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Abstract. There are a number of available and emerging malaria intervention tools that require innovative trial designs
to find the optimal combinations at given epidemiologic settings. We simulated intervention strategies based on adaptive
interventions, which included long-lasting insecticidal nets (LLINs), piperonyl butoxide–treated LLINs (PBO-LLINs), indoor
residual spraying (IRS), and long-lasting microbial larviciding (LLML). The aims were to determine if PBO-LLINs or
LLIN1IRS combination is more effective for initial interventions than LLINs and to identify the most effective intervention.
We used a clustered, randomized adaptive trial design with malaria infection prevalence (MIP) as the outcome variable.
The results indicate that during the initial stage of interventions, compared with regular LLINs, PBO-LLINs (relative reduc-
tion [RR]: 29.3%) and LLIN plus IRS with alternative-insecticide (RR: 26.8%) significantly reduced MIP. In the subsequent
interventions, adding alternative insecticide IRS (RR: 23.8%) or LLML (RR: 31.2%) to existing PBO-LLIN was effective in
further reducing MIP. During the next stage of interventions, adding LLML on top of PBO-LLIN1IRS (with alternative
insecticides) had a significant impact on MIP (RR: 39.2%). However, adding IRS (with alternative insecticides) on top of
PBO-LLIN1LLML did not significantly reduce MIP (11.6%). Overall, in clusters initiated with PBO-LLIN, adding LLML
would be the most effective strategy in reducing MIP; in clusters initiated with LLIN1IRS, replacing LLIN1IRS with PBO-
LLIN and LLML would be the most effective in reducing MIP. This study provides a new pathway for informing the opti-
mal integrated malaria vector interventions, and the new strategy can be tested in field trials.

INTRODUCTION

Malaria remains a global public health challenge, with an
estimated 228 million cases occurring annually worldwide in
2018.1 In addition, there is a growing realization that the
enormous progress achieved in malaria control since 2000
appears to have slowed recently in part due to increased
insecticide resistance and outdoor transmission.1–3 In fact,
globally reported clinical malaria cases have increased since
2015 despite the high coverage of long-lasting insecticidal
nets (LLINs) and other first-line interventions.1 The dramatic
increase and widespread observations of insecticide resis-
tance and outdoor malaria transmission have become an
important challenge in malaria control.4–8 The malERA
Refresh Consultative Panel on Tools for Malaria Elimination
has called for “strategies for combining new and existing
approaches are developed for different settings to maximize
their longevity and effectiveness in areas with continuing
transmission and receptivity.”9

There are many available and emerging interventions for
malaria vector control,10,11 including LLINs, piperonyl
butoxide-treated LLINs (PBO-LLINs),12 G2 nets,13 indoor
residual spraying (IRS),14 topical repellent,15 space spraying/
repellent,15 attractive toxic sugar bait (ATSB),16 larval habitat
management and larviciding (chemical and microbial),17,18

genetically engineered (genetically modified or Wolbachia-
transinfected) mosquitoes,19 mass trapping,20 and other
emerging interventions under development.9,11 Integrated
vector management is considered a promising tool for com-
bating malaria in the era of insecticide resistance and out-
door transmission.10 In fact, the strategy of combining differ-
ent interventions to control malaria has been tested in many
field trials or implemented in the field.12,14,21 However, the
challenge is to understand which interventions or

combinations of interventions are appropriate in different
settings and how to evaluate their effectiveness.9

Several issues need to be considered in determining the
optimal mix of intervention strategies. First, transmission
heterogeneity must be exploited (i.e., interventions must be
tailored to the local ecological and epidemiological condi-
tions, such as vector species composition and transmission
intensity). Heterogeneity in transmission can occur at a local
scale. For example, interventions or combination of interven-
tions required in the lowland Ahero area east of Kisumu may
be different from that in the highlands of Kakamega and Kisii
areas of western Kenya because the composition of vector
species differs among these areas.4,22–26 Heterogeneity and
seasonality can also occur at the country or regional
level.27,28 The heterogeneity in transmission results in the
currently implemented control interventions being effective
in some settings but not in other settings.1,3,29,30 For exam-
ple, in western Kenya, currently implemented interventions
can maintain malaria transmission at a moderate level
(malaria infection prevalence [MIP] around 15%) in Kaka-
mega county. However, with the same interventions, MIPs
are around 50% in Kisumu county.22,29 In other words, dif-
ferent or additional interventions are required in Kisumu
county to reduce the current malaria transmission.
Second, the suite of interventions may need to be

adjusted over time if the disease burden changes and/or
new interventions are made available and permitted for pub-
lic health use. For example, the scale-up of LLINs and IRS in
Africa has caused rapid and widespread development of
vector resistance to multiple insecticides as well as
increased outdoor transmission.4,8 Surveillance of vector
pesticide resistance and behavioral changes may inform the
choice of control strategies.8,23 In field trials, IRS with alter-
native insecticides has effectively reduced malaria transmis-
sion in areas with insecticide resistance.12,14 In addition,
cost should be considered when planning a trial study; local
community acceptability and field implementation feasibility
are also of concern when implementing the interventions.
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Therefore, the integrated vector management strategy is an
adaptive approach to altering and delivering an optimal mix
of interventions in response to changing epidemiology—not
merely an a priori optimal mix for a given transmission set-
ting, which will become irrelevant once epidemiological and/
or entomological conditions change. From a practical per-
spective, adaptive interventions have been implemented in
malaria-endemic countries, for example, changes from ordi-
nary insecticide-treated bed nets to LLIN since 2006,12,31,32

changes from pyrethroid IRS to the recently implemented
ActellicVR IRS,12,33–37 and implementing a combination of IRS
with LLINs.12,34–37

Randomized controlled trials (RCTs) are considered the
gold standard for assessing the relative efficacy of competing
treatment options in evidence-based disease management.38

In an RCT, investigators randomly assign interventions or
treatments to an experimental arm in comparison to a control
arm. Randomized controlled trials are widely used in malaria
intervention trials.12,14,15,18 Integrated vector intervention will
potentially involve a combination of different types of inter-
ventions, such as LLINs plus IRS with alternative insecticide
or LLINs plus LLML or ATSB for outdoor vector con-
trol.12,14,17,20 It is essential that different types of interven-
tions be combined to combat insecticide-resistant and
outdoor-biting/resting vectors. Due to the potentially large
sample size requirement, the complete factorial design of a
RCT or cluster-randomized trial (CRT) is not a practical way
to find the optimal combination of interventions among the
many available interventions. As the malERA Refresh Consul-
tative Panel on Tools for Malaria Elimination pointed out,
“Randomised controlled trials are expensive and time
consuming, and new pathways should be explored for gener-
ating evidence for large-scale implementation of new
interventions.”5 In addition, a combination of three or four
interventions in one cluster in a trial or in the field can be
costly and likely redundant from the cost-effectiveness point
of view.12 Therefore, an innovative trial design is needed to fill
this gap. Moreover, many of these interventions have been
tested in the field, so a complete factorial design may not be
necessary. Instead, multi-stage adaptive interventions may
be an appropriate and cost-saving approach (i.e., utilizing
individual variables such as ecology and epidemiology to
adapt the intervention and then dynamically readapt interven-
tions based on intervention outcomes).
An adaptive design is loosely defined as a trial design that

allows for modifications to the trial procedure after its initia-
tion without undermining its validity and integrity.39–42 An
adaptive trial design is a sequence of decision rules that
specify how the intervention should change to suit the
current epidemiological conditions. It consists of three key
elements: a set of available interventions, a sequence of
decision rules to be followed when implementing the inter-
ventions, and a set of tailoring variables (evaluation criteria
or outcomes). This design has frequently been used in clini-
cal studies in areas such as psychology, mental health, and
cancer treatment,40–42 but it has not been used in studies on
vector and vector-borne infectious disease control. There
are three major reasons for considering adaptive trial
designs over traditional RCTs/CRTs for the control of vector-
borne infectious diseases. First, different ecological and/or
epidemiological settings may require different interventions
or combinations of interventions. For example, a high-

transmission setting may require a different strategy than a
near-elimination setting.43 Second, given the many available
and emerging new interventions, adding more interventions
into a trial can potentially increase effectiveness. Practically
speaking, however, adding interventions means adding
cost,21,44,45 and logistically it can be very difficult if not
impossible to implement the combined interventions in
scale. Third, the effectiveness of an intervention may change
over time due to changes in epidemiology (e.g., reduced
transmission intensity), dynamically evolving risk (e.g., vector
species shift or development of resistance), or ecology (envi-
ronmental changes).5,22,28,43 Decisions must be made con-
cerning if and when an intervention needs to be replaced or
terminated and, accordingly, which intervention should fol-
low. In this context, future subjects are randomized with bias
toward the best-performing interventions, unlike in conven-
tional RCT/CRT, which treats all interventions/subjects
equally throughout a trial. In addition, decisions may take
into account both effectiveness and cost.21,44,45 Clearly,
adding interventions on top of existing interventions usually
increases effectiveness; meanwhile, adding interventions
may significantly increase cost and sometimes redundant,
making the overall cost-effectiveness suboptimal.12,21,44,45

There are many types of adaptive trial designs,39,42,46,47

and the useful adaptive trial designs for malaria vector con-
trol may include adaptive individual randomization (e.g.,
LLIN, IRS), cluster randomization (e.g., larviciding), and
drop-the-loser design.39 Conventional RCT/CRT has been
used before in malaria control studies12,14,16; these designs
do not drop any subject or cluster of subjects during trials.
Drop-the-loser is a multistage design that allows three types
of potential selections for the next stage: 1) dropping the
inferior intervention, 2) modifying the intervention, and/or 3)
adding an intervention. It is especially useful in selecting the
optimal combination of interventions to form an effective
integrated strategy when many interventions are available.
The aim of this study is to use malaria vector control as an

example to provide a framework for developing the optimal
integrated intervention using adaptive trial design with simu-
lations based on local climatic-environmental and eco-
epidemiological conditions. The simulated adaptive strategy
here used four types of interventions: regular LLIN and IRS
with pyrethroids or ActellicVR , PBO-LLIN, and LLML. The
strategy presented here can be tested in future field trials.

MATERIALS AND METHODS

Study area and simulation settings. The biological and
epidemiological data used in this study are from the Kom-
bewa area of Kisumu County, western Kenya.22 Kombewa is
located in the lowland Lake Victoria shore area (1,140–1,300
m elevation) and is 20 km west of Kisumu town. It is a semi-
arid area with poor drainage, semipermanent swampy
streams, and some large swampy areas. It is a rural agricul-
tural area with maize as the staple crop. The area is warm,
with an average monthly maximum temperature of 29.1�C
and minimum of 18.4�C. The warmest period is between
January and March, and the coolest period is from June to
August.22,48 The annual precipitation in the area is about
1,450 mm with two rainy seasons: the long rainy season
from April to June and short rainy season from October
to November.
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In Kombewa, MIP was 50% in 2015, despite high LLIN
coverage (. 90%), and the MIP was relatively stable (around
50%) since 2004, except for short periods of declines in
MIPs immediately after the LLIN campaigns in 2006 and
2010.29,49 All three major African malaria vector species
occurred in the area in 2015: Anopheles gambiae s.s. (28%),
Anopheles funestus (42%), and Anopheles arabiensis
(30%).29 Vector mortality against pyrethroids was around
50%, whereas vectors had no resistance against organo-
phosphate.8,49 Outdoor transmission was found to be high
in nearby areas.4 The malaria transmission intensity, mea-
sured by entomological inoculation rate (EIR), in the area in
recent years was not available, but EIR was estimated to be
around 50 infectious bites/person/year in 2017, based on
the results of several previous studies conducted in the
same or nearby areas.4,48,50 These field observed parame-
ters, including vector species compositions, resistance lev-
els (WHO tube/cone test mortality), and parasite infection
prevalence in the past several years were used as baseline
for the simulations (Table 1). The distribution of free universal
artemisinin-based combination therapy has been imple-
mented by the government of Kenya since 2006. In the study
area, the government has also conducted four rounds of
mass LLIN distributions, respectively, in 2006, 2010, 2014
and 2018. Long-lasting insecticidal nets are considered the
standard intervention for the study area. No formal IRS or
other vector interventions have been implemented in the
area. The aim of this study is to find the optimal combination
of interventions for vector control in this area.
We ran the simulations using the Epidemiological Model-

ing for Malaria Transmission (EMOD-MT), a comprehensive,
individual-based stochastic model that takes into consider-
ation human demography, entomology, climate, and other
factors.51,52 The EMOD-MT is best suited for comparing the
potential entomological and epidemiological impacts of vari-
ous interventions. EMOD-MT was developed by the Institute
for Disease Modeling (https://docs.idmod.org/projects/
emod-malaria/en/latest/malaria-model-overview.html, Bill &
Melinda Gates Foundation, Seattle, WA). The model consists
of immature mosquito development, vector feeding and
infection, vector-human interaction, human malaria infection,
and within-host parasite dynamics. The model requires input

of climatic data for vector and parasite development, habitat
setting for immature vector simulation, and demographic
inputs for infections simulations. The specifics of the model
are described in detail elsewhere.51–54 The model includes
both vector control and human-based interventions, such as
bed nets, IRS, larviciding, and antimalarial drugs, among
others. The software is freely available.
As reference climatic data for the simulations, we used the

monthly average maximum, minimum, and mean tempera-
tures and the monthly average cumulative precipitation from
Kisumu, also on the Lake Victoria shore lowland area about
20 km east of Kombewa. Because LLIN is the routine
government-implemented intervention, the effectiveness of
LLIN was simulated as baseline and compared against our
field monthly surveillance data.29 The most recent free LLIN
mass distribution was conducted in June 2018 in the study
area.
Four interventions were considered in the simulations:

LLIN, PBO-LLIN, IRS with/without alternative insecticides,
and Bacillus thuringiensis var israelensis/Bacillus sphaericus
(Bti/Bs) LLML.17 Piperonyl butoxide–treated LLINs may help
to restore the effectiveness of LLINs by increasing their kill-
ing power against insecticide resistant vectors.12 Similarly,
alternative-insecticide IRS has proven effective against
insecticide-resistant vectors.12,30 Long-lasting microbial lar-
viciding kills larvae but requires repeated applications every
3–4 months.17 Simulation conditions are summarized in
Table 1. Mosquito species composition were based on
recently published field studies conducted in the study area
or nearby areas.4,29 Efficacy of regular LLIN and pyrethroid
IRS was also based on field observations (i.e., mosquito
resistance levels as tested by WHO tube or cone bioas-
says).8,49,55 We have also assumed that Anopheles mosqui-
toes were susceptible to Actellic@ based on recent
President’s Malaria Initiative entomological monitoring con-
ducted in eastern Kisumu county.56

For simplicity, in the simulation model, we assumed that
the efficacy of LLINs and PBO-LLINs was slowly waning
after 2 years of use and lasted beyond 2 years with an expo-
nential decaying killing power until the end of year 4.57,58

This assumption was based on the “catch-up” routine distri-
bution of LLINs through in the government-run health

TABLE 1
Parameters used in simulations

Parameter Details Value References

Malaria infection prevalence 50% 29, 49
Vector composition Anopheles. gambiae s.s. 28% 29, 49, 50

Anopheles funestus 42% 29, 49, 50
Anopheles arabiensis 30% 29, 49, 50

Vector resistance level* Pyrethroids 50% 8, 49, 55
Organophosphate (ActellicVR ) . 90% 56

Intervention efficacy† Regular LLIN 50% 55
PBO-LLIN 90% 50
Regular insecticide IRS 50% 8, 49, 50
Alternative insecticide IRS 80% 56
Bti/Bs larvicide (LLML) 80% 17

Re-application interval (months) IRS‡ 6 50, 56
Bti/Bs larvicide 4 17

Bti/Bs 5 Bacillus thuringiensis var israelensis/Bacillus sphaericus; IRS 5 indoor residual spraying; LLIN 5 long-lasting insecticidal net; PBO-LLIN 5 piperonyl butoxide-treated LLINs; PMI 5
President’s Malaria Initiative.
*Mortality measured byWHO tube/cone test. Samemorality for all species.
†Measured by vector mortality.
‡Current ActellicVR IRS is sprayed once a year by PMI.
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facilities and Child Welfare Clinics, which provided LLINs to
pregnant women and children under 5 years of age.59,60

Although the mass distribution of LLINs was made once
every 4 years, this “catch-up” LLIN distribution may fill some
of the gaps in LLIN coverage between two mass distribu-
tions, thus partially maintaining the LLIN effectiveness.59,60

The efficacy of IRS was assumed to be effective for 6
months, with exponential decaying effects after 2 months of
application.8,56 Long-lasting microbial larviciding efficacy
decays with a Gaussian distribution and lasted for 4
months.17

Trial design. A cluster-randomized design was consid-
ered due to the use of LLML in the aquatic habitats rather
than in individual houses.17,18 Three major factors were
taken into consideration for the design. First, because LLIN
is universally implemented in the study area,29 it was chosen
as the reference intervention (i.e., the control arm). The same
initial intervention (LLIN) was provided to all subjects in all
clusters at stage I intervention. Second, given the exophagic
and exophilic nature of some vector species, outdoor trans-
mission may be important,4 and therefore LLML should be
considered. Third, the study duration was 4 years (including
1 year of baseline prior to any intervention) because LLIN
may lose most of its efficacy afterwards, with an evaluation
period of 12 months after the initiation of each intervention.
New interventions always started at the beginning of each
year to minimize seasonal effects. A potential adaptive
design flowchart is shown in Figure 1, and the potential time-
line is shown in Supplemental Table 1.
The study’s primary aim was to determine if beginning

with PBO-LLINs or LLIN1IRS is more effective in reducing
MIP than that with regular LLINs. The second aim was to
estimate the mean outcomes of the embedded adaptive
interventions and identify the most effective intervention.
Sample size calculation was based on reduction in MIP. The
sample size (i.e., number of clusters required) was calculated
assuming an intercluster correlation coefficient of 0.05,61 a
significance level of 0.05, power of 80%, cluster size of 200
individuals, and detectable reduction of 10%. A sample size
of five clusters is required for a non-adaptive design. Assum-
ing 30% relative reduction is achieved at stage I intervention,
then a maximum of 10 clusters are required at stage II inter-
ventions. Similarly, if 30% relative reduction is achieved at

stage II intervention, then a maximum of 30 clusters are
required at stage III interventions. This calculation assumes
1:1 response/nonresponse ratio. We started with 84 clusters
for the simulations because this sample size is likely pow-
ered to detect smaller changes in MIP.
At stage I, each cluster was randomly assigned to one of

the three arms: regular LLIN, PBO-LLIN, or regular
LLIN1IRS (i.e., only indoor interventions were simulated at
this stage). Selection of initial interventions may affect the
subsequent selection of interventions and potentially the
overall optimal combination of interventions. Therefore,
the selection of initial interventions is important. In this study,
the selection of initial interventions was based on the results
of recently published field trial studies.12,14–18,30 An interven-
tion was considered non-effective (or a cluster was consid-
ered a nonresponder) based on two criteria: 1) the stringent
criterion for nonresponse, in which the reduction in MIP was
, 20%, or 2) the lenient criterion for nonresponse, in which
the reduction in MIP was statistically insignificant. Cost was
not included in this study. The minimum 20% reduction was
selected arbitrarily yet reasonably because a number of past
trials have reached effectiveness of . 20% reduction in MIP
or clinical malaria incidence.12,14,18,30,52

Field data for model validation. To validate the model
simulated trend of malaria prevalence, we used malaria prev-
alence data collected from randomly selected school chil-
dren 6–13 years old in Kombewa from 2013 to 2018. The
data collection process has been described previously, and
some of the data have already been published.22,29,49

Briefly, each month, at least 100 volunteer school children
from at least three schools were sampled to determine para-
site prevalence. Blood samples were collected by the stan-
dard finger-prick method, and thin and thick blood smears
were prepared for laboratory examination.22,29 Parasite spe-
cies and gametocytes were identified microscopically.22,29

Parasite prevalence was calculated as number of positive
samples divided by the total number of samples examined.

Outcome measures and data analysis. The primary out-
come measure was the percentage reduction in MIP rate. A
primary aim was to find the combination of interventions that
yielded the greatest reduction in MIP. Differences in MIP
between treatments and control groups were compared with
Poisson multivariate regression models with intervention,

Stage Ⅰ Stage ⅠⅠ Stage ⅠⅠⅠ Result

PBO-LLIN

PBO-LLIN
+ LVC

PBO-LLIN
+ IRS

LLIN

Communities PBO LLIN

LLIN+IRS

RR R

Resp

Non-resp

R

Resp

Non-resp

PBO-LLIN A

B

C

D

E

F

G

PBO-LLIN + LVC

PBO-LLIN + IRS

PBO-LLIN + LVC+IRS

PBO-LLIN + IRS

PBO-LLIN + LVC

PBO-LLIN + IRS + LVCR Randomization

FIGURE 1. An example of adaptive intervention trial design. R means that randomization is required. Resp/Non-resp represents responded (i.e.,
showed effective reduction) and non-responded (i.e., did not show effective reduction) clusters. In Stage I intervention, we assumed that PBO-
LLIN had a significant added effect on the reduction of malaria infection prevalence (MIP) compared to regular LLIN, therefore, LLINs are replaced
by PBO-LLINs in Stage II. LVC is larval control. This figure appears in color at www.ajtmh.org.
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cluster, and calendar time as covariates, using a generalized
estimating equations approach.62,63 Intervention was a time-
varying covariate because the treatment in a cluster may be
adapted and re-adapted pending the response to the previ-
ous treatment. For the second aim of analysis (estimation of
outcomes for the embedded adaptive interventions),
weighted and replicated generalized estimating equations
were used to estimate the means in the infection prevalence
among the embedded adaptive interventions and to com-
pare the slopes at each stage for each adaptive intervention.
Here, weighting is to account for the potential over- or
under-presentation of some groups (e.g., nonresponders
and responders could have different chances to be assigned
to different treatment groups).64,65

Scientific and ethical clearance. Scientific and ethical
clearance was given by the institutional review boards of

Kenya Medical Research Institute, Kenya, and the University
of California at Irvine. Volunteers were enrolled from primary
schools in the study sites through school administrators with
the permission of the division office of the Ministry of Health,
written consented by school principal on behalf of the
parents, and oral assent from participants. Inclusion criteria
included providing informed consent and having no reported
chronic or acute illness except malaria. Exclusion criteria
included unwillingness to participate in the study.

RESULTS

A potential adaptive intervention trial design. A poten-
tial adaptive intervention flowchart is shown in Figure 1, and
the timeline is shown in Supplemental Table 1. The trial study
lasted for 3 years (Supplemental Table 1). In this trial, we
proposed to use regular LLIN, PBO-LLIN, IRS (vector-resis-
tant insecticides or alternative insecticides), and larviciding
with LLML. At stage I, each cluster was randomly assigned
to one of the three arms with all indoor interventions: regular
LLIN, PBO-LLIN, or regular LLIN1IRS. Assuming PBO-LLIN
is more effective than regular LLIN at stage i, stage II will
also consist of three arms all including PBO-LLIN (replace
LLIN) as default intervention. Stage III interventions depend
on the effectiveness of IRS and LLML at stage II (Figure 1).
Regular LLIN is currently the routine intervention imple-
mented by all malaria endemic South Saharan African coun-
tries. Therefore, LLIN served as the control arm at stage I
intervention.

Performance of model simulation. Figure 2 illustrated
the observed MIP in the study area and model simulated
MIP in the study area. The model-simulated dynamics of
MIP matched the observed results well assuming 90% LLIN
coverage, which is similar to the observed LLIN coverage in
the study area (Figure 2).29

Stage I intervention. Based on the current MIP of 50%
(50.5% as simulated) and vector mortality rate of 50%
against regular LLINs, switching from 90% regular LLIN to
90% PBO-LLIN yielded a MIP of 24.7%, a 51.1% reduction
in MIP from the baseline, or 29.3% additional reduction
against regular LLIN (MIP 35.0%), which was considered
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FIGURE 2. Dynamics of observed malaria infection prevalence
(MIP) (gray curve) and model simulated MIP (blue curve). Model simu-
lated MIP (blue curve) are based on 90% coverage of LLIN. This fig-
ure appears in color at www.ajtmh.org.
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FIGURE 3. Simulated mean malaria infection prevalence rate under different intervention scenarios during stage I interventions. Error bar was
standard deviation. LLIN, long-lasting insecticidal net; PBO-LLIN, piperonylbutoxide-treated LLIN; LLIN+IRS LR, LLIN plus indoor residual spraying
using low resistance insecticides; LLIN1IRS HR, LLIN plus indoor residual spraying using high resistance insecticides. This figure appears in color
at www.ajtmh.org.
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effective (Figure 3; Supplemental Figure 1). Therefore, all
LLINs were replaced by PBO-LLINs for stage II. Compared
with regular LLIN alone, adding IRS on top of LLIN reduced
MIP by an additional 9.1% when using vector-resistant
insecticides or by an additional 26.8% when using alterna-
tive low-resistance insecticides (Figure 3; Supplemental Fig-
ure 2).
In summary, PBO-LLIN and alternative-insecticide IRS

were effective interventions and were considered in subse-
quent stages. Regular LLIN and IRS with vector-resistant
insecticides were terminated after stage I.

Stage II intervention. In stage II, all regular LLINs were
replaced by PBO-LLINs (Figure 1). Adding alternative-
insecticide IRS on top of PBO-LLIN had an overall 23.9%
added effect on MIP (Figures 1 and 4; Supplemental Figure

3), which was considered effective. With relatively high rates
of outdoor transmission and pyrethroid insecticide resis-
tance, adding LLML (with reapplication every 4 months) on
top of PBO-LLIN produced an overall 31.2% additional rela-
tive reduction in MIP (Figures 1 and 4; Supplemental Fig-
ure 3).
In summary, both alternative insecticides IRS and LLML

were effective interventions when added to existing PBO-
LLIN. If only two interventions could be considered due to
cost and/or logistical concerns, PBO-LLIN1LLML would be
the optimal combination for reducing MIP in the study area.

Stage III intervention. As in stage II, PBO-LLIN was used
as the baseline. For nonresponded clusters with LLML, inter-
ventions were switched to IRS, and vice versa. For
responded clusters, both LLML and IRS were switched to
LLML1IRS. Simulation results indicated that adding LLML
on top of PBO-LLIN1IRS yielded an additional 39.2% rela-
tive reduction in MIP (Figures 1 and 5; Supplemental Figure
4), whereas adding IRS on top of PBO-LLIN1LLML yielded
just an 11.6% additional reduction in MIP (Figures 1 and 5;
Supplemental Figure 5), which fell below the 20% threshold.
In summary, adding LLML on top of PBO-LLIN1IRS (with

alternative insecticides) had a significant impact on MIP.
However, if PBO-LLIN1LLML has already been imple-
mented, adding IRS may not be recommended. In other
words, PBO-LLIN1LLML might be the optimal effective
combination of interventions when only LLIN, PBO-LLIN,
IRS, and LLML are considered.

Optimized intervention strategy. Overall, in clusters initi-
ated with PBO-LLIN, PBO-LLIN1LLML would be the most
effective in reducing MIP; in clusters initiated with LLIN1IRS,
then PBO-LLIN1IRS1LLML would be the most effective in
reducing MIP. Note that IRS was simulated using alternative
insecticides, and only LLIN, PBO-LLIN, IRS, and LLML inter-
ventions were considered. The cost of interventions was not
included in this analysis.

DISCUSSION

Malaria is still a major public health threat, despite that sig-
nificant progress has been made in the past two decades.
Insecticide resistance and outdoor malaria transmission are
widespread, though their public health impact is not fully
understood. Integrated vector management is considered a
promising tool for combating insecticide resistance and out-
door transmission.10 Here, using simulations, we show that
an adaptive trial design can be used as an alternative strat-
egy to find the optimal integrated intervention that is suitable
in given settings. A field trial of malaria vector intervention
using adaptive trial design is ongoing in eastern Kisumu,
Kenya, and it will serve as a test case for future studies.66

Adaptive trial design and field implications. This study
provides an alternative approach to a multi-intervention trial
design, and the simulation shows how field trials might be
conducted (e.g., how to sequentially implement different
interventions and what potential outcomes to expect). The
RCT, which is considered the gold standard of conventional
trial designs, is balanced across all interventions (i.e., it
treats all intervention arms equally), and, once randomized,
the interventions remain unchanged throughout the trial. By
contrast, the adaptive trial approach uses multistage optimi-
zation to find a robust mix of interventions by eliminating or
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FIGURE 4. Simulated mean malaria infection prevalence rate under
different intervention scenarios during stage II interventions. Error bar
was standard deviation. PBO-LLIN, piperonylbutoxide-treated LLIN;
PBO-LLIN+LLML, PBO-LLIN plus long-lasting microbial larviciding;
PBO-LLIN1IRS, PBO-LLIN plus indoor residual spraying. This figure
appears in color at www.ajtmh.org.
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replacing inferior interventions. Given the large number of
available interventions, it can be difficult to determine the
optimal integrated strategy using an RCT design, which
would require a large sample size to include all potential
interventions.9 So far, no field trials have tested three or
more interventions using a full factorial design,12,14,20,30,52

which is considered one of the main challenges for generat-
ing evidence to support large-scale implementation of inte-
grated interventions.9 The only three-intervention trial that
has been conducted involved parallel studies of two com-
peting interventions, meaning no additive effect was
assessed.12 The adaptive strategy could greatly reduce the
potentially large sample size required by the RCT design and
thus provides a new pathway to developing the optimal inte-
grated vector management strategy. For example, in a trial
done by Protopopoff et al.12 to test LLIN, PBO-LLIN, and
IRS for their effectiveness in malaria control, PBO-LLIN was
in competition with LLIN; therefore, four intervention arms
were needed. If adaptive intervention were used in this case,
two arms would be sufficient (although two stages would be
required). Furthermore, if more interventions are considered,
adaptive design may reduce the sample size required. This
simulation demonstrates the effectiveness of this strategy
and thus the potential for using this strategy in a field trial.
Several field trials have tested interventions similar to

those in this study and yielded levels of effectiveness similar
to those shown by our simulations.12,14,20,30,62 In the trials
by Protopopoff et al.,12 PBO-LLIN outperformed regular
LLIN by a 25% reduction in MIP, and adding alternative-
insecticide IRS on top of LLIN/PBO-LLIN resulted in a 36%
additional reduction in MIP. Similarly, in a trial by Tiono
et al.,62 LLINs treated with permethrin plus pyriproxyfen
showed a 25% reduction in clinical malaria in children com-
pared with regular LLINs. A small-size cluster-randomized
trial conducted by Afrane et al.17 found that LLML reduced
indoor-biting malaria vector density by 76–82% and
outdoor-biting density by 67–75% and was effective up to
3–4 months. In the Fillinger et al.18 conventional Bti/Bs trial,
intervention reduced 48% of new infections after 6 months
of continuous applications. The results of our simulation are
consistent with these field trials (i.e., adding alternative-
insecticide IRS or LLML or switching from regular LLIN to
PBO-LLIN reduces MIP by 20–40%). In addition, the simu-
lated dynamics of MIP reflected the field observations.
Therefore, that the results from these field trials reflects our
simulation findings provides support that our simulations are
reliable.
Our new trial design and simulation went beyond combin-

ing two interventions, and no field trial has tested a combina-
tion of three interventions with complete factorial designs.
As shown by field trials and in our simulations, alternative-
insecticide IRS and LLML may be equally effective in reduc-
ing malaria transmission (measured by MIP or clinical
malaria). Because IRS and LLML work on different stages of
vector development, and LLML reduces overall vector den-
sity,17 so adding LLML on top of IRS may further reduce
indoor vector density. Assuming moderate outdoor trans-
mission, our simulation results indicate that adding IRS on
top of LLML yielded less reduction in MIP compared with its
counterpart (i.e., adding LLML on top of IRS), presumably
because LLML also reduces outdoor transmission. These
simulation results can be tested in field trials. In this context,

our study provides a guideline or new pathways that are
desperately needed for future multi-intervention trial
designs.9

The major drawback of adaptive intervention trial design is
the potentially longer test duration needed. There is a trade-
off between large sample size and long test duration when
more interventions are included. However, it is not feasible
to do a RCT when there are many available interventions.

Selection of initial interventions and starting time of
each intervention. Selection of initial interventions is impor-
tant in adaptive interventions because the eventual optimal
combination of interventions depends on the initial interven-
tions. Expert opinions are key for selecting the initial
interventions and are based on previously evaluated inter-
ventions. For example, for malaria control, alternative insec-
ticide IRS and PBO-LLIN have been shown to be effective
in further reducing malaria transmission.12,30 In fact,
pyrimiphos-methyl or bendiocarb IRS has been imple-
mented in Kenya, Uganda, and Ethiopia, and PBO-LLIN will
be rolled out in 2020 in Kenya according to the PMI
plan.35–37 However, other factors must also be considered,
such as the cost of implementation, feasibility for field imple-
mentation, and community acceptability. In this study, we
have also considered mode of delivery. For example, larvi-
ciding has been shown to be effective in reducing malaria
transmission. However, finding all breeding habitats is chal-
lenging. Because LLINs, IRS, and PBO-LLINs are only
required for each household, presumably implementing
these interventions is logistically easier and possibly less
costly. In addition, IRS, LLINs, and PBO-LLINs are indoor
interventions. Thus, larviciding, an outdoor intervention,
complements IRS and PBO-LLIN because it targets a differ-
ent stage of the mosquito life cycle. Therefore, larviciding
was implemented separately after IRS, LLINs, and PBO-
LLIN. In other words, we first assessed the performance of
each adult intervention tool, then added larval intervention
tools. Last, and the most importantly, the purpose of using
an adaptive design strategy is to reduce the intervention
sample size without undermining the integrity of the inter-
vention. Therefore, the number of initial interventions should
be kept minimal; otherwise, the sample size will increase,
and the advantage of doing an adaptive trial will be lost.
Another issue is the impact of the intervention starting

time. Because the study area experiences two rainy and two
dry seasons each year, mosquito larval breeding habitats
and mosquito population dynamics show strong seasonal-
ity.22 Therefore, intervention starting season may have short-
term impacts on reducing malaria transmission and the
cost-effectiveness of the intervention. For example, during
the dry season, larval habitats are less common and likely
concentrated in certain areas where water is available.67–69

Larviciding intervention during this period may have
increased effectiveness and reduced costs. Because larvi-
ciding must be repeated several times a year, the effects
that one application has on long-term malaria transmission
are not clear. In general, the effects of the starting time of an
intervention on the overall effectiveness of an adaptive trial is
a subject of further investigations.
A further question is the impact of carryover effect. Differ-

ent interventions and different intervention starting times will
potentially yield different patterns of transmission in the
intervention area by the end of each stage of interventions,
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and this result at the end of each year is used to determine
the selection of specific intervention in a given cluster in the
next step.63–65 This strategy is the nature of the adaptive trial
design and the key difference between adaptive and con-
ventional cluster randomized controlled trials. In adaptive tri-
als, effective interventions will be continued in the next
stage, whereas clusters with ineffective interventions will be
re-randomized and assigned to effective or new interven-
tions. The re-randomization process acts to minimize the
carryover effect, whereas re-randomization is not allowed in
conventional cluster randomized controlled trials. The key is
the inter-stage evaluation; RCT design does not allow such
evaluations.

Sequential multiple assignment randomized trial. A
sequential multiple assignment randomized trial (SMART) is
one way to inform the development of adaptive trials.40,42 As
mentioned earlier, it is logistically difficult, if not impossible—
and perhaps not even necessary—to include all of the
potentially effective interventions or combinations of inter-
ventions in one trial all at once. However, it is possible to
sequentially add selected interventions into the trial based
on outcomes at each step and existing evidence, such as
previous laboratory experiments, field trials, or mathematical
model simulations. A SMART usually includes multiple inter-
vention stages, with each stage corresponding to one of the
critical decisions in the adaptive trial process.40 Data from a
SMART design can be used to address many questions
regarding the construction of optimal adaptive intervention
(i.e., the comparison of different intervention options at dif-
ferent stages of the intervention). For example, assume we
have LLIN, IRS, and larviciding. We can start with two arms:
LLIN and LLIN1IRS (i.e., begin with indoor interventions; we
add larviciding at stage II). What is the main effect at different
stages? What is the difference in the final outcome between
two intervention strategies that begin with different stage I
interventions (e.g., LLIN versus LLIN1IRS)? And, of course,
in terms of the overall optimal strategy, which intervention
strategy produces the most cost-effective outcome?
Remember, both IRS and larviciding may be eliminated at
the middle or by the end of the trial if they are deemed
ineffective.
The sequence of the interventions may have impacts on

the overall outcomes (i.e., the optimal combination of inter-
ventions at a given ecological setting). This sequential
assignment and outdoor transmission likely explain the dif-
ference in overall reduction in MIP between sequential
intervention combinations PBO-LLIN1LLML1IRS and PBO-
LLIN1IRS1LLML. Long-lasting microbial larviciding and
alternative insecticide IRS may be equally effective in reduc-
ing overall MIP. However, LLML reduces both indoor and
outdoor vector density, thereby reducing potential future
overall transmission, whereas IRS only reduces indoor vec-
tor density but has limited impact on outdoor vectors, espe-
cially outdoor resting vectors. Therefore, IRS application
results in a higher potential of future transmission because
the outdoor resting/biting female insects will maintain the
overall vector density or with a compromised reduction in
overall vector density. In other words, the sequential applica-
tions of PBO-LLIN ! LLML and PBO-LLIN ! IRS will result
in different entomological conditions, which in turn, affects
the effectiveness of the subsequent interventions.

Optimal integrated strategy in different ecological-
epidemiological settings. As mentioned earlier, ecological
and epidemiological heterogeneity may affect intervention
outcomes, and thus different intervention strategies may be
required in different settings. For example, in the Kakamega
highlands of western Kenya, A. gambiae s.s. is the predomi-
nant malaria vector, accounting for . 90% of all vectors,
which is very different from Kombewa.4,22 Although outdoor
transmission exists, A.. gambiae s.s. is still considered as
primarily indoor-resting and human-feeding. Here, simula-
tion results indicated that adding LLML on top of LLIN may
add just a 29.4% relative reduction in entomological inocula-
tion rate (EIR), and adding LLML on top of LLIN1IRS added
a 22.8% relative reduction in EIR (Zhou, unpublished data).
In Kakamega, MIP was around 40% in 2002 and 13% in
2016.22,29 Assuming a high killing rate (80%) for LLIN, simu-
lation results indicated that LLIN alone (Note: universal
artemisinin-based combination therapies and LLIN have
been implemented since 2006) had reduced MIP by 76.8%
since 2006,22,49 which is similar to field observations made
when vector insecticide resistance was relatively low.22,29

Further reductions in MIP may require a different intervention
strategy in these areas, for example, IRS with alternative
insecticides.30 Although these results must be assessed fur-
ther through field trials, they demonstrate the potential
power of an adaptive trial design.

Future emerging interventions for outdoor
transmission control. Outdoor transmission has become
increasingly important due to the selection pressure posed
by the indoor interventions such as LLINs and IRS.4,9,23 Lar-
viciding reduces both indoor and outdoor transmission in
high-transmission areas, as demonstrated by field trials and
model simulations.17,18 However, larval control is highly
labor intensive and requires continual enhancement due to
the potential loss of larvicides (e.g., rain wash), the creation
of new breeding habitats after the rain, and the loss of habi-
tats during dry season. Other interventions, such as ATSB
and spatial repellent, may be alternative choices against out-
door transmission.9,11 In addition, new interventions may
become available for public health application (e.g., G2
LLINs, a new LLIN based on chlorfenapy).9 Adding new
interventions into the adaptive design simply adds additional
arms or stages. Modeling simulations can be done in the
same way, although field evaluations may become more
intensive because they require more field work.

Selection of optimal strategy: Multiple criteria. In
malaria epidemiology and control, EIR is considered a good
entomological indicator for measuring the intensity of trans-
mission70; EIR is relatively easy to observe in the field. How-
ever, MIP or clinical incidence rate (CIR) gives a more direct
measurement of transmission. If multiple criteria are consid-
ered, intervention evaluation can be done using Q-learning
with a weighted reward combining EIR, CIR, and MIP.71–74 In
this case, a reduction in MIP, CIR, or EIR can only be
obtained after the intervention—a time-delayed reward. We
can define a weighted Q-function of EIR, MIP, and CIR to
measure the reduction in transmission. The goal is to find
the best possible Q-score at the end of each intervention
stage after performing different interventions.71,72,74

Selection of optimal strategy: Cost-effectiveness.
Cost-effectiveness is key to the selection of optimal inter-
vention strategies. There is substantial literature on the cost
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and cost-effectiveness of malaria interventions.21,45,75,76

Previous cost-effectiveness analysis has focused primarily
on individual interventions; the cost-effectiveness of an
integrated vector management program has not been thor-
oughly evaluated. Adding more interventions on top of exist-
ing interventions may further reduce disease transmission,
but it may also increase material and operational costs.
Cost-effectiveness can be measured as a discounted reduc-
tion in transmission in the Q-functions73,74; that is, if an addi-
tional intervention will increase the cost, the reduction in
transmission is discounted by the cost (e.g., weighted
inversely against the increased cost) at each intervention
stage. Further discounts may be applied at subsequent
stages of the intervention.
Clearly, when cost-effectiveness is evaluated, the optimal

intervention strategies may change. For example, adding
IRS on existing LLIN is more effective in reducing MIP than
that by PBO-LLIN alone. However, IRS must be reapplied
periodically, whereas PBO-LLIN may be effective continu-
ously for up to 2–3 years. Thus, the differences in implemen-
tation and material costs must be considered with regard to
the gains in reduction in malaria cases.

Conclusions. In summary, integrated vector management
is considered the optimal solution for preventing vector-
borne infectious diseases. The scale-up for universal cover-
age of LLINs and IRS for malaria control has caused
widespread mosquito resistance and increased outdoor
transmission. Thus, new viable integrated intervention strat-
egies are urgently needed to adapt to the changing ecology
and epidemiology. With so many available and emerging
interventions, conventional RCT/CRT or similar trial designs
will not be a cost-effective way to find the optimal combina-
tion of interventions. An adaptive trial design may provide
the high-quality data needed to determine the optimal cost-
effective combination of interventions that can adapt to
transmission heterogeneity and changing ecology and epi-
demiology. Adaptive trial design is both conceptually and
scientifically appealing. Based on an adaptive trial design,
we described an example in malaria control using the drop-
the-loser design to address the question of finding the opti-
mal integrated intervention. Modeling simulation conditions
can be modified so that results can be obtained in different
transmission settings, and results can be evaluated in field
trials. Most importantly, our example provides a framework
or new pathways for informing the optimal integrated inter-
vention when field assessment supports the simulation
results. Even if field tests only partially support the simulation
results, the model can be modified and the parameters
recalibrated so that the results better suit the field condi-
tions. Malaria remains one of the most serious vector-borne
infectious diseases, and adaptive trial designs provide an
alternative pathway to improve the efficacy and effective-
ness of interventions in vector-borne disease control. These
designs and simulation results deserve continued
research attention.

Received April 6, 2020. Accepted for publication July 3, 2021.

Published online September 7, 2021.

Note: Supplemental table and figures appear at www.ajtmh.org.

Financial support: This study was funded by the National Institutes of
Health (R01 A1050243, D43 TW01505, and U19 AI129326).

Authors’ addresses: Guofa Zhou, Ming-Chieh Lee, Xiaoming Wang,
Daibin Zhong, Elizabeth Hemming-Schroeder, and Guiyun Yan, Pro-
gram in Public Health, University of California at Irvine, CA, E-mails:
zhoug@uci.edu, mingchil@uci.edu, xiaomiw1@hs.uci.edu, dzhong@
uci.edu, ehemming@uci.edu, and guiyuny@uci.edu.

REFERENCES

1. World Health Organization, 2019. World Malaria Report 2019.
Geneva, Switzerland: WHO.

2. World Health Organization, 2012. World Malaria Report 2012.
Geneva, Switzerland: WHO.

3. Bhatt S et al., 2015. The effect of malaria control on Plasmodium
falciparum in Africa between 2000 and 2015. Nature 526:
207–211.

4. Degefa T, Yewhalaw D, Zhou G, Lee MC, Atieli H, Githeko AK,
Yan G, 2017. Indoor and outdoor malaria vector surveillance
in western Kenya: implications for better understanding of
residual transmission. Malar J 16: 443.

5. The malERA Refresh Consultative Panel on Insecticide and Drug
Resistance, 2017. malERA: An updated research agenda for
insecticide and drug resistance in malaria elimination and
eradication. PLoS Med 14: e1002450.

6. Moiroux N, Gomez MB, Pennetier C, Elanga E, Dj�enontin A,
Chandre F, Dj�egb�e I, Guis H, Corbel V, 2012. Changes in
Anopheles funestus biting behavior following universal cover-
age of long-lasting insecticidal nets in Benin. J Infect Dis 206:
1622–1629.

7. Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, Muk-
waya LG, Birungi J, Wondji CS, 2014. Widespread pyrethroid
and DDT resistance in the major malaria vector Anopheles
funestus in East Africa is driven by metabolic resistance
mechanisms. PLoS One 9: e110058.

8. Wanjala CL, Mbugi JP, Ototo E, Gesuge M, Afrane YA, Atieli
HE, Zhou G, Githeko AK, Yan G, 2015. Pyrethroid and DDT
resistance and organophosphate susceptibility among Anoph-
eles spp. mosquitoes, western Kenya. Emerg Infect Dis 21:
2178–2181.

9. The malERA Refresh Consultative Panel on Tools for Malaria
Elimination, 2017. An updated research agenda for diagnos-
tics, drugs, vaccines, and vector control in malaria elimination
and eradication. PLoS Med 14: e1002455.

10. Benelli G, Beier JC, 2017. Current vector control challenges in
the fight against malaria. Acta Trop 174: 91–96.

11. Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt
M, Phiri KS, 2018. Prevention efforts for malaria. Curr Trop
Med Rep 5: 41–50.

12. Protopopoff N et al., 2018. Effectiveness of a long-lasting piper-
onyl butoxide-treated insecticidal net and indoor residual
spray interventions, separately and together, against malaria
transmitted by pyrethroid-resistant mosquitoes: a cluster,
randomised controlled, two-by-two factorial design trial. Lan-
cet 391: 1577–1588.

13. Achee NL et al., 2019. Alternative strategies for mosquito-borne
arbovirus control. PLoS Negl Trop Dis 13: e0006822.

14. Pinder M et al., 2015. Ecacy of indoor residual spraying with
dichlorodiphenyltrichloroethane against malaria in Gambian
communities with high usage of long-lasting insecticidal
mosquito nets: a cluster-randomised controlled trial. Lancet
385: 1436–1446.

15. Sluydts V et al., 2016. Efficacy of topical mosquito repellent (pic-
aridin) plus long-lasting insecticidal nets versus long-lasting
insecticidal nets alone for control of malaria: a cluster rando-
mised controlled trial. Lancet Infect Dis 16: 1169–1177.

16. Qualls WA, M€uller GC, Traore SF, Traore MM, Arheart KL,
Doumbia S, Schlein Y, Kravchenko VD, Xue RD, Beier JC,
2015. Indoor use of attractive toxic sugar bait (ATSB) to effec-
tively control malaria vectors in Mali, West Africa. Malar J 14:
301.

17. Afrane YA, Mweresa NG, Wanjala CL, Gilbreath TM III, Zhou G,
Lee MC, Githeko AK, Yan G, 2016. Evaluation of long-lasting
microbial larvicide for malaria vector control in Kenya. Malar J
15: 577.

ADAPTIVE INTERVENTION TRIAL DESIGN 1181

http://www.ajtmh.org
mailto:zhoug@uci.edu
mailto:mingchil@uci.edu
mailto:xiaomiw1@hs.uci.edu
mailto:dzhong@uci.edu
mailto:dzhong@uci.edu
mailto:ehemming@uci.edu
mailto:guiyuny@uci.edu


18. Fillinger U, Ndenga B, Githeko A, Lindsay SW, 2009. Integrated
malaria vector control with microbial larvicides and
insecticide-treated nets in western Kenya: a controlled trial.
Bull World Health Organ 87: 655–665.

19. Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F,
Sawadogo SP, Dabir�e RK, Diabat�e A, Catteruccia F, 2016.
Wolbachia infections in natural Anopheles populations affect
egg laying and negatively correlate with Plasmodium develop-
ment. Nat Commun 7: 11772.

20. Homan T et al., 2016. The effect of mass mosquito trapping on
malaria transmission and disease burden (SolarMal): a
stepped-wedge cluster-randomised trial. Lancet 388: 1193–
1201.

21. Dambach P, Schleicher M, Stahl H-C, Traor�e I, Becker N, Kaiser
A, Si�e A, Sauerborn R, 2016. Routine implementation costs of
larviciding with Bacillus thuringiensis israelensis against
malaria vectors in a district in rural Burkina Faso. Malar J 15:
380.

22. Zhou G, Afrane YA, Vardo-Zalik AM, Atieli H, Zhong D, Wamae
P, Himeidan YE, Minakawa N, Githeko AK, Yan G, 2011.
Changing patterns of malaria epidemiology between 2002
and 2010 in western Kenya: the fall and rise of malaria. PLoS
One 6: e20318.

23. Killeen GF et al., 2017. Developing an expanded vector control
toolbox for malaria elimination. BMJ Glob Health 2: e000211.

24. Ndenga BA, Mulaya NL, Musaki SK, Shiroko JN, Dongus S, Fil-
linger U, 2016. Malaria vectors and their blood-meal sources
in an area of high bed net ownership in the western Kenya
highlands. Malar J 15: 76.

25. Obala AA, Kutima HL, Nyamogoba HD, Mwangi AW, Simiyu CJ,
Magak GN, Khwa-Otsyula BO, Ouma JH, 2012. Anopheles
gambiae and Anopheles arabiensis population densities and
infectivity in Kopere village, western Kenya. J Infect Devel
Countr 6: 637–643.

26. Githeko AK, Service MW, Mbogo CM, Atieli FK, Jurna FO, 1994.
Origin of blood meals in indoor and outdoor resting malaria
vectors in western Kenya. Acta Trop 58: 307–316.

27. Awine T, Malm K, Bart-Plange C, Silal SP, 2017. Towards
malaria control and elimination in Ghana: challenges and deci-
sion making tools to guide planning. Glob Health Action 10:
1381471.

28. Taffese HS, Hemming-Schroeder E, Koepfli C, Tesfaye G, Lee
MC, Kazura J, Yan G, Zhou G, 2018. Malaria epidemiology
and interventions in Ethiopia from 2001 to 2016. Infect Dis
Poverty 7: 103.

29. Zhou G, Lee M-C, Githeko AK, Atieli HE, Yan G, 2016. Insecti-
cide-treated net campaign and malaria transmission in west-
ern Kenya: 2003–2015. Front Public Health 4: 153.

30. Katureebe A et al., 2016. Measures of malaria burden after long-
lasting insecticidal net distribution and indoor residual spray-
ing at three sites in Uganda: a prospective observational
study. PLoS Med 13: e1002167.

31. Curtis CF, Maxwell CA, Magesa SM, Rwegoshora RT, Wilkes
TJ, 2006. Insecticide-treated bed-nets for malaria mosquito
control. J Am Mosq Control Assoc 22: 501–506.

32. Carnevale P, Gay F, 2019. Insecticide-treated mosquito nets.
Methods Mol Biol 2013: 221–232.

33. Tangena JA et al., 2020. Indoor residual spraying for malaria
control in sub-Saharan Africa 1997 to 2017: an adjusted retro-
spective analysis. Malar J 19: 150.

34. Choi L, Pryce J, Garner P, 2019. Indoor residual spraying for
preventing malaria in communities using insecticide-treated
nets. Cochrane Database Syst Rev 5: CD012688.

35. USAID/PMI, 2018. Kenya Malaria Operational Plan FY 2019.
Available at: https://www.pmi.gov/where-we-work/kenya/.
Accessed March 5, 2020.

36. USAID/PMI, 2017. Uganda Malaria Operational Plan FY 2018.
Available at: https://www.pmi.gov/where-we-work/kenya/.
Accessed March 5, 2020.

37. USAID/PMI, 2018. Ethiopia Malaria Operational Plan FY 2019.
Available at: https://www.pmi.gov/where-we-work/kenya/.
Accessed March 5, 2020.

38. Bothwell LE, Greene JA, Podolsky SH, Jones DS, 2016. Assess-
ing the gold standard – lessons from the history of RCTs. N
Engl J Med 374: 2175–2181.

39. Chow S-C, 2014. Adaptive clinical trial design. Annu Rev Med
65: 405–415.

40. Bhatt DL, Mehta C, 2016. Adaptive designs for clinical trials. N
Engl J Med 375: 65–74 Rev.

41. Huskins WC, Fowler VG Jr, Evans S, 2018. Adaptive designs for
clinical trials: application to healthcare epidemiology research.
Clin Infect Dis 66: 1140–1146.

42. Lei H, Nahum-Shani I, Lynch K, Oslin D, Murphy SA, 2012. A
“SMART” design for building individualized treatment sequen-
ces. Annu Rev Clin Psychol 8: 21–48 Rev.

43. Rabinovich RN et al., 2017. malERA: an updated research
agenda for malaria elimination and eradication. PLoS Med 14:
e1002456.

44. Mulligan J-A, Yukich J, Hanson K, 2008. Costs and effects of
the Tanzanian national voucher scheme for insecticide-treated
nets. Malar J 7: 32.

45. Stelmach R, Colaço R, Lalji S, McFarland D, Reithinger R, 2018.
Cost-effectiveness of indoor residual spraying of households
with insecticide for malaria prevention and control in Tanzania.
Am J Trop Med Hyg 99: 627–637.

46. Biswas A, Bhattacharya R, 2016. Response-adaptive designs
for continuous treatment responses in phase III clinical trials:
a review. Stat Methods Med Res 25: 81–100 Rev.

47. Grieve AP, 2017. Response-adaptive clinical trials: case studies
in the medical literature. Pharm Stat 16: 64–86 Rev.

48. Ndenga B, Githeko A, Omukunda E, Munyekenye G, Atieli H,
Wamai P, Mbogo C, Minakawa N, Zhou G, Yan G, 2006. Pop-
ulation dynamics of malaria vectors in western Kenya high-
lands. J Med Entomol 43: 200–206.

49. Kapesa A, Kweka EJ, Atieli H, Kamugisha E, Zhou G, Githeko
AK, Yan G, 2017. Why some sites are responding better to
anti-malarial interventions? A case study from western Kenya.
Malar J 16: 498.

50. Machani MG, Ochomo E, Zhong D, Zhou G, Wang X, Githeko
AK, Yan G, Afrane YA, 2020. Phenotypic, genotypic and bio-
chemical changes during pyrethroid resistance selection in
Anopheles gambiae mosquitoes. Sci Rep 10: 19063.

51. Eckhoff PA, 2011. A malaria transmission-directed model of
mosquito life cycle and ecology. Malar J 10: 303.

52. Eckhoff PA, 2013. Mathematical models of within-host and
transmission dynamics to determine effects of malaria inter-
ventions in a variety of transmission settings. Am J Trop Med
Hyg 88: 817–827.

53. Eckhoff PA, 2012. Malaria parasite diversity and transmission
intensity affect development of parasitological immunity in a
mathematical model. Malar J 11: 419.

54. Eckhoff PA, 2012. P. falciparum infection durations and infec-
tiousness are shaped by antigenic variation and innate and
adaptive host immunity in a mathematical model. PLoS One
7: e44950.

55. Wanjala CL, Zhou G, Mbugi J, Simbauni J, Afrane YA, Ototo E,
Gesuge M, Atieli H, Githeko AK, Yan G, 2015. Insecticidal
decay effects of long-lasting insecticide nets and indoor resid-
ual spraying on Anopheles gambiae and Anopheles arabiensis
in western Kenya. Parasit Vectors 8: 588.

56. PMI VectorLink Kenya, 2019. Annual Entomological Monitoring
Report, October 2017–September 2018. Rockville, MD: The
PMI VectorLink Project, Abt Associates Inc.

57. Minta AA, Landman KZ, Mwandama DA, Shah MP, Vanden Eng
JL, Sutcliffe JF, Chisaka J, Lindblade KA, Mathanga DP,
Steinhardt LC, 2016. The effect of holes in long-lasting insec-
ticidal nets on malaria in Malawi: results from a case–control
study. Malar J 16: 394.

58. WHO, 2013. Recommendations for Achieving Universal Cover-
age with Long-Lasting Insecticidal Nets in Malaria Control.
Geneva, Switzerland: World Health Organization.

59. National Malaria Control Programme, 2018. Kenya Malaria Strat-
egy 2019–2023. Nairobi, Kenya: Ministry of Health.

60. Mutuku FM, Khambira M, Bisanzio D, Mungai P, Mwanzo I,
Muchiri EM, King CH, Kitron U, 2013. Physical condition and
maintenance of mosquito bed nets in Kwale County, coastal
Kenya. Malar J 12: 46.

61. Rotondi MA, Donner A, 2012. Sample size estimation in cluster
randomized trials: an evidence-based perspective. Comput
Stat Data Anal 56: 1174–1187.

ZHOU AND OTHERS1182

https://www.pmi.gov/where-we-work/kenya/
https://www.pmi.gov/where-we-work/kenya/
https://www.pmi.gov/where-we-work/kenya/


62. Tiono AB et al., 2018. Efficacy of Olyset Duo, a bednet contain-
ing pyriproxyfen and permethrin, versus a permethrin-only net
against clinical malaria in an area with highly pyrethroid-
resistant vectors in rural Burkina Faso: a cluster-randomised
controlled trial. Lancet 392: 569–580.

63. NeCamp T, Kilbourne A, Almirall D, 2017. Comparing cluster-
level dynamic treatment regimens using sequential, multiple
assignment, randomized trials: regression estimation and
sample size considerations. Stat Methods Med Res 26: 1572–
1589.

64. Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B,
Fabiano G, Waxmonsky JG, Yu J, Murphy SA, 2012. Experi-
mental design and primary data analysis methods for compar-
ing adaptive interventions. Psychol Methods 17: 457–477.

65. Lu X, Nahum-Shani I, Kasari C, Lynch KG, Oslin DW, Pelham
WE, Fabiano G, Almirall D, 2016. Comparing dynamic treat-
ment regimes using repeated-measures outcomes: modeling
considerations in SMART studies. Stat Med 35: 1595–1615.

66. Zhou G, Lee MC, Atieli HE, Githure JI, Githeko AK, Kazura JW,
Yan G, 2020. Adaptive interventions for optimizing malaria
control: an implementation study protocol for a block-cluster
randomized, sequential multiple assignment trial. Trials 21:
665.

67. Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G,
Githeko AK, Yan G, 2005. Spatial distribution of anopheline
larval habitats in Western Kenyan highlands: effects of land
cover types and topography. Am J Trop Med Hyg 73: 157–
165.

68. Himeidan YE, Zhou G, Yakob L, Afrane Y, Munga S, Atieli H, El-
Rayah E, Githeko AK, Yan G, 2009. Habitat stability and
occurrences of malaria vector larvae in western Kenya high-
lands. Malar J 8: 234.

69. Kweka EJ, Zhou G, Munga S, Lee M-C, Atieli HE, Nyindo M,
Githeko AK, Yan G, 2012. Anopheline larval habitats season-
ality and species distribution: a prerequisite for effective tar-
geted larval habitats control programmes. PLoS One 7:
e52084.

70. Penny MA, Maire N, Bever CA, Pemberton-Ross P, Bri€et OJT,
Smith DL, Gething PW, Smith TA, 2016. Distribution of
malaria exposure in endemic countries in Africa considering
country levels of effective treatment. Malar J 14: 384.

71. Nahum-Shani I, Qian M, Almirall D, Pelham WE, Gnagy B,
Fabiano GA, Waxmonsky JG, Yu J, Murphy SA, 2012. Q-
learning: a data analysis method for constructing adaptive
interventions. Psychol Methods 17: 478–494.

72. Murphy SA, Oslin DW, Rush AJ, Zhu J, MCATS, 2007. Method-
ological challenges in constructing effective treatment
sequences for chronic psychiatric disorders. Neuropsycho-
pharmacology 32: 257–262.

73. Bergmeir P, 2018. Enhanced Machine Learning and Data Mining
Methods for Analysing Large Hybrid Electric Vehicle Fleets
based on Load Spectrum Data. Wiesbaden, Germany:
Springer Verlag.

74. Liu N, Liu Y, Logan B, Xu Z, Tang J, Yang Y, 2019. Learning the
dynamic treatment regimes from medical registry data
through deep Q-network. Sci Rep 9: 1495.

75. White MT, Conteh L, Cibulskis R, Ghani AC, 2011. Costs and
cost-effectiveness of malaria control interventions – a system-
atic review. Malar J 10: 337.

76. Dudley HJ, Goenka A, Orellana CJ, Martonosi SE, 2016. Multi-
year optimization of malaria intervention: a mathematical
model. Malar J 15: 133.

ADAPTIVE INTERVENTION TRIAL DESIGN 1183


	TF1
	TF2
	TF3
	TF4

