Skip to main content
. 2021 Nov 12;7:e770. doi: 10.7717/peerj-cs.770

Table 4. Comparison among LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN in terms of MAPE.

Prediction of cumulative confirmed COVID-19 cases in India.

Data Model Training time(s) Split (f, t) MAPE (%) Fine-tuning time(s)
No-fine-tuning Fine-tuning
Confirmed cases LSTM 733.38 1, 5 11.69 11.03 21.40
3, 3 17.13 12.07 47.19
5, 1 25.60 13.24 77.71
Bi-LSTM 1296.12 1, 5 11.72 11.10 28.82
3, 3 17.19 11.10 68.27
5, 1 25.72 11.43 105.57
GRU 581.84 1, 5 11.72 11.05 20.14
3, 3 17.18 12.86 45.32
5, 1 25.70 14.79 70.85
Stacked_ Bi_GRU 5291.32 1, 5 17.02 15.33 69.52
3, 3 23.70 19.22 183.36
5, 1 33.01 24.12 287.70
CNN_LSTM 3006.03 1, 5 17.58 15.29 41.15
3, 3 23.88 18.45 104.69
5, 1 33.16 21.32 170.93
Deep_CNN 261.37 1, 5 11.63 13.22 13.11
3, 3 17.21 11.41 29.44
5, 1 25.84 12.05 45.71
IndRNN 248.72 1, 5 9.74 9.11 14.85
3, 3 14.17 8.85 34.96
5, 1 21.40 0.46 57.08
Confirmed deaths LSTM 413.85 1, 5 5.29 5.02 20.93
3, 3 7.94 5.19 48.49
5, 1 13.21 6.77 74.72
Bi-LSTM 747.53 1, 5 5.20 5.08 29.68
3, 3 7.89 5.09 68.36
5, 1 13.21 6.16 104.81
GRU 333.79 1, 5 5.21 4.91 19.65
3, 3 7.80 4.49 44.93
5, 1 12.96 5.14 69.41
Stacked_ Bi_GRU 2976.06 1, 5 7.82 7.13 68.48
3, 3 11.30 9.17 166.58
5, 1 17.40 11.90 274.43
CNN_LSTM 1703.61 1, 5 9.49 7.28 41.11
3, 3 12.91 9.55 100.99
5, 1 18.90 13.45 173.57
Deep_CNN 143.17 1, 5 5.62 6.20 13.03
3, 3 8.60 7.45 29.32
5, 1 14.37 9.21 44.42
IndRNN 142.34 1, 5 4.72 4.36 14.54
3, 3 6.89 3.42 33.95
5, 1 11.22 2.99 56.54