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Abstract

Treatment with CD19 or CD22-targeted chimeric antigen receptor-engineered T (CD19/CD22
CAR-T) cells achieve complete responses in approximately 60 to 90% of adults and children

with refractory or relapsed (R/R) acute lymphoblastic leukemia (ALL). This led to the approval
of tisagenlecleucel (Kymriah) by the FDA and several European regulatory agencies in ALL
patients up to 25 years of age. Although CAR T-cell therapy is likely to transform the ALL
therapeutic landscape, its development and wide dissemination have been impacted by the
occurrence of significant toxicities; namely, cytokine release syndrome (CRS) and Immune
effector cell-Associated Neurotoxicity Syndrome (ICANS) have been reported at higher rates in
ALL patients compared to other B cell malignancies, particularly in the adult population. Here, we
review recent data suggesting a significant proportion of ALL patients are at risk of developing
severe, sometimes life-threatening, CRS and ICANS after CD19 and CD22 CAR T-cell therapy.
After describing the key clinical and laboratory features of severe CRS and ICANS, we explore
the disease and treatment-related factors thay may predict the severity of these toxicities. Last, we
review strategies under investigation in the prophylactic and therapeutic settings to improve the
safety of CAR T-cells for ALL.
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Introduction

CD19 and CD22-targeted chimeric antigen receptor (CAR)-engineered (CD19/CD22 CAR)
T cells have demonstrated high efficacy against relapsed or refractory (R/R) B cell
malignancies and particularly high response rates in patients with acute lymphoblastic
leukemia (ALL). In children and adults with R/R ALL, complete remission (CR) rates

have been reported in approximately 60 to 90% patients receiving CD19 CAR T cell
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therapyl-14. A CD19 CAR T-cell product, tisagenlecleucel, was approved in 2017 by the
FDA for patients with B-ALL up to the age of 25 with refractory disease, or in second or
later relapse. Of note, there is to date no approved CAR T-cell product for adult patients
with R/R ALL. While CAR T-cell therapy has become an area of intense focus, cytokine
release syndrome (CRS) and Immune effector cell-Associated Neurotoxicity Syndrome
(ICANS) remain significant barriers to the development and the wide dissemination of these
promising therapies!®; this is especially true for adult ALL patients, in whom these toxicities
might be more severe compared to patients with other B cell malignancies. Here, we review
the incidence and severity of CRS and ICANS across clinical trials of CAR T-cell therapy
for ALL. We examine the key disease and treatment-related factors associated with these
toxicities, and discuss several practical approaches to improve the safety of CAR T cells
while preserving their anti-tumor effects.

High incidence of severe cytokine release syndrome after CD19 CAR T-cell
therapy for ALL (Figure 1A)

Upon ligation of the CAR to its target on ALL blasts and normal B cells, CAR T-cells
undergo marked in vivo activation and proliferationl6-17 This is associated with the
subsequent activation of other cell types, e.g., monocytes, endothelial and stromal cells,
leading to high serum concentrations of pro-inflammatory cytokines819. As detailed later
in this review, preclinical models suggest monocytes and macrophages may be paramount

to the development of CRS and ICANS20:21, Clinically, fever remains the hallmark of

CRS. Rigors, tachycardia, hypotension, tachypnea, hypoxemia, and other signs of systemic
inflammation are also commonly observed8. CRS is mild in reversible in most patients, but
severe cases of refractory shock with fatal multi-organ failure have been reported, often

with clinical and cytokinic features mimicking hemophagocytic lymphohistocytosis (HLH)
19.22.23 Key patient and treatment characteristics of the main CD19 CAR T-cell clinical
trials to date are detailed in Table 1 and Table 2 for adult and pediatric patients, respectively.
High rates of CRS have been reported across clinical trials of CD19 CAR T-cell therapy for
R/R ALL (any grade CRS, 56-100%)1-11, A significant fraction of these patients presented
with grade = 3 CRS (3-71%). In our experience using JCARO014, a 4-1BB costimulated
CD19 CAR T-cell product of defined composition (1:1 ratio of CD8+ and CD4+ CD19 CAR
T-cells) in adults with relapsed or refractory ALL, any grade CRS occurred in 75% of cases,
and 10% of patients developped grade =3 CRS using the 2014 Lee consensus criteria24.
Severe grade =3 CRS was characterized by early (<24 hours) and profound hemodynamic
instability, capillary leak syndrome, and consumptive coagulopathy. Four of 47 ALL patients
(8%) developed grade >4 CRS during the dose escalation stage of the study (2x106 CAR
Teells/kg, n=3; 2x107 CAR T cells/kg, n=1). We did not observe grade =4 CRS in ALL
patients treated at the lowest dose level (2x10° CAR T cells/kg). In the phase | stage of the
ZUMA-3 trial, evaluating KTE-X19 in adults with R/R ALL, grade = 3 CRS was reported
in 29% of patients'9. There were two KTE-C19-related fatal events: 1 cerebral infarction

at the 0.5 x 106 cells/kg dose and 1 previously reported multiorgan failure at the 2 x 106
cells/kg dose, both events occurring in the context of CRS. This led the investigators to
select 1x106/kg as the maximum tolerated dose, and to revise CRS and ICANS management
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for this ongoing clinical trial. This revision required corticosteroids to be initiated for grade
>2 ICANS, and tocilizumab not to be administered for ICANS unless in the context of CRS.

Factors associated with CRS severity (Table 3)

To date, validated models to predict CRS severity are lacking. Several groups, including
ours, have reported associations between clinical, biological, product-related characteristics
and CRS and ICANS severity and applied various modeling strategies (Table 3). Some
simple clinical variables, such as the CAR T-cell dose and the pretreatment BM tumor
burden, are strongly associated with toxicity in most studies. In contrast, biomarker
identification remains exploratory at this stage in the CAR T-cell field, mainly suggesting
new avenues for future research. Many of the identified biomarkers have failed to replicate
across studies (e.g., CRP, IL-15).

Davila et al from the MSKCC?Z showed that higher serum concentrations of C-reactive
protein (CRP; 220mg/dL) measured after CD19 CAR T-cell infusion were associated with
severe CRS. The authors reported high specificity and sensitivity using a model including
CRP, although the timepoint of measurement was not specified, and the metrics likely

to be biased due to overfitting in this small dataset. In addition, they measured higher
serum concentrations of 7 cytokines (INF-y, IL-6, FLT3-ligand, Fractalkine, IL-5, I1L-10,
GM-CSF) and higher pre-treatment tumor burden in patients who developped occurrence
of severe CRS. The predictive ability of the CRP using the 20mg/dL threshold was not
confirmed by Maude et al using tisagenlecleucel?, illustrating the limitations of “optimal”
thresholds who rarely replicate in independent cohorts.

Using data from patients treated at our center on phase I/1l clinical trial with JCARO014, we
used multivariable ordinal regression to a subgroup of patients with ALL patients (n=47)18.
We identified prior allogeneic hematopoietic cell transplantation, the pre-lymphodepletion
percentage of marrow blasts, a higher CAR T-cell dose, and CAR T-cell manufacturing
from bulk CD8+ T cells were independent predictors of CRS severity. This suggests CAR
T-cell therapy administered earlier in the course of ALL, and after tumor reduction —
“debulking” or “bridging” — could reduce CRS severity. In addition, peak CD8+ CAR
T-cell expansion in blood was strongly associated with both severe CRS and efficacy. Aside
from multivariable ordinal regression, we applied classification tree modeling to our entire
dataset (n=133) including ALL, NHL and CLL patients. This algorithm was successful

at identifying patients with grade =4 CRS based on developing fever >38.9°C within 36
hours of CAR T-cell infusion, and a serum MCP-1 concentration 21343.5 pg/mL. Note

that models including MCP-1 performed better — in terms of discrimination — than those
with CRP, ferritin, or other cytokines (IFN-vy, I1L-6, IL-8, IL-10, IL-15). Although this
approach performed well on our dataset (sensitivity, 1.00; specificity, 0.95), our model has
not been validated on an independent cohort and might suffer from overfitting. Additionally,
JCARO014 is formulated using a fixed CD8+/CD4+ CAR T-cell ratio, thereby differing from
commercial CAR T-cell products. As such, our models may not generalize to other CAR T
cell products.
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Teachey et al from the University of Pennsylvania, investigated 24 serum biomarkers to
predict high grade (grade 3-4) CRS°. Using classification trees they developed 2-step and
3-step models, (with or without disease burden) including peak serum concentrations of
cytokines (sgp30, INF-y, IL-1Ra, IL-10, MIP-1a) measured within the first three days
after CAR T-cell infusion. Each of these models are detailed in Table 3. Other biomarkers,
potentially targetable, such as soluble IL-2Ra and IL-6R were also associated with CRS
severity. The authors reported near-perfect discrimination (area under the Receiver Operator
Curve, 0.93-0.98) to predict severe CRS with these models. While promising, these findings
should be interpreted with caution due the low number of patients (n=48) and events (n=14),
suggesting overfitting. In addition, the validation cohort only included 12 patients. Further
studies are needed to validate these models in larger and independent cohorts.

Overall, the predictive value of the biomarkers of CRS in ALL patients treated with CD19
CAR T cells should be properly estimated and validated in larger studies. Interestingly, two
studies did not confirm the association between the pretreatment BM tumor burden and
CRS severity, potentially due to low statistical power. Low statistical power can also be a
consequence of inappropriate modeling, for instance by dichotomizing CRS severity (e.g.,
not severe versus severe)2>:26_ In addition to the gain in statistical power, modeling CRS
grade as an ordinal variable has many advantages: i) probabilities for any given CRS grade
can be computed; ii) it respects the clinical relevance of each category on the scale; ii) odds
ratios from the model can easily be compared across studies, which is not possible when
investigators use different cutpoints across studies (e.g., grade =3 versus grade >4).

High incidence of severe ICANS after CD19 CAR T-cell therapy for ALL

The exact mechanisms responsible for severe ICANS after CD19 CAR T-cell therapy are
not well understood. Increased blood-brain barrier (BBB) permeability may lead to high
concentrations of pro-inflammatory cytokines (e.g., IL-6, IFN-y and TNF-a) in the CSF.
Autopsy tissues from the brains of two ALL patients treated with JCAR014 on a phase
I/11 clinical trial at our institution who developped fatal cerebral edema showed multifocal
microhemorrhages, parenchymal necrosis, endothelial activation, endothelial damage, and
CAR T-cell infiltration of the brain?’. Gilbert et al, also performed neuropathologic
examination of autopsy tissue from patients treated on the ROCKET trial and who
developed fatal cerebral edema after CD19 CAR T cell therapy. They also observed
endothelial damage and microglial activation; in contrast with our findings, there was
complete absence of CAR T cells and immune cells?8.

ICANS spans a variety of neurologic symptoms such as headache, tremor, speech
impairment (e.g., expressive aphasia), delirium, confusion, impaired consciousness (stupor,
lethargy, obtundation), and less commonly focal deficits. In our experience, delirum with
preserved alertness was the most common presentation of ICANS, accounting for 66% of
ICANS cases. In its most severe forms, ICANS can be associated with life-threatening
features such as seizures and cerebral edema. While CRS classically precedes ICANS,
temporal overlaps are common. Importantly, it is rare to observe severe ICANS in the
absence of severe CRS?7. In patients who developed severe ICANS, we found evidence
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of profound vascular dysfunction with capillary leak syndrome (weight gain, hypotension,
hypoalbuminemia) in addition to consumptive coagulopathy.

In a phase Il clinical trial of CD28-costimulated, defined-composition CD19 CAR T cells

in adult patients with high tumor burden ALL (>5% blasts in the bone marrow; ROCKET),
investigators observed significant neurologic toxicity, which led to the early termination of
the study. Of 32 patients, they observed severe grade =3 ICANS in 18 patients (56%), and
fatal cerebral edema in 5 patients (16%). Of note, in the MSKCC 09-114 phase 1 cohort

(53 patients) that used a similar CAR construct but with a distinct in-house manufacturing,
the rates of severe CRS and ICANS were 26% and 42%, respectivelyZ®. Cerebral edema

has been reported in other clinical trials of CAR T cell therapy for ALL and NHL. In an
updated analysis of the ZUMA 3 phase | data (45 adult ALL patients), = grade 3 ICANS was
observed in 38% of the patients across all dose levels (0.5-2x108/kg). Fatal cerebral edema
occurred in one of 16 patients (6%) who received 0.5x108 CAR T cells/kg. As mentioned
earlier in this manuscript, this led to the revision of the management of toxicities1?. In our
experience using JCARO014 on a phase I/11 clinical trial, fatal cerebral edema occurred in 1
ALL patient?’. Overall, the observed rates of ICANS vary greatly across clinical trials of
CD19 CAR T cells for ALL (29-72%); Severe = grade 3 ICANS may be more frequent in
adult patients compared to pediatric patients (6-56% versus 0-28%, respectively, Figure 1B).

Factors associated with severe ICANS (Table 3)

In a cohort of 133 patients treated at our center with JCARO014 on a phase I/11 clinical

trial, we identified the following variables as independent predictors of ICANS severity
using ordinal regression: bone marrow disease burden, cyclophosphamide and fludarabine
lymphodepletion, and the presence of any pre-existing neurologic comorbidity?’. CD8+
CAR T-cell dose and peak expansion were also strongly associated with ICANS severity.
Retrospective analysis of the ROCKET trial data suggested cyclophosphamide and
fludarabine lymphodepletion was also associated with severe ICANS. A pooled analysis

of the FHCRC JCARO014 phase | and the ROCKET data (all disease types) found an
association between serum concentrations of IL-15 — a key cytokine involved in T cell
homeostasis — and the development of severe ICANS. Using univariate logistic regression,
the authors screened approximately 140 CAR T-cell product and manufacturing-related
variables. They found associations between the percentage of TNF-a-producing CD8+CAR
T cells, TNF-a-producing CD4+CAR T cells, IL-2-producing CD8+CAR T cells and the
risk of cerebral edema. This suggests severe ICANS may be associated with more functional
T cells, in terms of cytokine production, after ex vivo stimulation through the CAR with a
CD19-presenting cell line. Importantly, these analyses were unspecified and not corrected
for multiplicity — hence with a high risk of false positives.

CRS and ICANS beyond the CD19 target

Among the many potential candidate targets, CAR T cell-based approaches targeting the
CD22 antigen are being extensively evaluated in both the CD19 CAR-naive and CD19
CAR-exposed setting. The goals are manifold: to improve response durability, to reduce the
risk or rescue antigen-negative relapses. Investigators from Beijin Boren Hospital reported
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the use of CD22-targeted CAR T cells in 34 B-ALL pediatric and adult ALL patients with
persistent disease after CD19 CAR T-cell therapy3?. MRD-negative CR was achieved in
76% of patients. CRS was very common (any grade CRS, 91%) and mild in most cases; they
did observe one case of grade 5 CRS. They also reported one case of grade 2 seizures, and
grade 1 ICANS in 15% of patients. In a recent publication from the NIH/NCI, Shah et al
analyzed data from 58 patients treated with CD22-targeted CAR T cells. CRS occurred in

50 (86%) and CRS was = grade 3 in 5 (10%) patients. Symptoms of ICANS were minimal
and transient in most patients (grade 3 only in one patient). In contrast with CD19 CAR

T cell therapy, HLH-like manifestations were frequently seen in 19 of 58 (33%) subjects,
prompting utilization of anakinra3®, The same investigators recently identified the following
factors to be associated with HLH after CD22 CAR T cell therapy using multivariable
logistic regression: lower baseline blood and marrow percentage of NK cells and higher
percentage of CD3+ cells, pre-manufacturing CD4+/CD8+ T cell selection, and higher 1L-18
serum concentrations32. Last, Wang et al assessed the sequential administration of CD19
and CD22-targeted CAR T cells in a multicenter trial in patients with refractory B cell
malignancies33. Eleven of 51 ALL patients (22%) developed grade >3 CRS, and 7 patients
(14%) developed grade 1-2 ICANS (grade 4 ICANS, n=1).

CRS and ICANS prevention and treatment (Table 4)

CAR T-cell dose modifications

Tumor burden-based CAR T-cell dose reduction—An in-depth understanding of
the CAR T-cell dose-outcome relationship may be critical to prevent the occurrence of
severe toxicities. We have demonstrated that the CAR T-cell dose and the bone marrow
(BM) tumor burden (e.g., percentage of abnormal B cells in the bone marrow) prior

to lymphodepletion were strongly associated with CRS severity after CD19 CAR T-cell
therapy8. The relationship between CAR T-cell dose, BM tumor burden and outcomes
can be inspected easily by plotting probabilities from logistic or ordinal regression models
(Figure 2). We hypothesized a lower CAR T-cell dose might: i) reduce the risk of severe
CRS at the same level of BM tumor burden; ii) “flatten” the relationship between the BM
tumor burden and CRS severity. This can be easily modeled by adding an interaction term
between CAR T-cell dose and BM tumor burden, allowing the slope of the relationship to
vary across dose levels. At both dose levels, a higher BM tumor burden was associated
with an increase in the risk of developping severe CRS. For very low BM tumor burden

(< 5-10%), the risk of severe CRS was comparable across dose levels (<10%). At the
higher CAR T-cell dose (2x109/kg), the relationship between BM tumor burden and grade
>3 CRS became very steep (e.g., 25% abnormal B cells in the BM was associated with

a 30% risk of grade =3 CRS compared to 7% at the lower dose; 50% abnormal B cells

in the BM was associated with a 60% risk of grade >3 CRS compared to 15% at the

lower dose). The higher CAR T-cell dose was only associated with a modest increase in
efficacy (90-100%) compared to the lower dose (70-80%). Based on these observations, we
implemented a CAR T-cell dose reduction algorithm based on the percentage of abnormal
B cells in the BM prior to lymphodepletion (>20%: 2x10° CAR T cells/kg; <20%: 2x10°
CAR T cells/kg)3. Identifying an “optimal” cutpoint is challenging. If a threshold needs
to be set, we would recommend to threshold the prediction itself (provided predictions are
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perfectly calibrated), based on the following: i) subject matter knowledge (e.g., “expert”
opinion of what constitutes an “acceptable” risk in light of the predicted efficacy); ii)
resource utilization (e.g., how many ICU beds are available?); iii) patient’s preference after
being informed of the risks associated with each dose. While risk-adapted CAR T-cell dose
adjustment might be beneficial in ALL, the CAR T-cell dose-outcome relationship may
differ markedly across distinct B cell malignancies. We have shown that decreasing the CAR
T-cell dose in NHL patients could be associated with a significant decrease in efficacy!8.
Approaches beyond CAR T-cell dose reduction are likely needed to prevent toxicity while
preserving efficacy in patients other B cell malignancies. We would like to advocate for
phase I/11 designs allowing dose determination in larger groups of patients compared to
conventional 3+3 designs34.

CAR T-cell dose fractionation (“split dosing”)—Frey al recently reported the
outcomes of 35 adult ALL patients treated with CD19 CAR T cell therapy (CTL019)1,
Patients were treated in one of three cohorts regardless of their tumor burden: high-dose
single-infusion (HDS; 5x108 CAR T cells; n=6), low-dose single or fractionated infusion
(LD; 5x107 CAR T cells; n = 9), HD fractionated infusion (HDF; 5x108 CAR T cells; n=20).
The CTLO19 product was fractionated over 3 days (day 1, 10%; day 2, 30%; day 3, 60%),
allowing the day 2 and day 3 doses to be held if the patient experienced any grade CRS,
including isolated fever. In favor of CAR T cell dose fractionation, the investigators reported
lower rates of severe grade >4 CRS in the HDF cohort (n=1; 5%) compared to the HDS
(n=3; 50%) and the LD cohorts (n=2; 22%). This more favorable toxicity profile in the HDF
cohort was associated with high anti-tumor efficacy (MRD-negative CR, n=18 [ 90%]) and
prolonged overall survival (73% at 2 years). In the HDF cohort, most patients only received
the first dose of CAR T cells (45%); 4 patients received 2 doses (10%), and 7 patients
(35%) received all 3 doses. The very favorable response rates and long-term outcomes make
CAR T-cell dose fractionation a very promising approach, with the benefit of performing
“individualized titration” of CAR T cells. However, the authors did not specifically study
the effects of dose fractionation on CAR T-cell in vivo expansion and more specifically on
long-term persistence. Increased immunogenicity has also be observed after repeat infusion
of T cells engineered with murine scFv-bearing CARs3®.

Concurent administration of pathway inhibitors

Ibrutinib—We recently reported the feasibility and efficacy of the concurrent
administration of ibrutinib with JCARO14 in 19 patients with refractory chronic lymphocytic
leukemia3®. Beyond the anti-tumor effects of ibrutinib, our goal was to harvest its
immunomodulatory effects on T cells. Indeed, prior studies suggested ibrutinib was
associated with improved T cell numbers and function in CLL patients3’. In addition,
ibrutinib was associated with better CAR T-cell proliferation and antitumor efficacy in
mice treated with human CD19 CAR T cells38 and appeared to attenuate cytokine release
syndrome (CRS)39. Patients enrolled on our pilot study were scheduled to receive ibrutinib
for at least 2 weeks prior to leukapheresis and for at least 3 months after CAR T-cell
infusion. This approach was well tolerated and 13 patients (68%) received ibrutinib as
planned without dose reduction. While CD19 CAR T cell therapy with concurrent ibrutinib
led to high response rates (83% by iwCLL 2018 criteria) and robust CAR T cell in
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vivo expansion, we observed lower CRS severity and lower serum concentration of CRS-
associated cytokines compared to a cohort of patients treated with CD19 CAR T cells
without ibrutinib. Our findings suggest ibrutinib might alter CAR T cell function and the
cytokine milieu, reducing CRS severity while maintaining potent anti-tumor effects.

Prophylactic tocilizumab (IL-6 receptor-directed antibody)

To our knowledge, prophylactic tocilizumab has not been formally evaluated in ALL
patients. Locke et al. reported at the ASH 2017 annual meeting comparisons between the
Primary Analysis Cohort (n=101) and the Cohort 3 (Safety Management Cohort, n=34) of
the ZUMA-1 clinical trial in patients with refractory large B cell lymphoma?0. Patients on
Cohort 3 received prophylactic tocilizumab on day +2 after CAR T cell infusion. Grade =3
CRS was reported in 1 patient (3%) in the SMS Cohort 3 compared to 13 (13%) in the
Primary Analysis Cohort. Grade =3 ICANS was reported in 14 (48%) and 28 (28%) patients
in the SMS Cohort 3 and the Primary Analysis cohort, respectively, suggesting tocilizumab
may not prevent ICANS. This may be explained by its poor penetration into the CNS. Using
a Rhesus macaque model, Nella et al measured concentrations of tocilizumab approximately
1,000 times lower in the CSF compared to the serum after IV administration of the
antibody#. Whether tocilizumab can worsen ICANS severity remains to be demonstrated in
a larger cohort.

Prophylactic anakinra (IL-1 receptor antagonist)

As preclinical models of CRS and ICANS are being developped, several groups have
suggested an important role of the IL-1/IL-1R axis in the pathogenesis of these toxicities.
Using immunodeficient beige mice treated with human CD19 CAR T cells, Giavridis

et al managed to induce CRS after intraperitoneal injection of Raji cells, but only in

mice who developped high tumor burden. Importantly, the authors failed to induce CRS
under the same conditions using NSG mice, which are known to harbor development and
maturation defects of monocytes and macrophages. In the beige mice, human CD19 CAR
T cells activated peritoneal macrophages, which were the main source of IL-6. Treatment
with a blocking antibody against the murine IL-6R in this model prevented CRS-related
mortality. Furthermore, peritoneal macrophages produced high levels of iNOS, and CRS
severity could be diminished using iNOS inhibitors. Since iINOS production was both 1L-6
and IL-1-dependent, the authors administered anakinra intraperitoneally to antagonize the
IL-1R, which successfully prevented CRS while preserving anti-tumor efficacy. Despite
the limitations of a non-humanized mouse model (e.g., peritoneal disease, murine myeloid
lineage, anakinra administered intraperitoneally instead of subcutaneously in humans), the
data suggest anakinra may be efficacious at preventing or treating CRS.21 In the same issue
of Nature, Norelli et al described a humanized mouse model more closely recapitulating
human biology, by providing bystander human hematopoiesis and generating xenotolerant
CAR T cells.20 To achieve this, the authors transplanted human cord blood hematopoietic
stem and progenitor cells into sublethally irradiated triple transgenic NSG (SGM3) mice
expressing human stem cell factor, granulocyte-macrophage colony-stimulating factor (GM-
CSF) and IL-3. CAR T cells were then engineered from human T cells that matured in

the newborn humanized SGM3 mice (nHUSGM3). Infusion of CD19 or CD44v6-targeted
nHUSGM3 CAR T cells did not cause CRS in non-humanized SGM3 mice. In contrast,
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when infused into humanized mice CAR T cells caused a significant systemic inflammatory
syndrome resembling CRS, characterized by severe weight loss, increased systemic human
IL-6, TNF-a, IL-10 levels and high fever. In this model, CRS occurred in the absence of
tumor, due to the presence of normal human CD19+ B cells and CD44v6+ myeloid cells,
but was worsened in the presence of tumor. Human monocytes were the predominant source
of IL-1 and IL-6 during CRS. They observed distinct cytokine kinetics, IL-1 production
preceding IL-6 production by 24 hours. Although both IL-1R and IL-6R blockage prevented
CRS without impacting CAR T-cell expansion or antitumor effects, only anakinra prevented
the development of fatal ICANS. These findings, if confirmed in humans, may challenge the
current management of CRS and ICANS after CAR T cell therapy. Anakinra is a particularly
promising agent to prevent both CRS and ICANS while potentially maintaining antitumor
effects. Several clinical trials are currently evaluating the use of anakinra to prevent CRS and
ICANS in the prophylactic (NCT04359784) and therapeutic settings (NCT04148430).

Early intervention for CRS or ICANS

The best timing of intervention for CRS and ICANS in ALL patients is unknown, although
preliminary data suggested earlier interventions may be beneficial. An important concern
for the field is the impact of high dose corticosteroids on CAR T cell function, expansion,
and long-term persistence. Gardner et al from Seattle Children’s evaluated the use of an
early-intervention (EI) strategy with tocilizumab and dexamethasone in 20 pediatric ALL
patients who developped CRS after CD19 CAR T cell therapy (SCRI-CAR19v1)*2. CRS
management in the EI cohort consisted of the administration of tocilizumab for persistent
mild CRS symptoms and prior to the development of dose-limiting or life-threatening
toxicities. Mild CRS symptoms were defined as follows: persistent fever for 10 hours
unresponsive to acetaminophen, recurrent hypotension unresponsive to fluid bolus, hypoxia
requiring oxygen supplementation. Dexamethasone was administered in the absence of
response to tocilizumab, or if need for vasopressors or mechanical ventilation. Subjects on
the EI cohort were retrospectively compared to 23 patients treated previously on the same
trial (DLT cohort). Patients on the DLT cohort received tocilizumab and/or corticosteroids
only if they developed dose-limiting and/or life-threating toxicities associated with CRS or
ICANS. Severe CRS was defined as the use of vasopressors at any dose, intubation for
respiratory failure, or the use of inotropes. The investigators reported comparable rates of
any grade CRS in the two cohorts (EI cohort, 95%; DLT cohort, 91%), respectively. The rate
of severe CRS was lower in the EI cohort (15%; 95% CI, 3-38) compared to the DLT cohort
(30%; 95% CI, 13-53). As expected since tocilizumab has poor CNS penetration, similar
rates of severe neurotoxicity were observed in the DLT and EI cohorts (DLT cohort, 22%;
El, 25%). The authors measured comparable CAR T cell in vivo expansion and persistence,
and similar duration of B cell aplasia. Response rates in both the El and DLT cohorts were
also comparable.

Kadauke et al reported at the 2019 ISCT annual meeting the results of a two-cohort pilot
study (NCT02906371) investigating the efficacy of the early administration of tocilizumab
to prevent severe CRS in children or young adults with ALL treated with CTL01943,

The primary endpoint was the frequency of grade =4 CRS using the Penn scale*4. Tumor
burden was assessed after lymphodepletion, 1 to 5 days before CTL019 infusion. High
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and low tumor burden (HTB and LTB, respectively) were defined as a percentage of
abnormal B cells in the BM =40% and <40%, respectively. LTB patients received standard
CRS management. HTB patients received a single dose of tocilizumab (8-12 mg/kg) after
developing a fever to >38.5 C measured twice in 24 hours and were subsequently treated
using standard CRS management. The incidence of any grade CRS was 72% (HTB cohort,
100%; LTB cohort, 64%). The primary endpoint was just met, with a 27% incidence of
grade 4 CRS in the HTB cohort (predefined as <30%); this was also numerically lower
compared to prior studies of CTLO19 therapy in pediatric ALL patients (42% in the CHP959
trial and 47% in ELIANAS). The CR/CRi rate at day 28 was 97% (HTB cohort, 87%; LTB
cohort, 100%), suggesting the early administration of tocilizumab in HTB ALL patients did
not impact the efficacy of CTL019. The investigators reported a re-analysis of their dataset
at the 2020 ASTCT annual meeting (NCT01626495)4°. Patients in the early intervention
cohort (EI) were retrospectively compared to another cohort of HTB ALL patients treated
previously at their institution and who received standard CRS management (SM). All pts
developed grade = 2 CRS; median time to fever was longer in the El cohort [El, 3 days;

SM, 2 days]. Grade 4 CRS was observed in 4 of 15 patients (27%) in the EI cohort
compared to 13 of 26 (50%) in the SM cohort (RR, 0.53; 95% CI, 0.21-1.34). They observed
modest reductions in the rates of ICU admission, duration of mechanical ventilation, use of
vasopressors, and duration of vasopressor treatment. The incidence and severity of ICANS
events were not reported.

As mentioned earlier in this manuscript, investigators of the ZUMA-3 clinical trial (adult
ALL) also evaluated a modified toxicity management algorithm after observing high rates
of grade =3 ICANS1O, Only 1 of 9 patients in the revised toxicity management cohort
(11%) developed grade 3 ICANS compared to 8 of 14 (57%) in patients who received the
original toxicity management. ICANS duration was also shorter with the revised toxicity
management (median, 11 days; range, 3-19) compared to the original toxicity management
(median 20.5 days; range, 3-72).

Taken together, these three studies suggest early interventions may ameliorate the toxicity
profile of CD19 CAR T cell therapy for ALL. Additional studies should clarify — and
perhaps, simplify —current treatment algorithms, and further investigate the prophylactic
setting in patients with high marrow tumor burden.

Tocilizumab/corticosteroids-refractory or recurrent CRS and ICANS

There are to date very limited data to guide our management of patients with

CRS or ICANS when tocilizumab and corticosteroids fail, or when symptoms recur

after treatment cessation. When life-threatening toxicities occur, a “kitchen sink”

approach is often embraced, and many anecdotal approaches have been reported: high-
dose methylprednisolone!8, ventriculostomy*®, antithymocyte globulin®8, siltuximab?®,
cyclophosphamide#’, intrathecal administration*46:48:49 (e g., cytarabine, methotrexate,
dexamethasone). Recent data by Shah et al showed anakinra can prevent the occurrence of
severe CRS with hemophagocytic lymphohistiocytosis features in ALL patients treated with
CD22-targeted CAR T cells3L. A recent case series from the MD Anderson Cancer Center
suggested responses can be seen in NHL patients developing refractory ICANS or HLH
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using low doses of anakinra®? after treatment with axicabtagene ciloleucel. The authors
reported clinical improvement in 4 of 8 patients, and recurrence of ICANS in 1 of the 4
responding patients. These two publications signal anakinra as a key contender to improve
CRS and ICANS management after CAR T cell therapy.

While severe CRS and ICANS can in some rare cases lead to organ damage and death,
another major issue is the risk of infections due to the profound immunosuppression induced
by cytokine-directed therapies and high-dose corticosteroids. Hill et al. from our institution
reported a multivariable analysis showing that CRS severity after CD19 CAR T cell therapy
was the only factor independently associated with an increased risk of infections®L. In our
recent experience, CAR T-cell-related mortality has not been related directly to CRS and
ICANS, but primarily to sepsis in the context of prolonged glucocorticosteroids exposure.
This highlights a critical need for steroid-sparing strategies to reduce the risk of infections
during CRS and ICANS. 31

Conclusions

CD19 CAR T cells are showing great promise for patients with refractory ALL, yet broad
dissemination will necessitate improvement in the toxicity profile of these new therapies. We
have reviewed a range of strategies under investigation to prevent and treat severe CRS and
ICANS; there is mounting evidence that earlier, and potentially more targeted, interventions
can reduce these toxicities. While informative, prudence is warranted when comparing
point-estimates across single-arm clinical trials, given the high risk of confounding and
selection bias. In addition, CRS and ICANS management has significantly changed over
the past 5 years, with a natural trend towards intervening earlier and for lower CRS grades.
Efforts at harmonizing toxicity grading system24:52 and thresholds for intervention are
underway. They will be particularly helpful to design and interpret data from future clinical
trials of CAR T-cell therapy.

Future efforts should also aim at developping better prognostic models incorporating key
biomarkers such as infusion product characteristics, CAR T cell counts and cytokine serum
concentrations. Furthermore, the development of experimental models of CRS and ICANS
(e.g., humanized mice, non-human primates) will identify targetable pathways and guide
future clinical trials.

Although advances in gene editing and cell engineering technologies will help develop CAR
T cells that may be intrinsically safer, the bench-to-bedside development of CAR T cell
therapies remains a costly and lengthy process. Until then, our field have to “make do and
mend” with the products and the data at hand. We are hopeful recent and future progress in
CRS and ICANS management will facilitate the approval of CAR T cell products for adult
ALL (e.g., KTE-X19).
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Figure 1. Grade =3 CRS (A) and ICANS (B) in ALL patients receiving CD19 CAR T-cell therapy
Dots, observed proportions; grey horizontal lines, 95% confidence intervals using the

Clopper-Pearson method. CRS grading systems differ across clinical trials. ICANS

was graded using the Common Terminology Criteria for Adverse Events (CTCAE).
Abbreviations: AE, adverse event; BBH, Beijin Boren Hospital; CAR, chimeric antigen
receptor; CRS, cytokine release syndrome; CHOP, Children’s Hospital of Pennsylvania;
DFCI, Dana Farber Cancer Institute; FHCRC, Fred Hutchinson Cancer Research Center;
Flu, fludarabine; HYLD, Hebei Yanda Lu Daopei Hospital; ICANS, immune effector cell-
associated neurotoxicity syndrome; MSKCC, Memorial Sloan Kettering Cancer Center;
MRD; minimal residual disease; NCI, National Cancer Institute; NIH, National Institute
of Health; NR, not reported; SMC, Sheba Medical Center; UPENN, University of

Pennsylvania.
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Figure 2. Prediction of dose-outcomes relationships after CD19 CAR T cell therapy (adapted
from Hay et al, Blood 2017)

Left panel, probabilities of developing grade =3 CRS from a proportional odds model
adjusting for Cy-Flu lymphodepletion and including two interaction terms (CAR T cell
dose level [DL] and the pre-lymphodepletion bone marrow blast percentage; Cy-Flu
lymphodepletion and the pre-lymphodepletion bone marrow blast percentage). Right panel,
probabilities of achieving an MRD-negative CR from a logistic regression model.
Abbreviations: CAR, chimeric antigen receptor, CR, complete remission; DL, dose level,
CRS, cytokine release syndrome, ICANS, immune effector cell-associated neurotoxicity
syndrome; MRD, minimal residual disease.
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