protein. PeCorA revealed that ~15% of proteins in 

a mouse microglia stress data set contain at least one discordant peptide. Inspection of the 

discordant peptides shows the utility of PeCorA for the direct and indirect detection of regulated 

post-translational modifications (PTMs) and also for the discovery of poorly quantified peptides. 

The exclusion of poorly quantified peptides before protein quantity summarization decreased 

false-positives in a benchmark data set. Finally, PeCorA suggests that the inactive isoform of 

prothrombin, a coagulation cascade protease, is more abundant in plasma from COVID-19 patients 

relative to non-COVID-19 controls. PeCorA is freely available as an R package that works with 

arbitrary tables of quantified peptides.
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1. INTRODUCTION

Shotgun proteomics relies on the inference of protein identity and quantity from peptide 

pieces. Although the magnitude of peptide abundance will differ due to different detection 

sensitivities,1,2 most protein quantitation strategies3,4 assume that multiple peptides derived 

from a protein will behave quantitatively similar across treatment groups and thus combine 

multiple peptide quantities into one protein quantity5,6 (Figure 1A). Each protein encoded 

by a gene exists as a population of unique states, called proteoforms,7 that arise from 

post-translational modification8 or alternative splicing.9,10 These proteoforms might be 

influenced differently by biological perturbations. A motivation for top-down proteomics 

is that proteoform regulation is difficult to capture after the proteolysis required by shotgun 

proteomics. However, proteoform regulation should be hidden in the differential abundance 

of peptides mapping to one gene. For example, if a protein quantity is unchanged, but one 
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post-translational modifications (PTM) site is increased with our treatment, then that would 

cause the apparent disappearance of the peptide sequence that harbors the PTM (Figure 1B). 

Therefore, strategies to detect discordant peptide quantities among peptides mapped to one 

gene have the potential to reveal hidden quantitative proteoform information from bottom-up 

proteomics.

Multiple strategies have focused on the detection of dissonant peptides to remove them 

and improve protein quantity summarization,11–15 but the concept of gaining proteoform 

information from discordant peptides is underexplored. The results presented here define 

a simple strategy called Peptide Correlation Analysis (PeCorA) to detect peptides with 

discordant quantitation across treatment groups. PeCorA uses linear models to statistically 

assess the interaction between peptide and treatment groups. In contrast with previous 

works that discard these peptides, here we focus on the utility of these peptides to reveal 

quantitative proteoform information. Examples of peptides that reveal proteoform regulation 

include: direct detection of a regulated methionine oxidation in PKA R1α, indirect detection 

of a lost phosphorylation in the VAV1 protein, and incorrect peak picking of a peptide from 

CALR. PeCorA also detected clotting factor and complement system proteoform changes 

in human plasma proteomics from the SARS-CoV-2 viral response.16 PeCorA can be easily 

applied to any quantitative proteomics data table and is freely available as a package written 

in R.

2. EXPERIMENTAL PROCEDURES

2.1. Data

PeCorA was demonstrated with three data sets:

1. Mouse primary microglia: Raw proteomic data from a published study of mouse 

primary microglia17 were downloaded from the PRIDE repository18 (identifier PXD014466, 

https://www.ebi.ac.uk/pride/archive/projects/PXD014466). The data set was composed of 

five biological replicates each from three sample groups: control, 50 mM ethanol treatment, 

or 5 ng lipopolysaccharide (LPS) treatment (15 total files). Each sample was analyzed 

with a 120 min liquid chromatography gradient and online electrospray ionization into a 

hybrid quadrupole-orbitrap mass spectrometer (Q-Exactive Plus). The data are available 

from MassIVE (accession MSV000085712; DOI: 10.25345/C57J3B).

2. iPRG DDA benchmark: Processed proteomic data were downloaded from 

the 2015 Proteome Informatics Research Group (iPRG) study.19 The data set was 

composed of three technical replicates acquired in random order each from four 

complex biological samples containing a constant background of tryptic digests of S. 
cerevisiae (ATCC strain 204508/S288c) separately spiked with different concentrations 

of six protein digests (total of 12 analyses). Each sample was analyzed with a 

110 min liquid chromatography gradient and online electrospray ionization into a 

hybrid quadrupole-orbitrap mass spectrometer (Q-Exactive). iPRG DDA benchmark data 

were downloaded from MassIVE (accession MSV000079843, https://massive.ucsd.edu/

ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0).

Dermit et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2021 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/pride/archive/projects/PXD014466
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=eccf4bd3e86a4f79af468b0010eb80b0


3. COVID-19 plasma proteomics: Processed proteomic data were downloaded from 

a recent large-scale analysis of COVID-19 severity.16 The data set was composed of over 

100 plasma samples from three groups: (1) COVID-19-driven acute respiratory distress 

syndrome (ARDS) patients, (2) non-COVID-19-driven ARDS patients, and (3) pooled 

plasma control sample extracted with each batch as quality control. Each sample was 

analyzed with a 90 min liquid chromatography gradient and online electrospray ionization 

into a quadrupole–ion trap–Orbitrap hybrid Eclipse. Please see the original publications 

for more data collection and sample preparation details. In brief, the data in the original 

publication were analyzed by MaxQuant (version 1.6.10.43) by searching against the 

UniProt Homo sapiens database containing protein isoforms and computationally predicted 

proteins (downloaded on 2019–06-18). For our analysis, we did not repeat the database 

search but used the quantitative values in the peptides.txt file available on MassIVE 

(accession MSV000085703, DOI: 10.25345/C5F74G).

2.2. Peptide Identification by Database Search of MS/MS Spectra

All raw files from the microglia data set were converted to mzML format using 

msconvertGUI (part of ProteoWizard)20 and searched against mouse proteins including 

isoforms downloaded from UniProt (2020–04-08) with MS-Fragger version 2.4.21 Reversed 

sequences and common contaminants were added the database using the Philosopher toolkit 

version 2.0.0.22 Searches were performed using the FragPipe user interface with the default 

closed search settings, except 10 ppm precursor and 20 ppm fragment mass tolerances were 

used. Search outputs of each separate LC-MS analysis were refined with PeptideProphet23 

and combined using iProphet.24

2.3. Peptide Quantification

Filtered peptide identifications from a microglia data set were imported into Skyline 

for quantification25 by MS1 filtering.26,27 Only protein identifications supported by two 

peptides were included, and peptides that were not unique to only one protein accession 

were excluded. A precursor signal within 10 ppm of the theoretical peptide mass for 

charge states 2–5 was extracted within 5 min of peptide identifications, and peaks were 

automatically picked by the software.

Quantitative results from the DDA iPRG data set were downloaded from the GitHub 

repository for the MSstats feature selection paper.11 Those results were processed for quality 

control into quantitative output for group comparison using the dataProcess function of the 

MSstats package.28

Peptide-level quantitative data from the COVID-19 data set were downloaded from 

the massive repository.16 Specifically, the peptides.txt output from MaxQuant (version 

1.6.10.43)29 was processed into PeCorA-ready format.

2.4. Peptide Correlation Analysis (PeCorA)

PeCorA takes as input tabular data that must include the (1) peptide, (2) protein annotation, 

(3) condition group, and (4) replicate number. Data can be analyzed within R or via a 

command line using a wrapper R script. The quantitative results table is read into R with 
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the import_processed_data function from the PeCorA package. After data import, the values 

are initially filtered to include only peptides with a user-defined minimum quantitative value 

in all samples. Next, multiple charge states of one peptide are summed into one value “all”, 

the quantitative values of peptides are log-transformed, and the global distribution of all 

peak areas is scaled to have the same mean center and standard deviation equal to 1 using 

the scale_by function of the R package standardize (as shown in Figure 2A). After global 

scaling and centering per replicate, each peptide quantity is centered by subtracting the mean 

of the control group’s peak area, which aligns all peptides relative to the control group 

average of 0 (as shown in Figure 2B). These twice-scaled data can be obtained using the 

PeCorA_preprocessing function. Data are then used for peptide correlation analysis with the 

PeCorA function. At a high level, the slope of each peptide’s quantity across experimental 

conditions is compared with the slope of all other peptides measured from that protein. This 

is achieved by iteratively setting each peptide to its own factor group against the factor group 

of all other peptides and then fitting a linear model that includes a term for the interaction 

between the peptide groups. The p value of significance for an interaction is recorded 

for each peptide group in each iteration. All p values for the peptide interaction terms 

within one protein are then corrected with the Benjamini–Hochberg procedure.30 Finally, the 

PeCorA_plotting function generates boxplots of any peptide’s quantity compared with the 

other peptides in that protein across biological conditions (similar to the boxplots shown in 

this Technical Note).

2.5. Code Availability

The peptide correlation analysis code is written in R. The code, documentation, and example 

data sets are available as an R package on GitHub (https://github.com/jessegmeyerlab/

PeCorA).

Details of the functions included in this package can be found in the package vignette. 

The raw mass spectrometry data from the microglia data set is available from the PRIDE 

repository of the original publication (PXD014466) and also on massive.ucsd.edu (data set 

MSV000085712). The Skyline file used to generate peptide areas from microglia data is 

available on Panorama at https://panoramaweb.org/HRvw2O.url.

The GitHub repository also contains the Skyline report template (skyr), the skyline report 

from the microglia data used here, and the PeCorA outputs from the analysis of the 

microglia, iPRG, and COVID data used here. Additional scripts including those to reproduce 

the exact comparisons in Supplementary Figure 1 are available from https://github.com/

demar01/PeCorA-addin.

3. RESULTS

3.1. PeCorA Method Overview

PeCorA starts by scaling and centering the per-sample peptide intensity distributions (Figure 

2A); then, each peptide is scaled to the center of the control condition (Figure 2B). Peptide­

level scaling removes the spread of peptide quantities that results from different ionization 

efficiencies, and results in a tighter distribution of peptide quantities for each protein. After 
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the data are scaled, the PeCorA algorithm iteratively compares each peptide to all other 

peptides in the same protein (pseudocode in Figure 2C). At a high level, the slope of each 

peptide quantity is compared with the slope of all other peptide quantities across biological 

conditions using a linear model that includes an interaction term between the treatment 

and peptide groups. This enables the calculation of a p value testing whether each peptide 

agrees quantitatively with the group of all other peptides in that protein. All p values 

for all peptides are recorded; then, multiple hypothesis testing is applied on a per-protein 

basis. Comparing the interaction p value with and without peptide scaling demonstrates the 

improved statistical power (Figure 2D). Peptide quantities from the same protein (Psmd14) 

are used in Figure 2B,D to illustrate these concepts. Thus PeCorA statistically determines 

whether a peptide’s quantity across experimental treatments disagrees with other peptides 

assigned to the same protein.

The frequency of quantitative peptide disagreements in a data set is a useful first analysis to 

understand the potential utility of PeCorA. We started with a reanalysis of data from mouse 

primary microglia.17 After excluding peptides that map to multiple proteins and requiring 

two peptides per protein, a total of 27 685 peptides from 2918 proteins were identified. The 

table was filtered to keep only peptides with peak areas over 100 and only peptides with 

quantities in all replicates, which left 26 444 peptides from 2858 proteins. Of those, 416 

proteins were found to harbor at least one peptide that disagreed with the other peptides 

in that protein, which corresponds to ~15% of quantified proteins. From the perspective 

of quantified peptides, the frequency of disagreement is much lower; 489 of the 26 444 

peptides, or 1.9%, were found to disagree quantitatively with the other peptides mapped to 

the same protein. Overall, these results suggest that quantitative disagreements are rare at the 

peptide level but are relatively common from the protein perspective.

3.2. PeCorA Discovers Multiple Types of Peptide Disagreements

3.2.1. Direct Evidence of Regulated PTMs.—As an example of direct evidence of a 

regulated PTM discovered by PeCorA, the peptide with the most significant adjusted p value 

in the microglia data set was from PKA R1α and contained methionine 331 oxidation (Table 

S1, Figure 3A). This peptide was detected with and without the oxidation, but only the 

oxidized peptide was increased due to LPS stimulation. PKA R1α is thought to be regulated 

by oxidative stress,31–33 and the finding that LPS can induce this site-specific oxidation may 

prove to be yet another mechanism by which cellular metabolism is tuned. This site M331 

is on the surface of a second nucleotide binding domain (CNB-B) near the cAMP binding 

site34 and could regulate cAMP binding or protein–protein interactions (Figure 3B). This 

example of the direct observation of this regulated PTM site uncovered by PeCorA would be 

missed using standard protein quantity summaries based on grouped peptide quantities.

3.2.2. Indirect Evidence of Regulated PTMs.—As an example of indirect evidence 

of an altered PTM, a peptide from the proto-oncogene Vav1 was found to increase due to 

LPS treatment (Figure 3C). Vav1 is known to signal downstream of tyrosine kinases, and 

this peptide revealed by PeCorA contained two known phosphorylation sites, pY110 and 

pS113. Prior literature provides strong evidence that this change in the unmodified peptide 

quantity may reflect a change in the abundance of the phosphorylated peptide form. Vav1 
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pY110 was decreased with IL-33 stimulation by 33%,35 and IL-33 has been suggested as 

the signal mediating microglial response to LPS.36 A decrease in the phosphorylation of 

this peptide would appear as an increase in the unmodified peptide observed here. Further 

work is needed to verify if the peptide containing this phosphotyrosine is indeed altered 

in microglia in response to LPS stimulation. This example shows how PeCorA enables 

inference of PTM changes from unmodified peptides.

3.2.3. Incorrect Peak Picking.—A third example shows the utility of PeCorA for 

quality control of peptide quantification. Because of the large number of peptides in 

any proteomics experiment, automated peak picking is required for quantification, which 

undoubtedly leads to errors. In fact, active research is ongoing to develop methods that 

detect and exclude poorly quantified signals.11,15 One peptide assigned to the protein 

Calreticulin (CALR) appeared to decrease due to LPS treatment (Figure 3D), but manual 

inspection of this peptide’s areas in Skyline revealed that the wrong peak was chosen for 

most replicates (Figure 3E).

3.2.4. PeCorA as a Peptide Filter before Protein Quantitation.—Although the 

main goal of PeCorA is to discover differentially regulated proteoforms, based on the 

example in Figure 3E, we wondered if PeCorA could improve protein-level quantitation if 

used as a prefilter for peptides before statistical testing. To test this, we used a benchmark 

data set from the iPRG composed of data from four samples spiked with six different 

proteins at varied concentrations.19 PeCorA prefiltration of the peptides input to MSstats 

reduced false-positives (FPs) compared with no feature filtration (FDR < 0.05, as described 

in Tsai et al.,11 Supplemental Figure 1A). The quantitative qualities produced by both 

feature selection methods were similar (Supplementary Figure 1B–E). An example of how 

PeCorA can eliminate FPs is highlighted in Supplementary Figure 1F. The inclusion of 

all-features resulted in a false-positive detection of differential protein abundance (adjusted 

p value ≈ 0.0015). The exclusion of discordant peptides detected by PeCorA corrected this 

artifact in accordance with the feature selection method by Tsai et al.11 Overall, these results 

demonstrate the potential for PeCorA to improve protein-level quantitation by acting to 

prefilter poorly quantified peptides before statistical summary.

3.3. PeCorA Reveals Coagulation Proteoform Changes Resulting from COVID-19 Disease

To show that the detection of differential proteoforms is generalizable to additional data 

set types, we performed PeCorA on a recently published data set containing the plasma 

proteome signatures of patients with COVID-19-driven acute respiratory distress syndrome 

(ARDS) or non-COVID-19 ARDS controls.16 A prevalent characteristic of COVID-19 

severity is elevated prothrombin time,37 which measures how quickly a prothrombin 

undergoes cleavage by prothrombinase to change to active thrombin that can stop the 

bleeding. Like many proteases, thrombin is translated as an inactive precursor, and it 

contains an N-terminal pro sequence, a signal peptide, and two fragment peptides F1 and F2 

that must be removed to produce active thrombin38 (Figure 4A). PeCorA identifies a peptide 

from the N-terminal of prothrombin mapping to the F1 region that indicates a significantly 

elevated level of the inactive prothrombin form in COVID-19 ARDS patients relative to 

controls (Figure 4B). In contrast, PeCorA shows that all other peptides from other regions of 
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prothrombin were unchanged between groups (Figure 4B and Supplementary Figure 2). This 

result suggests that the differential regulation of thrombin isoforms in COVID-19 patients 

may partially explain their elevated risk of thrombosis.39 However, the interpretation of this 

result is difficult without additional experiments because thrombin can act as both a pro- and 

anticoagulant.40

To understand the biology of differential proteoforms associated with COVID-19 ARDS, 

gene ontology (GO) term enrichment analysis was performed using the ClueGO plugin41 

within Cytoscape.42 Twenty-six proteins with at least one discordant peptide were input 

(PeCorA adj. p value < 0.01, Table S1). This analysis revealed that the pathways 

with differential proteoforms were related to pathways that are dependent on proteolytic 

processing cascades, including multiple proteins from the complement immune pathway 

(C3, C5, CFH, C4B, C4B2) and blood coagulation (FGB, FGG, F2, KLKB1; Figure 4C). 

Notably, multiple peptides from fibrinogen, which is cleaved to form the protein component 

of clots, were differentially regulated according to PeCorA. This analysis also revealed 

that APOB and APOA1 isoforms may be differentially regulated as part of the plasma 

lipoprotein particle remodeling process. In summary, PeCorA reveals multiple potentially 

dysregulated protease-driven pathways where the subtle differences in proteoforms were 

previously missed due to peptide quantity aggregation.

4. CONCLUSIONS

PeCorA is a new strategy to detect biologically interesting proteoform changes based on 

discordant peptide quantification across treatment groups. PeCorA revealed that discordant 

peptides are present in ~15% of proteins but represent only ~2% of the total peptides. 

Therefore, one conclusion is that the common practice of obtaining protein quantity 

summaries from aggregating peptide quantities is accurate in most cases. However, in 

agreement with other studies,11–15 we provide evidence that the exclusion of poorly 

quantified peptides can improve protein quantity summarization. In contrast with previous 

works, we show how discordant peptides revealed by PeCorA extract interesting biology 

from existing data, including: (1) direct and indirect evidence of regulated PTMs and (2) 

differential regulation of clotting and complement cascade proteoforms likely resulting from 

post-translational proteolytic processing.

PeCorA is available as an R package (www.github.com/jessegmeyerlab/PeCorA) to facilitate 

its interoperability with other quantitative proteomic tools. The results presented here show 

that PeCorA is applicable to proteomic data from different species (including human, mouse, 

and yeast) processed with different tools (including Skyline, Progenesis, and MaxQuant). 

In summary, PeCorA should find widespread application to proteomic data sets for the 

detection of differentially regulated proteoforms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Protein quantification based on multiple measures of peptide parts. In shotgun proteomics, 

peptides are produced from proteins by proteases; then, the quantities of those peptides are 

used as a proxy for the protein. (A) Illustration of the case where a protein is increased 

by a biological treatment. The quantitative values from multiple peptides from one protein 

change in the same direction across biological treatment groups. (B) Illustration of the case 

where a protein modification is increased due to a biological treatment, but the protein 

quantity is unchanged. The quantitative values for multiple peptides from that one protein 

disagree.
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Figure 2. 
Peptide correlation analysis (PeCorA) to detect differentially modified peptides. (A) First, 

global data distributions are scaled to be centered around zero. (B) Next, each peptide is 

scaled to the mean of the control group to produce a unitless relative peptide quantity 

across groups. This helps correct the problem of differential peptide ionization and detection 

efficiency to produce more uniform data distributions. (C) Third, the quantitative values of 

one peptide from a protein are compared with the quantities of all other peptides in that 

protein using a linear model with a term for the interaction between peptides and biological 

treatment groups. This is repeated in a loop to compare each peptide to all other peptides. 

The p value obtained from an ANOVA test of the interaction is used to determine whether 

the quantity of each peptide is statistically different from that of all other peptides in that 

protein. (D) Example of one peptide that is statistically different from the quantities of all 
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other peptides. The p value of the interaction between the peptide and the treatment group 

decreases when peptide scaling aligns the data.
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Figure 3. 
Examples of interesting peptides revealed by PeCorA. (A) PKA R1α peptide quantities 

comparing the sequence containing oxidized methionine in green on the right with all other 

peptides in the same protein in gray on the left. (B) Crystal structure (PDB: 5KJZ) of 

the second nucleotide binding domain of PKA R1α bound to cGMP showing the location 

of the oxidized methionine 331 with a red arrow. (C) VAV1 peptide quantities comparing 

the sequence with an inferred change in phosphorylation in green on the right versus all 

other peptides in gray on the left. (D) CALR peptide quantities showing the peptide with 

problematic quantitation in green on the right with all other peptides in gray on the left. (E) 
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Peak area summary plot from Skyline for the peptide from CALR in panel D showing the 

poor isotopic dot product (idotp) reflecting incorrect peak picking across most samples.
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Figure 4. 
PeCorA detects altered plasma proteoforms associated with COVID-19 infection. (A) 

Schematic representation of the prothrombin primary sequence, which is the precursor of 

active thrombin. Prothrombin contains N-terminal pro and signal sequences (residues 1–43) 

followed by two fragment peptides that must be removed to activate thrombin, F1 (residues 

44–198) and F2 (residues 199–327). The active protease domain comprises residues 328–

622. Once in its active form, thrombin promotes coagulation. (B) Left: Prothrombin peptide 

covering residues 177–198 of the inactive F1 region identified as significantly elevated by 

PeCorA in COVID-19 ARDS patients relative to non-COVID-19 ARDS patients. Right: 
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Unchanged thrombin peptide from the active β-chain 385–415. (C) Enriched GO Biological 

Process terms from the 26 proteins with altered proteoforms based on the PeCorA adjusted 

p value < 0.01. The big circles are the GO Biological Process terms, the small circles are the 

proteins, and the edges show how the proteins are members of the various GO terms. GO 

terms were filtered to show only the minimal subset needed to make all of the connections 

between proteins.
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