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Introduction
Patients with African ancestry have a significantly higher risk of 
non-Mendelian focal segmental glomerulosclerosis (FSGS) as well 
as end-stage renal disease (ESRD) (reviewed in ref. 1). Seminal 
work identified the risk genotypes of apolipoprotein L1 (APOL1) 
when present as 2 copies of either or both G1 and G2 alleles (2), 
which explained the increased risk of FSGS and ESRD observed 

in African Americans (AAs) (3, 4). Mechanistic data have since 
focused on the role of APOL1 risk alleles in kidney epithelial cells, 
including gain-of-function roles in FSGS (5) and preeclampsia (6) 
and the loss-of-function role in parietal cell biology (7).

In renal transplantation, 2 copies of the APOL1 risk alleles, 
when present in the donor, have been associated with death-cen-
sored allograft loss (DCAL) (8–10). Although donor African 
ancestry is incorporated into the kidney donor risk index (11), 
giving weight to donors carrying 2 copies of the APOL1 risk allele 
versus all others improved the prediction of DCAL (12). Limited 
mechanistic data suggest the development of FSGS in APOL1 risk 
genotype–carrying allografts (13, 14). On the other hand, a single 
retrospective study of kidney transplant recipients reported that 
recipient carriage of APOL1 risk alleles was not associated with 
DCAL (15). These data have since led to an emphasis on the role of 
APOL1 expression in renal cells and outcomes. The role of APOL1 
risk alleles in nonrenal tissues, including immune cells, has not, 
to our knowledge, been specifically examined. A universal mech-
anism linking APOL1 risk alleles to allograft outcomes has not yet 
emerged from the literature, and a nationwide prospective study is 
currently underway (16).

Previous studies by several groups showed associations 
among self-declared AA race and increased rejection episodes 
and/or DCAL (17–21). We recently reported that recipient African 
ancestry expressed as a quantitative variable (defined as the recip-
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Recipient APOL1 G1/G2 alleles associate with graft loss. We inves-
tigated the association of R-nAPOL1 with DCAL for all recipients 
and in the AA/H strata in the GOCAR (discovery) and CTOT (val-
idation) cohorts. Kaplan-Meier survival curve analysis (Figure 1) 
stratified by the number of APOL1 risk alleles (0, 1, or 2) showed 
clear differentiation among groups, with the number of risk alleles 
correlating directly with a higher risk of DCAL in both cohorts 
(GOCAR cohort: log-rank P < 0.0001; CTOT cohort: log-rank P 
= 0.0075). Our finding supports an additive effect of the APOL1 
risk alleles in recipients on graft survival, i.e., each copy of the risk 
alleles increases the risk of graft loss, distinct from prior data (3). 
The additive model was also confirmed to have the best interpre-
tation of the data compared with the dominant and recessive mod-
els (Supplemental Table 5). We next adjusted for covariates previ-
ously shown to be associated with DCAL (22), including genetic 
ancestry, induction therapy, and donor type, using a multivariable 
Cox regression analysis (Table 2). This analysis revealed that in 
GOCAR, R-nAPOL1 remained associated with DCAL in an addi-
tive manner (HR = 2.14 per additional copy of risk alleles, i.e., 0 
vs. 1 allele, or 1 vs. 2 alleles; P = 0.006), independent of the recip-
ients’ genetic ancestry. Analysis of the CTOT cohort validated the 
results (Supplemental Table 6). When we performed a meta-analy-
sis including both cohorts (Figure 2), we found that the HR of each 
additional risk allele was 2.27 (95% CI: 1.41~3.63; P = 0.0007). 
When we performed sensitivity analysis within the strata of AA/H 
recipients, we observed a similar (although marginally significant) 
pattern of separated Kaplan-Meier survival curves for the 3 R-nA-
POL1 groups (Supplemental Figure 3A) as well as a significant asso-
ciation between R-nAPOL1 and DCAL with a similar effect size 
(Table 2) in the GOCAR cohort. Within the AA/H strata of CTOT, 
we found that the pattern of differentiated survival curves (Supple-
mental Figure 3B) and the positive association of R-nAPOL1 with 
DCAL (Supplemental Table 6) remained, albeit with a diminished 
significance level due to the limited sample size. To account for 
the effect on allograft survival for the donor APOL1 risk genotype, 
where a high-risk genotype in donors is defined as 2 copies of G1/
G2 alleles and a low-risk genotype as 0 or 1 copy of G1/G2 allele, 
we performed additional sensitivity analyses stratified by donor 
APOL1 risk genotype in both cohorts. Multivariable Cox regres-
sion analyses was conducted on the stratum of donors carrying 
the low-risk genotype, as the sample sizes for the high-risk group 
in both cohorts were limited. The results from our stratified analy-
ses remained similar to those for the main analysis: the R-nAPOL1 
was associated with DCAL, independent of the donor’s APOL1 risk 
genotype, for all recipients and for AA/H recipients (Supplemental 
Tables 7 and 8). Together, these data demonstrate that R-nAPOL1 
associates with DCAL in an additive manner in both cohorts.

Recipient APOL1 G1/G2 alleles associate with clinical and sub-
clinical rejection. We next tested the strength of the association 
between R-nAPOL1 and TCMR episodes in the GOCAR and 
CTOT cohorts. The study designs captured clinical rejection 
episodes for a period of up to 2 years in both cohorts, as well as 
subclinical rejections at 3, 12, and 24 months (GOCAR), and at 6 
months (CTOT) (23–25). In GOCAR, 126 recipients (32.7%) had 
at least 1 episode of subclinical or clinical TCMR (with a Banff 
borderline score or greater) identified among 3 surveillance biop-
sies (22, 25), whereas in CTOT, 15 recipients (12.3%) had at least 

ient proportion of African ancestry [R-pAFR]) was associated with 
DCAL in a prospective renal transplant cohort (22). While current 
concepts implicate altered tacrolimus metabolism (18), specific 
induction and/or maintenance therapy (19), and socioeconomic 
factors to account for these observations, these associations do 
not fully explain the worse outcomes in transplant recipients with 
African ancestry.

As APOL1 G1/G2 alleles are seen exclusively in AAs and His-
panics (AA/H, with recent African ancestry), here, we studied 2 
prospective transplant cohorts (22, 23) to test for associations 
among the number of recipient APOL1 risk alleles (R-nAPOL1), 
the R-pAFR, and transplant outcomes. We report the unexpected 
association of R-nAPOL1 with DCAL in additive models, implying 
a role for even 1 APOL1 risk allele (either G1 or G2) in recipients, 
distinct from the previously reported association of 2 risk alleles in 
the donor with increased DCAL. This association was identified in 
all recipients as well as in AA/H recipients. We then identified an 
association of R-nAPOL1 with T cell–mediated rejection (TCMR), 
independent of recipient AA ancestry, and validated these results 
externally. Finally, additional analyses implicated an unanticipat-
ed role for APOL1 risk alleles in immune activation, specifically 
in activated CD4+/CD8+ T cells and CD56dim NK cells, pointing to 
a potential mechanism to account for the observed associations.

Results
Study cohorts. The Genomics of Chronic Allograft Rejection 
(GOCAR) (24, 25) and Clinical Trials in Organ Transplantation 
01/17 (CTOT-01/17, hereafter referred to as CTOT) (23) were 
prospective, multicenter observational studies that enrolled 
crossmatch-negative kidney transplant candidates. We used a 
subcohort of 385 donor-recipient (D-R) pairs with genome-wide 
genotype data from GOCAR for discovery (22), and a subcohort 
of 122 D-R pairs with genome-wide genotype data from CTOT 
as a validation set (Supplemental Figures 1 and 2; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI146643DS1). Demographic and clinicopathologic character-
istics of GOCAR and CTOT cohorts, stratified by R-nAPOL1, 
are listed in Table 1 and were published elsewhere (22, 23). The 
clinical characteristics between the 2 cohorts were comparable 
(Supplemental Table 1), although the CTOT cohort had a higher 
proportion of AA/H recipients and deceased donors (DDs). The 
GOCAR cohort had longer follow-up periods according to the 
United Network for Organ Sharing (UNOS) and the Australian 
and New Zeland Dialysis and Transplant registry (ANZDATA) 
databases (mean follow-up of 4.6 years) and thus more DCAL and 
TCMR events (22), whereas the CTOT program collected informa-
tion over a period of up to 5 years (mean follow-up of 3.7 years). For 
each D-R pair from both cohorts, we used genome-wide genotype 
data excluding the MHC region (22) to estimate pAFR and infer 
genetic ancestry (Supplemental Table 2). As expected, APOL1 
genotyping showed that G1/G2 risk alleles were only detected in 
genetic AAs or Hispanics (i.e., AA/H) among D-Rs in both cohorts 
(see Methods and Supplemental Tables 3 and 4). We observed a 
higher frequency of depletional induction agents in recipients car-
rying APOL1 risk alleles from both cohorts, without differences in 
the number of D-R HLA mismatches between recipients carrying 
APOL1 risk alleles and noncarriers (Table 1).
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Table 1. Demographic and clinicopathologic characteristics of donors and recipients in the GOCAR and CTOT cohorts stratified by the 
number of recipient APOL1 risk alleles

GOCARA CTOTB

Variable Recipient no. of  
APOL1 risk alleles = 0  

(n = 316)

Recipient no. of  
APOL1 risk alleles = 1  

(n = 20)

Recipient no. of  
APOL1 risk alleles = 2 

(n = 20)

P  
valueC

Recipient no. of  
APOL1 risk alleles = 0  

(n = 94)

Recipient no. of  
APOL1 risk alleles = 1  

(n = 17)

Recipient no. of  
APOL1 risk alleles = 2  

(n = 9)

P  
valueC

Recipient characteristics
DCAL (yr), mean ± SD; 
median (range)

4.7 ± 1.6; 4.9 
(0.04–7.3)

4.1 ± 2.0; 4.8 
(0.3–6.3)

3.8 ± 1.9; 
3.7 (0.8, 6.9)

0.019 3.8 ± 1.7; 5.0 
(0.02–5.0)

3.5 ± 1.9; 5.0 
(0.02–5.0)

3.1 ± 2.1; 3.6 
(0.1–5.0)

0.48

No. of events (%) 30 (9.4%) 5 (25.0%) 9 (45.0%) <0.001 2 (2.1%) 2 (11.8%) 2 (22.2%) 0.02
TCMR ≥ borderline, no. of 
events (%)

103 (32.6%) 7 (35.0%) 8 (40.0%) 0.75 8 (8.5%) 3 (17.6%) 3 (33.3%) 0.05

TCMR > borderline, no. of 
events (%)

28 (8.9%) 3 (15.0%) 4 (20.0%) 0.14 0 (0.0%) 1 (5.9%) 0 (0.0%) 0.22

Recurrent TCMR ≥ borderline, 
no. of events (%)

46 (14.6%) 4 (20.0%) 6 (30.0%) 0.15 – – – –

Recurrent TCMR > borderline, 
no. of events (%)

17 (5.4%) 3 (15.0%) 4 (20.0%) 0.02 – – – –

Age (yr), mean ± SD; 
median (range)

49.7 ± 13.9; 51 
(18–83)

53.2 ± 10.4; 55 
(24–66)

50.7 ± 12.6; 
48 (27–77)

0.53 49.6 ± 13.5; 52 
(18–89)

49.9 ± 12.5; 46 
(35–73)

42.6 ± 14.6; 36 
(22–63)

0.32

Sex, male, n (%) 213 (67.4%) 14 (70.0%) 11 (55.0%) 0.55 58 (61.7%) 10 (58.8%) 5 (55.6%) 0.95
Sex, female, n (%) 103 (32.6%) 6 (30.0%) 9 (45.0%) 36 (38.3%) 7 (41.2%) 4 (44.4%)
Genetic ancestryE, n (%) <0.001 <0.001

AA 12 (3.8%) 16 (80.0%) 15 (75.0%) 8 (8.5%) 14 (82.4%) 8 (88.9%)
Hispanic 56 (17.7%) 4 (20.0%) 5 (25.0%) 12 (12.8%) 3 (17.6%) 1 (11.1%)
Asian 13 (4.1%) 0 (0.0%) 0 (0.0%) 2 (2.1%) 0 (0%) 0 (0%)
White 235 (74.4%) 0 (0.0%) 0 (0.0%) 72 (76.6%) 0 (0%) 0 (0%)

HLA-mismatch scoreD, 
mean ± SD

2.0 ± 1.0 2.3 ± 0.9 2.2 ± 0.8 0.30 3.1 ± 1.8 3.8 ± 1.3 4.1 ± 2.5 0.166

Induction, n (%) <0.001 0.004
No induction 74 (23.4%) 2 (10.0%) 2 (10.0%) 34 (36.2%) 1 (5.9%) 0 (0%)
Nondepletional  
(IL-2 antagonist)

122 (38.6%) 3 (15.0%) 2 (10.0%) 26 (27.7%) 4 (23.5%) 5 (55.6%)

Depletional  
(Thymoglobulin  
or Campath)

120 (38.0%) 15 (75.0%) 16 (80.0%) 34 (36.2%) 12 (70.6%) 4 (44.4%)

Donor characteristics
Age (yr), mean ± SD; 
median (range)

42.5 ± 14.9; 45 
(3–73)

44.8 ± 11.5; 48 
(23–60)

42.6 ± 16.6; 45.5 
(16–73)

0.80 40.6 ± 12.8; 41 
(6–62)

37.3 ± 9.3; 37 
(24–59)

40.8 ± 13.3; 39 
(19–65)

0.59

Sex, male, n (%) 156 (49.4%) 6 (30.0%) 12 (60.0%) 0.14 37 (39.4%) 7 (41.2%) 5 (55.6%) 0.70
Sex, female, n (%) 160 (50.6%) 14 (70.0%) 8 (40.0%) 57 (60.6%) 10 (58.8%) 4 (44.4%)
Genetic ancestryE, n (%) 0.001 <0.001

AA 11 (3.5%) 2 (10.0%) 6 (30.0%) 10 (10.6%) 11 (64.7%) 5 (55.6%)
Hispanic 39 (12.3%) 4 (20.0%) 4 (20.0%) 11 (11.7%) 3 (17.6%) 2 (22.2%)
Asian 6 (1.9%) 0 (0.0%) 0 (0.0%) 2 (2.1%) 0 (0%) 0 (0%)
White 260 (82.3%) 14 (70.0%) 10 (50.0%) 71 (75.5%) 3 (17.6%) 2 (22.2%)

Donor type, LDs, n (%) 172 (54.4%) 7 (35.0%) 5 (25.0%) 0.01 83 (89.2%) 14 (82.4%) 6 (66.7%) 0.12
Subcohort of AA/H recipients with additional molecular dataF

Sample size, n (%) 34 (10.7%) 14 (70%) 12 (60%) 15 (15.9%) 3 (17.6%) 2 (22.2%)
AGenome-wide genotype data are available for 385 D-R pairs from the parent GOCAR study (22). There are missing data in the APOL1 genotype for 29 
recipients and 14 donors (see Supplemental Table 3 for details). BGenome-wide genotype data are available for 122 D-R pairs from the parent CTOT 
study. There are missing data in the APOL1 genotype for 2 recipients and 2 donors (see Supplemental Figures 1 and 2 and Supplemental Table 3 for 
details). CP value was calculated by ANOVA for continuous variables and by Fisher’s exact test for categorical variables unless otherwise specified. 
Bold text indicates P values of less than 0.05. DHLA-mismatch score was derived from 2-digit HLA allele typing. Following previous reports for GOCAR 
(22, 24, 25), the raw mismatch score (scaling from 0 to 6) was categorized as follows: 0 (no mismatches); 1 (1–2 mismatches); 2 (3–4 mismatches); 
and 3 (5–6 mismatches), while for the CTOT cohort, the raw mismatch score (scaling from 0 to 6) was used. In subsequent statistical analyses, this 
variable was used as a numeric covariate in regression models. The P value for this variable in the current table was derived from a Kruskal-Wallis 
test. EGenetic ancestry was inferred from genome-wide genotype data and considered more accurate than self-reported race (22). FSee Methods for a 
detailed description of the data.
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intraindividual variability) to determine the association between 
R-pAFR and creatinine levels (or the estimated glomerular filtra-
tion rate [eGFR]) as a measure of kidney function. This analysis 
revealed that in GOCAR, R-pAFR was significantly associated 
with serum creatinine levels from 3 to 24 months after transplan-
tation, independent of R-nAPOL1, post-transplant recipient BMI 
(to account for creatinine generation), donor APOL1 risk genotype, 
and donor pAFR (to account for AA-to-AA transplants; Table 4 and 
Supplemental Figure 4). For example, as shown in Table 4, a recip-
ient with 100% of African ancestry had, on average, 0.75 mg/dL 
higher serum creatinine levels than did a recipient with no African 
ancestry, or, equivalently, every 10% increment of African ancestry 
in a recipient would lead to a 0.075 mg/dL increment in creatinine 
levels. We confirmed this association in the CTOT cohort with 
creatinine levels between 3 and 12 months after transplantation 
(Table 4 and Supplemental Figure 4). The eGFR by modified diet 
in renal disease (MDRD) or Chronic Kidney Disease Epidemiolo-
gy Collaboration (CKD-EPI) equations (26) tended to be inversely 
correlated with R-pAFR in mixed models, but insignificantly (P = 
0.06; not shown). These data relayed distinct post-transplantation 
phenotypic associations of recipient African ancestry and recipient 
APOL1 risk allele status in our study cohorts.

SNP-based mismatches in APOL1 between D-R pairs do not associ-
ate with DCAL. We further asked whether the association of R-nA-
POL1 with DCAL was related to, or independent of, “mismatches” at 
the APOL1 locus itself, between D-R pairs. This was especially rele-

1 TCMR episode including the 6-month surveillance biopsy (23). 
R-nAPOL1 was significantly associated with various TCMR out-
comes in multivariable logistic regression models, independent 
of donor APOL1 risk genotype, with progressively increasing 
ORs present with more severe TCMR phenotypes (Table 3). For 
sensitivity analyses in the subset of AA/H recipients, we found 
that the association of R-nAPOL1 with different TCMR outcomes 
remained, with similar increasing ORs with increased severity of 
TCMR phenotypes. In the CTOT cohort, by logistic regression, we 
observed that the association of R-nAPOL1 with TCMR was sig-
nificant for the whole cohort and the AA/H subset in univariate 
analysis, whereas the direction and magnitude of the association 
remained with reduced significance in a multivariable analysis 
(Supplemental Table 9). Taken together, these data indicate a 
strong association between R-nAPOL1 and TCMR events.

Recipient AA ancestry associates with creatinine levels up to 24 
months after transplantation and not with TCMR. Since we found a 
correlation between R-pAFR and R-nAPOL1, we tested for associ-
ations between R-pAFR and transplant outcomes independent of 
R-nAPOL1, noting that we previously reported that R-pAFR did 
not associate with Banff inflammation subscores or TCMR up to 
2 years after transplantation (22). This previous work also showed 
that no other Banff component scores in biopsies obtained within 
2 years associated with R-pAFR in GOCAR. Here, including the 
GOCAR and CTOT cohorts, we used linear mixed models incor-
porating all available longitudinal creatinine data (to account for 

Figure 1. Kaplan-Meier plot of death-censored allograft survival for recipients with different numbers of APOL1 risk alleles. (A) Kaplan-Meier survival 
plot for the GOCAR cohort. (B) Kaplan-Meier survival plot for the CTOT cohort.
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Since PBMCs include a mixture of mononuclear cells, to under-
stand cell-type–specific expression of APOL1, we used the data 
generated by the Database of Immune Cell Expression, quantita-
tive trait loci (eQTLs), and epigenomics (DICE) project (27), where 
bulk RNA-Seq data for 15 sorted immune cell types and APOL1 
genotype information were available for 91 healthy individuals. We 
focused on the subset of 22 AA/H individuals,5 of whom carried 1 
or 2 copies of G1/G2 alleles. Among the 15 cell types, we discerned 
that APOL1 mRNA expression was highest in CD56dim NK cells and 
that ex vivo polyclonally activated CD4+ and CD8+ T cells (but not 
in unstimulated T cells, Figure 3B). We next performed differen-
tial gene expression analysis to identify differentially expressed 
genes (DEGs) in individuals with any G1/G2 alleles as compared 
with those with the G0/G0 genotype (see Methods). Our analyses 
showed a significant enrichment of DEGs in pathways involved 
in immune activation within activated CD4+ T cells and cytotox-
ic CD56dim NK cells from participants with any versus no G1/G2 
alleles (Figure 3C and Supplemental Table 11). Within activated 
CD4+ T cells from these healthy controls with APOL1 risk alleles, 
we observed enrichment of genes involved in allograft rejection 
and antigen-processing pathways (HLA genes), T cell activation, 
and differentiation (IL2, IL21, IL21R, IL18R, GATA3), and chemo-
kines (CXCL8, CXCL3, CXCL11). In both CD4+ lymphocytes and 
cytotoxic NK cells, DEGs included TNF-α–signaling pathway genes 
and antiviral response genes (Supplemental Table 11).

To further investigate the transcriptomes of NK cells and acti-
vated T cells, we generated single-cell RNA sequencing (scRNA-
Seq) data from PBMCs collected before transplantation from 
4 AA GOCAR recipients with a known APOL1 genotype (NCBI, 
Gene Expression Omnibus [GEO] GSE182916; see Methods). 
Two recipients carrying APOL1 risk genotypes (G1/G0 and G1/
G2) had recurrent TCMR and sustained graft loss during fol-
low-up, while the other 2 were G0/G0 recipients and had surviv-
ing allografts without TCMR (Supplemental Table 12). We also 
used raw sequencing reads aligned to the APOL1 locus to confirm 
the APOL1 genotypes of all 4 patients and simultaneously demon-
strated the expression of APOL1 G1 and G2 alleles at the mRNA 

vant, since 90.3% (GOCAR) and 82.5% (CTOT) of donors had a G0/
G0 genotype, while 11.2% (GOCAR) and 21.7% (CTOT) of recip-
ients had either 1 or 2 copies of G1 and/or G2 alleles (Supplemen-
tal Table 3), increasing the likelihood of an APOL1 D-R mismatch 
among recipients with APOL1 risk alleles. We defined an SNP-based 
mismatch score to quantify the overall mismatch between any given 
D-R pair at the APOL1 locus, and to reflect the overall effect of the 
introduction of any new APOL1 variants from the donor kidney into 
the recipient (see Methods). Multivariable Cox models showed that 
the APOL1 SNP–based mismatch score had no significant effect on 
DCAL (Supplemental Table 10), and, conditional on 
the APOL1 SNP-based mismatch score, the R-nAPOL1 
remained associated with DCAL for all the recipients 
and the AA/H recipients in both cohorts (Supplemen-
tal Table 10). This suggests an intrinsic effect of APOL1 
risk alleles in recipients on DCAL, independent of 
APOL1 D-R “mismatches.”

Phenotypic data from immune cell types carrying 
APOL1 risk alleles in AA/H recipients show immune 
activation. Since R-nAPOL1, rather than mismatches 
at the APOL1 locus between donors and recipients, 
associated with DCAL and TCMR, we examined the 
immune cell phenotype and function in AA/H recipi-
ents with APOL1 risk alleles using auxiliary data from 
the public data sets GOCAR and CTOT (see Meth-
ods). First, we confirmed APOL1 protein expression in 
PBMCs using a discarded leukapheresis sample (Fig-
ure 3A). Positive and negative controls, respectively, 
included APOL1 overexpressing human podocytes 
and a mouse macrophage cell line (see Methods).

Table 2. Association of APOL1 risk alleles with DCAL in an 
additive manner using multivariable Cox regression

Variable HR 95% CI P value
GOCAR: Recipients of all ancestriesA (n = 343B; 44 [12.8%] graft loss events)
No. of APOL1 risk alleles 2.14 (1.25, 3.67) 0.006
Recipient’s genetic ancestry (ref: White)

AA 0.96 (0.29, 3.13) 0.95
Hispanic 2.62 (1.21, 5.70) 0.01

Induction (ref: no)
Nondepletional 2.94 (0.95, 9.13) 0.06
Depletional 3.57 (1.17, 10.9) 0.03

Donor type (ref: LDs) DDs 2.57 (1.27, 5.20) 0.009
HLA-mismatch score 1.26 (0.87, 1.82) 0.23
GOCAR: Recipients of AA/H (n = 108B; 26 [24.1%] graft loss events)
No. of APOL1 risk alleles 2.32 (1.33, 4.06) 0.003
Recipient’s genetic ancestry (ref: AA) Hispanic 3.06 (1.03, 9.12) 0.04
Induction (ref: no)

Nondepletional 6.22 (0.72, 54.1) 0.10
Depletional 6.03 (0.75, 48.4) 0.09

Donor type (ref: LDs) DDs 2.48 (0.84, 7.26) 0.10
HLA-mismatch score 1.81 (0.99, 3.33) 0.06
AThe Asian category was excluded because of the limited sample size, 
which led to instable model fitting. BSample size was reduced because of 
missing data on APOL1 risk alleles.

Figure 2. Meta-analysis for the association of APOL1 risk alleles with death-censored 
allograft survival across the GOCAR and CTOT studies. HR estimates of the number of 
APOL1 risk alleles associated with DCAL from the GOCAR and CTOT cohorts for all ancestries 
were included in a fixed-effect meta-analysis. The HRs and corresponding 95% CIs for 
individual studies and meta-analysis are presented as forest plots. The size of the squares 
shown for the individual studies is proportional to the sample size of each study.
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level in PBMCs (Supplemental Figure 5). In the scRNA-Seq data, 
we confirmed the enrichment of differentially expressed genes 
DEGs in immune-related pathways in CD4+ and CD8+ T cells as 
well as in CD56dim NK cells (Figure 3D and Supplemental Table 
13). In the single-cell transcriptome of CD4+ T cells from the risk 
allele carriers, similar to healthy controls from DICE, we identi-
fied significant enrichment of DEGs associated with allograft 
rejection, antigen processing, and graft-versus-host disease. In 
APOL1 risk allele–carrying NK cells and stimulated CD4+ T cells 
from the DICE data, as well as in NK cells and CD8+ T cells in the 
scRNA-Seq data, we observed significant upregulation of IFNG 
transcripts (Supplemental Table 13). Additionally, we assessed 
PBMC scRNA-Seq data (GEO GSE162470) from 2 patients with 
ESRD (G2/G0 vs. G0/G0) on the transplant waitlist and identified 

highly consistent enrichment of immune activation sig-
natures in activated CD4+ and CD8+ T cells and CD56dim 
NK cells (Supplemental Figure 6), as well as upregulation 
of IFNG. Hence, these data suggested cell-type–specific 
immune activation with either G1 or G2 alleles.

To further validate the immune activation signature 
of APOL1 risk genotypes in our cohorts, we examined 
pre-transplant peripheral blood transcriptomes from bulk 
RNA-Seq data on AA/H recipients within GOCAR (28). 
In GOCAR, APOL1 genotyping and pre-transplant blood 
transcriptomes were available for 60 recipients (Table 1), 
who had 1 or 2 copies of G1/G2 alleles (n = 26) or the G0/
G0 genotype (n = 34). We performed differential gene 
expression analysis of whole-blood mRNA samples prior 
to transplantation (see Methods; ref. 28). Interestingly, 
recipients with any copy of the G1 or G2 alleles showed 
DEGs enriched in immune response pathways compared 
with the  G0/G0 recipients (Figure 3E and Supplemen-
tal Table 14). We identified DEGs associated with allo- 
and antiviral-response pathways, similar to the DICE 
and scRNA-Seq data, as being significantly enriched in 
peripheral transcriptomes of the GOCAR recipients with 
1 or 2 copies of the risk alleles (Supplemental Table 12).

In an effort to assess whether APOL1 risk alleles asso-
ciated with T cell function, we reanalyzed ELISPOT data 
from the CTOT cohort, in which AA/H recipients with 
APOL1 genotype information were tested for frequencies 
of alloreactive IFN-γ–producing PBMCs cocultured with a 
panel of 6 HLA-disparate stimulator cell lines (29). These 
analyses showed stronger responses in AA/H recipients 
with any APOL1 risk alleles (n = 5) versus G0/G0 recipi-
ents (n = 15; Table 1 and Figure 3F).

Discussion
Using 2 large prospective kidney transplant cohorts, we show 
for the first time to our knowledge that recipient APOL1 risk 
alleles were associated with long-term death-censored graft 
survival and clinical and subclinical as well as recurrent 
TCMR events up to2 years after transplantation. These find-
ings were identified in additive models of APOL1 genotype, 
showing that even a single risk allele in recipients presented 
an increased risk for both acute rejection and long-term graft 
survival. We then used in silico and ex vivo auxiliary data 

from immune cells to confirm the expression of APOL1 at mRNA 
and protein levels in PBMCs and demonstrated enrichment of path-
ways involving generic immune responses as well as IFN-γ ELISPOT 
responses. We identified higher APOL1 expression in CD56dim NK 
cells and ex vivo–stimulated CD4+ and CD8+ T cells using the DICE 
RNA-Seq data from healthy individuals (27). In stimulated CD4+ 
T cells, we confirmed significant enrichment of immune response 
pathways among DICE participants with 1 or 2 copies of G1 or G2 
alleles versus those with the G0/G0 genotype. Peripheral CD4+ and 
CD8+ T cells and NK cells in scRNA-Seq data obtained from GOCAR 
patients before transplantation (and waitlisted ESRD patients) with 
risk alleles also revealed consistent enrichment of the identified path-
ways. Together, these data support a role for FSGS-associated G1/G2 
APOL1 alleles in immune cells in modulating alloimmune responses.

Table 3. Association of recipient APOL1 risk alleles with different TCMR 
outcomes using multivariable logistic regression in the GOCAR cohort

TCMR outcomeA,B ncase
C OR 95% CI P valueE

GOCAR: Recipient of all ancestries (ncontrol = 232)D

TCMR ≥ borderline 115
Recipient no. of APOL1 risk alleles 1.95 (0.99, 3.95) 0.06
Donor APOL1 high-risk genotype 0.54 (0.02, 5.20) 0.62

TCMR > borderline 34
Recipient no. of APOL1 risk alleles 2.74 (1.10, 7.15) 0.03
Donor APOL1 high-risk genotype 1.80 (0.07, 24.2) 0.67

Recurrent TCMR ≥ borderline 55
Recipient no. of APOL1 risk alleles 3.58 (1.57, 8.78) 0.003
Donor APOL1 high-risk genotype 0.75 (0.03, 8.40) 0.82

Recurrent TCMR > borderline 23
Recipient no. of APOL1 risk alleles 3.75 (1.42, 10.7) 0.009
Donor APOL1 high-risk genotype 1.59 (0.05, 24.6) 0.75

GOCAR: recipients of AA/H (ncontrol = 66)D

TCMR ≥ borderline 35
Recipient no. of APOL1 risk alleles 1.98 (0.99, 4.13) 0.06
Donor APOL1 high-risk genotype 0.64 (0.03, 7.31) 0.74

TCMR > borderline 14
Recipient no. of APOL1 risk alleles 6.41 (1.80, 34.3) 0.01
Donor APOL1 high-risk genotype 1.22 (0.01,115.0) 0.93

Recurrent TCMR ≥ borderline 19
Recipient no. of APOL1 risk alleles 3.45 (1.44, 9.21) 0.008
Donor APOL1 high-risk genotype 1.06 (0.03, 18.2) 0.97

Recurrent TCMR > borderline 12
Recipient no. of APOL1 risk alleles 7.78 (2.09, 43.9) 0.006
Donor APOL1 high-risk genotype 1.24 (1.08, 98.1) 0.92

AIn each multivariable logistic regression model, adjusted covariates include the 
recipient’s genetic ancestry, center, induction, donor type, HLA-mismatch score, and 
donor APOL1 high-risk genotype, where the donor APOL1 high-risk genotype was 
defined as 2 copies of the G1/G2 alleles and low-risk genotype as 0 or 1 G1/G2 allele. 
For concise presentation, only the results for the number of recipient APOL1 risk 
alleles and for the donor APOL1 risk genotype are shown. BTCMR outcomes include: 
(a) any TCMR greater than or equal to Banff borderline, (b) TCMR with a Banff 1A 
or greater, (c) recurrent (>1 episode) TCMRs including borderline, and (d) recurrent 
TCMRs with Banff 1A or greater. CSample size was reduced because of missing data 
on APOL1 risk alleles. DControls (no TCMR) were defined as patients with either (a) no 
TCMR or borderline TCMR on biopsies obtained at anytime, or (b) no reported biopsies 
during follow-up. EBold text indicates P values of less than 0.05.
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Although the association of APOL1 G1/G2 risk alleles with the 
lifetime risk of ESRD and FSGS in AAs and admixed populations 
with African ancestry has been repeatedly affirmed in clinical 
data (3, 4), data regarding the mechanism of adverse effects has 
been focused on the expression of mutant APOL1 protein (5, 6) 
or mRNA in kidney epithelial cells (30). In renal transplantation, 
the association of donor APOL1 risk alleles with DCAL has been 
consistently observed in retrospective data (8–10),  possibly via 
allograft FSGS (14). Similar large-scale examinations of the asso-
ciation of the recipient APOL1 risk allele with graft outcomes have 
not been reported. A single-center retrospective study of 119 AA 
renal recipients did not find an association of the recipient APOL1 
risk allele with DCAL (15). However, the donor APOL1 genotypes 
were unknown here. Further, this study reported an unusually 
high DCAL rate of 25% at 5 years (vs. 5% and 11% for living donor 
[LD] and DD kidneys in recent Scientific Registry of Transplant 
Recipients [SRTR] data), which likely contributed to the inability 
to identify a significant effect of R-nAPOL1 in this data set (17).

A problem with APOL1 association in transplantation studies 
is the exclusive association of G1/G2 alleles with African ances-
try, a potential confounder for transplant outcomes (30). In our 
data, we addressed this issue in adjusted models using genetic 
ancestry, which was previously reported by our group (22) and 
others (31) as being more accurate than self-reported ances-
try, or using R-pAFR (a quantitative measurement of ancestry), 
inferred from genome-wide genotype data. Additionally, we per-
formed sensitivity analyses in the strata of AA/H recipients, fur-
ther strengthening our findings of an association of APOL1 risk 
alleles with DCAL. We then identified an association of R-pAFR 

(and not R-nAPOL1) with serum creatinine levels within 2 years 
of transplantation. Furthermore, adjustment for longitudinal cre-
atinine levels as a time-varying covariate in the survival models 
did not significantly attenuate the association of R-nAPOL1 with 
DCAL, suggesting that creatinine levels were not a mediator for 
the association of R-nAPOL1 with DCAL (data not shown). Since 
transplant recipients are dependent on the allograft for creatinine 
excretion, the association between R-pAFR and post-transplan-
tation creatinine levels may reflect an increased generation of 
creatinine in recipients with African ancestry. Hence, our data 
reflective of genetically determined changes in creatinine levels 
are also timely to the ongoing discussion of the role of ancestry 
adjustment in eGFR equations (32) and contributory to the use of 
genetic ancestry for these purposes (33).

We believe our data open new avenues for the investigation of 
APOL1 in alloimmune responses in renal transplantation: the role 
of APOL1 gene products in CD4+ and CD8+ T cells and cytolytic 
NK cells (CD56dim), the role of wild-type versus variant APOL1 
protein/mRNA, and gain-of-function versus loss-of-function 
mechanisms all need to be comprehensively examined. Although 
renal epithelial cell injury mechanisms from APOL1 risk variants 
have been the subject of intensive study (5, 6, 30), APOL1 homo-
logs were originally identified as TNF-α–responsive genes in endo-
thelial cells (34, 35). In humans, the APOL1 promoter has binding 
sequences for STAT2- and IFN-responsive transcription factors, 
and a role for APOL1 as a cellular immune response gene in anti-
viral immunity has been postulated to explain its association with 
HIV-associated nephropathy (36). Collapsing FSGS after viral 
infection was reported in APOL1 risk allele–carrying allografts 
(14) and recently in a recipient with the APOL1 risk allele after 
COVID-19 infection (37). In lupus nephritis, where APOL1 risk 
genotypes associate with an increased progression of disease, a 
toxic gain-of-function role for APOL1 variants by disruption of T 
cell autophagy and IFN signaling has been postulated (38). Con-
sistently, progressive nephritis was found to be worsened with 
every copy of the risk allele in Brazilian AA/H patients with lupus 
(39). In this context, our data implicating a role for APOL1 with-
in T cells involved in adaptive immune responses against a donor 
organ demonstrate that previous data regarding R-nAPOL1 and 
allograft outcomes need to be reinterpreted, and its role in infil-
trating inflammatory mononuclear cells in native kidney glomeru-
lonephritis investigated.

Although our data provide what we believe to be new insights, 
we acknowledge several limitations. First, although we adjusted 
for biologic confounders on the basis of clinical data collected 
in both cohorts, we cannot eliminate the residual confounding 
effects of other factors including socioeconomic and behavioral 
data (e.g., nonadherence), which were not collected. Second, in 
the CTOT cohort, our validation data on graft loss and acute rejec-
tion in the AA/H subcohort did not reach statistical significance 
because of the limited sample size and paucity of events, although 
the effect sizes we observed were similar. Notably, the sample siz-
es for AA/H donors with African ancestry in both cohorts were 
limited, thus we observed few APOL1 risk alleles in the donors. 
Larger multiethnic cohorts with adequate sample sizes of APOL1 
risk alleles in D-R pairs will allow evaluation of the interaction of 
APOL1 risk alleles in donor organs and recipients in long-term 

Table 4. Association of recipient pAFR with creatinine  
using a linear mixed model

VariableA Coefficient (mg/dL) 95% CI P valueC

GOCAR (n = 320 D-R pairs)B

Recipient pAFR 0.75 (0.32, 1.19) <0.001
Donor pAFR –0.18 (–0.76, 0.39) 0.53
Recipient no. of APOL1 risk alleles –0.08 (–0.31, 0.15) 0.49
Donor APOL1 high-risk genotype 0.19 (–0.62, 1.00) 0.65
HLA mismatch score –0.002 (–0.08, 0.08) 0.97
Time (mo) 0.001 (–0.001, 0.004) 0.33
CTOT (n = 107 D-R pairs)B

Recipient pAFR 0.39 (0.03, 0.75) 0.03
Donor pAFR –0.12 (–0.25, 0.01) 0.07
Recipient no. of APOL1 risk alleles 0.03 (–0.11, 0.17) 0.66
Donor APOL1 high-risk genotype –0.15 (–0.48, 0.19) 0.38
HLA mismatch score 0.02 (–0.02, 0.05) 0.34
Time (mo) –0.002 (–0.009, 0.004) 0.50
AIn the multivariable linear mixed regression model, fixed-effect covariates 
include recipient age, sex, pAFR, number of APOL1 risk alleles, and BMI; donor 
age, sex, pAFR, and APOL1 high-risk genotype, where high-risk genotype is 
defined as 2 copies of G1/G2 alleles and low-risk genotype as 0 or 1 G1/G2 allele; 
induction, donor type, and HLA mismatch score. Subject-wise random effect 
was accounted for in the model. For concise presentation, only genetic relevant 
variables and time were shown in the table. BSample size was reduced due to 
missing data in covariates. CBold P < 0.05.
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Figure 3. Phenotypic data on immune cell types carrying APOL1 risk alleles in AA/H recipients show immune activation. (A) APOL1 expression at 
the protein level was confirmed by Western blotting. (B) APOL1 mRNA expression in 15 different types of immune cells in DICE AA/H individuals. (C) 
Enrichment in immune-related pathways of DEGs identified by comparing DICE AA/H individuals carrying 1 or 2 copies of the G1 or G2 alleles with 
individuals with the G0/G0 genotype in activated CD4+ T cells and CD56dim NK cells. (D) Enrichment in immune-related pathways of DEGs in CD4+ 
and CD8+ T cells and CD56dim NK cells; the DEGs were identified by comparing scRNA-Seq data for 2 GOCAR AA recipients with APOL1 G1/G0 and G1/
G2 genotypes with the other 2 AA recipients with the G0/G0 genotype. (E) Enrichment of DEGs in immune-related pathways when GOCAR AA/H 
recipients carrying 1 or 2 copies of G1 or G2 alleles were compared with individuals with the G0/G0 genotype, or when those carrying any 1 risk allele 
were compared with individuals with the G0/G0 genotype. (F) Panel reactive T cell ELISPOT assay comparing CTOT AA/H recipients with any APOL1 
G1 or G2 allele versus G0/G0 genotype. *P < 0.05, by Wilcoxon rank-sum test.
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PBMCs, while donor DNA was obtained from either preperfusion 
allograft biopsies (in DDs) or PBMCs (in LDs). In cases where DNAs 
from both sources were available, the genotype data was derived from 
PBMC DNA. The Illumina Infinium Global Screening Array (GSAMD-
24v1-0_20011747_A1) was applied on the extracted DNA. The raw 
genotype data were subjected to a series of QC steps (Supplemental 
Figure 1). In sample-wise QC, we excluded samples on the basis of 
the following criteria: (a) the genetically inferred sex was inconsis-
tent with the reported sex; (b) missing genotype rate above 0.03; (c) 
excessive genome-wide heterozygosity (indicating potential sample 
contamination); or (d) the individual was of European ancestry but 
carried APOL1 G1/G2 risk alleles (see APOL1 genotyping section). In 
SNP-wise QC, we excluded SNPs on the basis of the following criteria: 
a) missing genotype rate above 0.05; (b) minor allele frequency (MAF) 
of less than 0.01; or (c) a Hardy-Weinberg equilibrium (HWE) P value 
of less than 1 × 10–6. The markers with no chromosome information, 
or with ambiguous alleles (A/T or C/G), or not located on autosomes 
were excluded as well.

To prepare for downstream analysis (see ADMIXTURE analy-
sis section), the processed genotype data from CTOT samples were 
merged with the genotype data from the 1000 Genomes Project 
(KGP) (41) samples at shared SNP loci on autosomal chromosomes. 
From merged data, common SNPs with a MAF of greater than 0.05 
were selected, where the MAF was estimated on the basis of KGP sam-
ples. The list of high-density SNP markers was pruned on the basis of 
pairwise linkage disequilibrium (42), where the pairwise linkage dis-
equilibrium between SNPs was derived from KGP samples. In order 
to explore the genetic effect beyond HLA, we excluded SNPs located 
in the MHC region in subsequent genetic analyses. After these steps, 
there were 122 D-R pairs with complete genotype data and 126,872 
SNPs left in the CTOT cohort (Supplemental Figure 1).

ADMIXTURE analysis and genetically inferred ancestry. We used 
ADMIXTURE (43) to estimate the proportions of genetic ancestries 
of donors and recipients and inferred their genetic ancestries for the 
GOCAR cohort as previously detailed (22). The same analysis pipe-
line was also applied to the processed genotype data from the CTOT 
cohort. Briefly, we applied ADMIXTURE on the genome-wide geno-
type data with 1000 Genomes Project (KGP) Phase I (41) as reference 
populations to anchor the major ancestral populations. The genetic 
background of each individual was inferred as a mixture of 4 ancestral 
components, corresponding to African, White, East Asian, and Ameri-
can Indian ancestry (Supplemental Figure 2). As shown in Supplemen-
tal Figure 2A, the estimated pAFR and White (pEUR) ancestry were 
used to define, in a conventional meaning, the genetic ancestry of the 
donors and recipients. With simple thresholds, the individuals were 
categorized as AA if the pAFR was 0.6 or higher, White if the pEUR 
was 0.9 or higher, Asian if the pAFR plus pEUR was 0.1 or lower (and 
the proportion of East Asian [pASN] was 0.9 or higher), and Hispan-
ic (i.e., admixed population with a spectral mixture of White, African, 
and American Indian ancestral components) otherwise (Supplemental 
Figure 2B).

APOL1 genotyping. The G1 allele of APOL1 is represented by 
rs73885319 and rs60910145, two missense SNPs in almost perfect 
linkage disequilibrium, whereas the G2 allele is represented by a 6 bp 
microdeletion rs143830837 (or equivalently rs71785313) (2). The allele 
that does not carry any of these variants is hereafter referred to as G0. 
In the GOCAR cohort, the 3 allele-representing markers were imputed 

transplant outcomes (16). Last, the results from DEGs and enrich-
ment analysis were of a nominal significance level, given the lim-
ited sample sizes and the burden of multiple-hypothesis testing. 
Nevertheless, rather than draw firm conclusions here, we aimed 
to identify directions pointing toward pathways and cell types in 
which APOL1 risk alleles may affect the transcriptome and trans-
plant outcomes. We believe our findings provide a platform for 
investigating cell-type–specific immune functions of APOL1 in 
experimental models such as the human BAC–transgenic mouse 
strains expressing either G0, G1, or G2 genes at physiological lev-
els, while remaining responsive to endogenous cytokine stimuli.

In summary, using 2 prospective transplant cohorts, we report 
for the first time to our knowledge the association of recipient 
APOL1 risk alleles with allograft survival and cellular rejection 
events. We demonstrate these associations in additive models 
showing the role of even a single copy of the G1 or G2 allele in the 
observed outcomes. We show phenotypic data supporting immune 
effects of APOL1 expression in specific cell types. We also report 
the association of African ancestry in recipients, quantified as 
R-pAFR, with serum creatinine after transplantation. We believe 
our work forms a basis for further mechanistic work to understand 
the immunologic role of APOL1.

Methods
Discovery cohort. The GOCAR study is a prospective, multicenter study 
designed to examine the utility of genomics and genetics to predict 
the development of chronic allograft injury. Patients included in the 
study were prospectively enrolled from May 12, 2007, to July 30, 2011. 
Details of the study were reported elsewhere (22, 24, 25). Clinical data 
and laboratory samples were collected from the enrolled patients at 
baseline and 3, 12, and 24 months after renal transplantation.

Validation cohort. CTOT-01/17 study was a prospective, multi-
center, observational study that enrolled crossmatch-negative kidney 
transplant candidates with 2 years of follow-up (40). Adult and pediat-
ric participants undergoing a primary kidney transplantation and who 
had a negative flow cytometry crossmatch at the time of transplanta-
tion were eligible for enrollment. In the current study, only adult par-
ticipants aged 18 years or older who had graft survival of more than 1 
week were included. Exclusion criteria included plans for multiorgan 
transplantation and/or clinically significant liver disease. The overall 
objective of CTOT-01 was to determine the relationships between the 
immune assay results and a composite primary endpoint (clinically 
evident or subclinical biopsy-proven cellular acute rejection with a 
Banff grade ≥1A, an increase in the Banff chronic sum score >2, an 
increase in interstitial fibrosis >15%, graft loss, or death 6 months after 
transplantation) and/or a change in renal function (>30% decrease 
in eGFR) between 6 and 24 months after transplantation. CTOT-17 
(extension study of CTOT-01) was designed to collect information on 
5-year outcomes in this cohort. Details on this cohort have been pub-
lished previously (23).

Genotyping, data processing, and quality control
The genotyping and quality control (QC) for the GOCAR cohort have 
been reported previously (22). After data processing and QC, com-
plete genotype-phenotype data for 385 D-R pairs and 131,035 SNPs 
remained for statistical analysis. We applied the same procedure 
used for COGAR to CTOT. Briefly, recipient DNA was obtained from 
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Panel of reactive T cell assay for a subgroup of CTOT patients. Details 
and standardization of the IFN-γ ELISPOT assay have been published 
by our group before (40, 58). IFN-γ production by recipient PBMCs 
against isolated ex vivo–stimulated B cells from the respective donor, 
randomly chosen third party, and a standardized 6-donor panel 
were evaluated before transplantation. The results were respectively 
reported as donor-specific, third-party, and panel of reactive T cell 
(PRT) assay. ELISPOT data for a subgroup of CTOT AA/H recipients 
with 1 or 2 copies of the APOL1 G1/G2 alleles (n = 5) were compared 
data on individuals with the G0/G0 genotype (n = 15). The experimen-
tal procedures are described briefly as follows. Blood samples from 
recipients were collected in heparinized green-top tubes, and PBMCs 
were isolated by Ficoll separation at each site within 6 hours of collec-
tion and frozen using a standard operating procedure. Blood samples 
were obtained from LDs and processed in a similar manner. PBMCs 
or splenic cells obtained from DDs were sent to the Mount Sinai core 
laboratory, where they were processed and frozen. Recipient PBMCs 
(300,000 per well) were stimulated against the respective stimulator 
cells (100,000 per well) in triplicate. The resulting spots were count-
ed with an ImmunoSpot computer-assisted ELISPOT image analyzer 
(Cellular Technology Ltd.). Results are shown as the mean number 
of IFN-γ spots per 300,000 recipient peripheral blood lymphocytes 
based on duplicate or triplicate measurements in a given assay.

DICE RNA-Seq data analysis. To explore the expression of APOL1 
risk alleles and associated gene signatures in various immune cell 
types, we used the RNA-Seq data generated by the DICE project 
(https://dice-database.org/). Access to the DICE data sets located 
in the NCBI’s database of Genotypes and Phenotypes (dbGaP) was 
requested (request 97206-2) and approved (dbGaP study accession 
number phs001703), and these data sets were analyzed in this study. 
A description of the data set has been detailed in the literature (27). 
Briefly, whole transcriptomic data were generated by bulk RNA-Seq 
from immune cell types isolated from leukapheresis samples provid-
ed by 91 healthy subjects. The cell types surveyed included 3 innate 
immune cell types (CD14hiCD16– classical monocytes, CD14–CD16+ 
nonclassical monocytes, and CD56dimCD16+ NK cells); 4 adaptive 
immune cell types (naive B cells, naive CD4+ T cells, naive CD8+ T cells, 
and naive Tregs); 6 CD4+ memory or more differentiated T cell types 
(Th1, Th1/Th17, Th17, Th2, follicular helper T cell [Tfh], and memory 
Tregs); and 2 activated cell types (naive CD4+ and CD8+ T cells that 
were stimulated ex vivo) (27). In this study, the analysis was mainly 
focused on a subgroup of 22 AA/H individuals. The gene expression 
data were measured as transcripts per million reads (TPM). Genes 
with mean a TPM of less than 1 across all samples were excluded from 
further analysis. Raw TPM expression profiles were log2-transformed 
by log2(TPM + 1), where a value of 1 was added to account for 0 values 
in TPM. DEGs between the group of individuals with 1 or 2 copies of 
APOL risk alleles (n = 5) and the group of individuals without any risk 
alleles (n = 17) were identified using the functions “contrasts.fit” and 
“eBayes” implemented in an R package limma (version 3.38.3; ref. 59). 
Genes with a P value of less than 0.05 were considered nominally sig-
nificant. Pathway enrichment analysis for DEGs was performed using 
clusterProfiler (60), based on the KEGG pathway database (52). A P 
value of 0.05 in enrichment analysis was considered nominally sig-
nificant. An adjusted P value using the Benjamini-Hochberg method 
(61) and a q value quantifying the FDR using an R package q value (62) 
were also provided for multiple hypothesis testing control.

by the pipeline composed of SHAPIT (44) and IMPUTE2 (45) software 
packages (see section below). To ensure the quality of imputation, 
the posterior probability of an imputed genotype was required to be 
greater than 0.95; otherwise, the imputed genotype was considered 
as missing data. Among the 385 D-R pairs with genotype information, 
there were missing data in the APOL1 genotype for 29 recipients and 
14 donors (Supplemental Table 3). In the CTOT cohort, fortunately, 
the 2 representative variants rs73885319 and rs71785313 were geno-
typed directly by the SNP array platform used, and thus the APOL1 
genotype could be defined accordingly. The individuals genetically 
determined as White but carrying G1/G2 alleles, contradictory to the 
origin of the risk variants from African ancestry, were excluded (Sup-
plemental Figure 1). In fact, some of the ancestry-of-origin–inconsis-
tent APOL1 genotypes were later confirmed to be genotyping errors by 
PCR. Among the 122 D-R pairs with genotype information, there were 
missing data in the APOL1 genotype for 2 recipients and 2 donors due 
to a failed genotyping effort at these 2 variants (Supplemental Table 3).

APOL1 SNP–based mismatch score. We evaluated the SNP-wise 
mismatches at the APOL1 locus for both cohorts following the pro-
cedures similar to those described in recent reports (46). First, 
genome-wide genotype imputation was performed for both cohorts. 
For GOCAR, the imputation was done by the pipeline composed of 
SHAPIT (44) and IMPUTE2 (45) software packages using the 1000 
Genomes Project Phase I data (47) as a reference panel; while for 
CTOT, the imputation was done by the Michigan Imputation Server 
(https://imputationserver.sph.umich.edu) (48) using the Haplotype 
Reference Consortium (HRC) reference panel (Release 1.1; ref. 49). 
Second, at each SNP locus, a mismatch score of 1 for a D-R pair was 
assigned when the donor introduced any allele(s) that did not appear 
in the recipient, and a score of 0 otherwise. Third, the SNP-wise mis-
match scores of SNPs within the range of the APOL1 locus (chromo-
some 22: 36649117–36663577) were summed as a measure of the total 
mismatch at the APOL1 locus, and then the raw values of the APOL1 
mismatch score for each D-R pair was normalized by the IQR across 
D-R pairs within each cohort.

PBMC RNA-Seq data analysis for a subgroup of GOCAR patients. 
The details of PBMC isolation for a subgroup of GOCAR patients 
for RNA-Seq experiments and the data analysis pipeline have been 
reported previously by our group (28). Briefly, total RNA was extracted 
from whole blood drawn from the transplant recipients before trans-
plantation, and mRNA sequencing was performed on an Illumina 
HiSeq 4000 sequencer. Gene expression data were obtained from the 
NCBI’s GEO database (GEO GSE112927). In this study, we focused on 
the subgroup of 60 AA/H patients with genotype information avail-
able as well. Differential gene expression analysis was carried using 
an R package limma (50), comparing recipients carrying 1 or 2 copies 
of APOL1 risk alleles (n = 26) versus zero copies (n = 34), and compar-
ing those with 1 copy (n = 14) versus zero copies (n = 34). DEGs were 
initially identified at a P value of less than 0.05. Biological functional 
pathways enriched for DEGs were determined by Fisher’s exact test 
at a P value of less than 0.05 using the “biological process” category 
in Gene Ontology (GO) resource (51) and pathways curated in sever-
al pathway databases (Kyoto Encyclopedia of Genes and Genomes 
[KEGG], ref. 52; Ingenuity Pathway Analysis [IPA; QIAGEN, https://
www.qiagenbioinformatics.com/products/ingenuity-pathway-analy-
sis]; BioCarta, ref. 53; Panther, ref. 54; Pathway Interaction Database 
[PID], ref. 55; REACTOME, ref. 56; and WikiPathways, ref. 57).
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EcorV- and XbaI-digested PCDNA4B vectors. Lentiviral transduction 
and stably infected human podocyte lines were created. APOL1-FLAG 
expression was confirmed. A mouse macrophage cell line was used 
as a negative control for APOL1 expression, since mouse cells do not 
express APOL1.

Western blotting. PBMCs from a leukapheresis sample or podocyte 
cell lines were lysed with a buffer containing 25 mM Tris-HCl, pH 7.4, 150 
mM NaCl, 1 mM EDTA, 1% NP-40, and 5% glycerol, a protease inhibitor 
mixture, and tyrosine and serine/threonine phosphorylation and phos-
phatase inhibitors. Lysates were subjected to immunoblot analysis using 
anti-APOL1 antibody (Abcam, catalog ab231523) and rabbit polyclonal 
anti-GAPDH antibody (Cell Signaling Technology, catalog 5174).

Statistics. Descriptive statistics (mean, SD, median, and range) 
were used to summarize the baseline characteristics of the GOCAR 
and CTOT cohorts. When comparing the baseline characteristics 
between groups of recipients carrying different numbers of APOL1 risk 
alleles, Fisher’s exact test was used to calculate the P value for categor-
ical variables, ANOVA for continuous variables, and the Kruskal-Wal-
lis test for ordinal variables. A Kaplan-Meier plot was used to visualize 
and compare the death-censored graft survival curves between groups 
of recipients carrying different numbers of APOL1 risk alleles, and 
a log-rank test was used to calculate the P value. The association of 
time-to-event outcome (DCAL) with risk factors was evaluated with 
Cox regression. The association of dichotomous outcomes (different 
TCMR outcomes) with risk factors was evaluated with logistic regres-
sion. The association of the longitudinal creatinine levels with risk 
factors was evaluated with linear mixed models, implemented in the 
R package lme4 (67). The fixed-effect meta-analysis of the GOCAR 
and CTOT results was conducted using the R package metafor (68). 
In each regression analysis, the samples with missing data in relevant 
covariates were omitted. A 2-sided P value of less than 0.05 was con-
sidered statistically significant unless otherwise specified. These sta-
tistical procedures were implemented in R (69).

Study approval. For the GOCAR study, written informed con-
sent was obtained from all participants from the individual clinical 
sites at the time of enrollment in the original study. IRB approval was 
obtained from all participating institutions (see list below for GOCAR 
and CTOT). For the CTOT study, written informed was obtained from 
all participants from the individual clinical sites at the time of enroll-
ment in the original study. IRB approval was obtained from all partic-
ipating institutions. Consent included the use of deidentified genetic 
data for research purposes and retrospective data reporting.

Participating institutions for GOCAR: Icahn school of Medicine 
at Mount Sinai, New York, New York, USA; University of Sydney, 
Westmead Hospital, Sydney, New South Wales, Australia; Universi-
ty of Wisconsin-Madison, Madison, Wisconsin, USA; Northwestern 
University, Northwestern Memorial Hospital, Chicago, Illinois, USA; 
University of Michigan, Ann Arbor, Michigan, USA; Massachusetts 
General Hospital–Brigham and Women’s Hospital, Harvard Medical 
School, Boston, Massachusetts, USA.

Participating institutions for CTOT: Icahn school of Medicine at 
Mount Sinai; University Hospitals of Cleveland, Cleveland Clinic Foun-
dation, Cleveland, Ohio, USA; Cincinnati Children’s Hospital Medical 
Center, Cincinnati, Ohio, USA; Yale University School of Medicine, New 
Haven, Connecticut, USA; University of Manitoba, Children’s Hospital 
of Winnipeg, Winnipeg, Manitoba, Canada; Emory University Hospital, 
Emory Children’s Center, Atlanta, Georgia, USA.

Generation and analysis of scRNA-Seq data from 4 GOCAR recipients. 
Within our GOCAR cohort, we generated scRNA-Seq data from PBMCs 
collected before transplantation from 4 AA recipients with a known 
APOL1 genotype. Among these 4 recipients (all allografts from DDs), 2 
with APOL1 risk alleles (G1/G0 and G1/G2) later developed recurrent 
TCMR and graft loss, while the other 2 with the G0/G0 genotype had 
no TCMR or graft loss during the study follow-up (Supplemental Table 
12). PBMCs were isolated from ethylenediaminetetraacetic acidantico-
agulated blood of the recipients using a Ficoll-Hypaque density solu-
tion according to standard density-gradient centrifugation methods. 
The viability of all PBMC samples assessed exceeded 80%. scRNA-
Seq libraries were prepared according to the Chromium Single Cell 3′ 
Reagents Kit V3 User’s Guide (10x Genomics).

The generated scRNA-Seq data were deposited in the NCBI’s 
GEO database (GEO GSE182916). Raw sequencing reads were 
aligned using CellRanger (version 5.0.0) (10x Genomics, https://
support.10xgenomics.com/single-cell-gene-expression/software/
pipelines/latest/what-is-cell-ranger). Cell QC, intergradation, and 
clustering were performed using Seurat (version 3.1.5; ref. 63). Genes 
expressed in fewer than 3 cells were filtered. Cells expressing fewer 
than 200 genes or with more than 20% of the reads coming from 
mitochondrial genes were considered poor quality and removed. 
Cells expressing more than 5000 genes were considered doublets and 
removed. Cells from the 4 recipients were integrated using the “Inte-
grateData” function with the first 30 dimensions. Unsupervised clus-
tering of cells was done with the “FindClusters” function using the first 
15 principal components (PCs) with a resolution of 0.8. Cell types were 
identified using classic immune markers as described in other PBMC 
studies (Supplemental Table 15 and ref. 64). To confirm the APOL1 
genotype, short reads generated from the 4 single-cell samples were 
aligned to the human reference genome (GRCh37) by STAR (2.7.5b; 
ref. 65). The genotype of APOL1 was identified using the “mpileup” 
command from bcftools (version 1.9) based on the reads mapped to 
the APOL1 locus  (66). G1 and G2 alleles were identified on the basis 
of the genotyped variants described previously (22). DEGs between 
recipients with and without APOL1 risk alleles in each cell type were 
identified using the “FindMarkers” function from the Seurat package 
with the default testing method, Wilcoxon rank-sum test. Genes with 
Bonferroni’s adjusted P values of 0.01 or less were considered signifi-
cant. Pathway enrichment analysis for DEGs was performed the same 
way as described above for the DICE data analysis.

scRNA-Seq data analysis for 2 patients with ESRD. We used scRNA-
Seq data from PBMC samples collected from 2 patients with ESRD 
(GEO GSE162470). These data were downloaded and subjected to 
analysis similar to that described above for the GOCAR recipients.

APOL1 overexpression podocytes. Human Apol1 was amplified 
by PCR using cDNA synthesized with human podocyte mRNA as 
a template. The FLAG peptide sequence was incorporated into the 
antisense primer containing a terminal Xbal site. The sense primer 
contained a terminal EcoRV site. The primer sequence was as follows: 
forward, GATATCATGGAGGGAGCTGCTTTGCTGAGAG; reverse, 
TCTAGATCACTTGTCGTCATCGTCTTTGTAGTCCAGTTCTTG-
GTCCGCCTGC.

PCR-amplified products were cloned into the pGEM-T vector 
(Promega, A3600). The APOL1 sequence was confirmed by DNA 
sequencing using the T7 primer. cDNAs of APOL1 were released from 
T vectors with EcorV and XbaI restriction enzymes and inserted into 
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