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Abstract

Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health
burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited
by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical
compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages
in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate.
In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration,
particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically
or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentia-
tion, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix
degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-
throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies,
and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical
therapies for cartilage regeneration.

Keywords Cartilage regeneration - Osteoarthritis (OA) - Small molecular drugs - Disease-modifying OA drugs
(DMOAD:s) - High-throughput screening

Introduction joint disability if not properly treated [1]. The incidence
of knee cartilage surgery is 56 per 100,000 person years
Articular cartilage possesses a unique ability for weight-  [2] and osteoarthritis, a worse condition caused by carti-
bearing and joint surface lubrication during an individual’s ~ lage defects, currently affects approximately 250 million
lifetime. However, cartilage injury may lead to permanent  people worldwide [3]. Unlike other tissues, adult articu-

lar cartilage is neither innervated nor vascularized, and

has extremely poor self-renewal capacity [4]. Articular
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cartilage consists of abundant extracellular matrix (ECM)
but limited chondrocytes, which occupy only 1-3% of the
total tissue volume [5]. Thus, defective tissue is rarely
replaced by functional cartilage and additional therapeutic
interventions are often required.

In recent years, the fields of cell-based therapy and
tissue engineering have made remarkable improvements
in the treatment of cartilage damage [6]. However, the
clinical outcomes are unsatisfactory and challenges still
exist. First, functional chondrocytes for articular cartilage
recovery are lacking, hindering the application of chon-
drocyte implantation and necessitating the development
of alternative cell sources. Second, chondrocytes with
pathological phenotypes, representing either degradative
or fibrotic cartilage ECM, cause functional impairment in
cartilage diseases. This demands effective manipulation of
pathological cellular phenotypes or processes.

Efforts have been made to address these problems.
Among them, chemical compounds with molecular
weights in the range of 0.1-1 kDa have gained increased
attention as powerful tools for tissue regeneration and
cell-fate control. Because of their small sizes, they eas-
ily cross the outer plasma membrane to target extracel-
lular components such as cell surface receptors, protein
domains attached to cell membranes, such as glycopro-
teins, and intracellular proteins such as kinases [7]. As
a result, small molecular weight chemical cocktails have
been demonstrated to drive direct reprogramming of fibro-
blasts into induced pluripotent stem cells (iPSCs), neural
progenitor cells, cardiomyocytes, and other somatic cells
[8—10]. Small molecular drugs have also been adopted
for the treatment of various diseases, including cancers
[11], fibrotic diseases [12], and asthma [13]. From a clini-
cal perspective, small molecular drugs have considerable
advantages: they are classified as low-immunogenic mol-
ecules (compared with biomacromolecules), and are easily
synthesized, stored, transported, and standardized [14].
They offer rapid and temporal control over protein func-
tion, allowing their effects to be fine-tuned based on differ-
ent concentrations and combinations [15]. In terms of drug
discovery and design, small molecules typically mimic the
interactions formed by peptides and place groups into hot-
spot pockets with a smaller volume and tighter interaction
in space [16]. Therefore, this review will highlight current
achievements in the use of small molecules for cartilage
regeneration, as well as rational high-throughput screen-
ing strategies used for the discovery of small molecules
that facilitate chondrocyte generation or manipulation of
chondrocyte degenerative phenotypes.

@ Springer

Generating chondrocytes using small
molecules

Great advances have been made in the development of car-
tilage cell-based therapies and tissue engineering since the
1990s, providing new perspectives for achieving cartilage
function recovery using alternative chondrocyte sources.
Technically, chondrocytes can be expanded in vitro, dif-
ferentiated from stem/progenitor cells, and reprogrammed
from somatic cells. In other words, cell sources for cartilage
regeneration include chondrocytes (autologous or alloge-
neic), stem cells (multipotent cells or pluripotent cells), and
other trans-differentiated somatic cells [6]. Here, we discuss
the routines to obtain functional chondrocytes, which can
be effectively facilitated using small molecular compounds

(Fig. 1).

Small molecules facilitating chondrogenesis
of stem/progenitor cells

Stem cells with chondrogenic differentiation ability are of
great interest in the field of cartilage regeneration. For exam-
ple, mesenchymal stem cells (MSCs) have gained increas-
ing popularity as an alternative cell source for the treatment
of cartilage injuries in clinical trials [17]. However, many
studies have reported inferior outcomes. There are still gaps
in the precise regulation of MSC chondrogenesis because
MSC:s can differentiate into fibrochondrocytes, resulting in
a mixture of fibrous cartilaginous tissue [4].

A 2012 study highlighted the exploration of a small
molecule, kartogenin (KGN), which was dubbed a “game-
changer in regenerative medicine” [18] for its ability to
induce human MSC chondrogenesis in vitro by regulating
CBFB-RUNXI1. It was demonstrated to be an efficacious
disease-modifying OA drug (DMOAD) in two OA mouse
models as it did not enhance cartilage hypertrophy or calcifi-
cation [19]. KGN is extensively used as a chondroprotective
agent against cartilage degeneration and injury. To establish
a controllable drug delivery system, Wang et al. combined
KGN with PLGA microspheres for the superficial repair of
articular cartilage in a rabbit model [20]. KGN can also be
conjugated to Pluronic F127 thermoresponsive nanospheres
with the anti-inflammatory drug diclofenac (DCF) [21], or
to hyaluronic acid (HA)/PEG to suppress OA progression
in rats [22]. Recently, other groups have conjugated KGN
to polyurethane nanoparticles; their intra-articular injection
increased type II collagen expression levels and decreased
type I collagen expression, alleviating OA in a rat model
[23]. In 2013, the compound TD-198946, discovered by
Yano et al., showed remarkable promotion of chondrogenic
differentiation of mouse stem cells and the cartilage pro-
genitor cell line ATDCS by activating RunxI to upregulate
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Fig.1 Major applicable routines of small molecules for generating functional chondrocytes. BMSCs bone marrow mesenchymal stem cells,

iPSCs induced pluripotent stem cells, KGN kartogenin, VPA valproic acid

Col2al and Acan gene expression without promoting chon-
drocyte hypertrophy [24, 25]. They also showed that, in
combination with TGF-p3, TD-198946 improved chondro-
genesis of human synovium-derived stem cells [26].

In addition, through high-throughput screening, Hwang
et al. discovered a protein kinase A inhibitor, H-89, which
enhanced the chondrogenic differentiation ability of rat
MSCs [27]. Using the structure of H-89, they synthesized a
series of analogs and showed that, among them, compound
6 had the strongest ability to induce chondrogenesis of adi-
pose-derived stem cells (ADSCs). Articular cartilage thick-
ness was maintained with increased aggrecan levels by the
injection of compound 6 or compound 6-treated-ADSCs in
collagenase II-induced osteoarthritis rat models [28]. Heck
et al. reported that GW0742, a PPAR-8 agonist, enhanced
human MSC chondrogenesis and alleviated cartilage fibro-
sis/inflammation in an in vitro model by stimulating type
II collagen/glycosaminoglycan secretion [29]. As Sirtuin-1
(SIRT1) is required for stem cell chondrogenesis, the
SIRT]1 activator resveratrol partially inhibits the inflamma-
tory effect of IL-1p on human MSC differentiation in vitro
[30] and promotes human ADSC proliferation in a three-
dimensional chondrogenic culture [31]. The small molecule

BIO (6-bromoindirubin-3-oxim) inhibits glycogen synthase
kinase-3 (GSK-3) in the Wnt pathway and can upregulate
cartilage-specific genes in mouse MSC in in vitro chon-
drogenesis [32]. Using a Col2GFP-ATDCS5 system, Hojo
et al. identified oxytetracycline, which acts as a chondro-
genic inducer in a BMP-dependent manner and suppresses
chondrocyte hypertrophy [33]. Similarly, the small molecule
tetradecylthioacetic acid (TTA) was shown to improve ECM
production in a fluorescently labeled collagen-binding probe
system in ATDCS cultures [34].

With the rapid development in stem cell-based regenerative
medicine, small molecules are promising tools for regulating
stem cell behavior. However, challenges still exist in the pre-
cise regulation of chondrogenesis, particularly the functional
phenotype of stem cell-derived chondrocytes. There is a need
to uncover relevant critical targets for optimizing chondrogen-
esis efficiency, to harvest hyaline chondrocytes, rather than
fibrotic or hypertrophic chondrocytes.

Small molecules facilitating chondrocyte expansion

To obtain sufficient cell numbers for chondrocyte implanta-
tion, in vitro expansion is necessary. However, chondrocyte
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dedifferentiation, representing a loss-of-function phenotype of
expanded chondrocytes, results in fibrocartilage formation and
has severely hindered the clinical application of chondrocyte
implantation [35]. This limitation motivated Kobayashi et al.
to select A-674563 from 5822 compounds based on mouse
chondrocyte dedifferentiated phenotypes. Based on the RNA
sequencing data, A-674563 could inhibit the degradation of
SOX9 protein by activating the gene that induces protein deu-
biquitination [36]. Simvastatin, a lipid-lowering agent used to
treat hypercholesterolemia [37], has the ability to maintain the
phenotype of passaged human chondrocytes by stimulating
the expression of SOX9 [38]. Clodronate, a bisphosphonate,
[39] exerts an anabolic effect on articular chondrocytes [40].
It can upregulate the expression of SOX9 in an in vitro patho-
logical human MSC model, reducing osteoarticular pain and
improving mental and physical performance in human patients
6 months after treatment [41].

Although the regulation of SOXO is critical to the chon-
drocyte phenotype, the maintenance of cell viability and
ECM homeostasis are also necessary for large-scale chon-
drocyte expansion. Paradoxically, a higher expression of
degradative enzymes such as matrix metalloproteinase
3 (MMP3) [42], improves the outcome of chondrocyte
expansion. The mechanism is potentially associated with
MMP-mediated remodeling of the ECM [43]. In contrast,
the expression of MMPs is tightly linked with chondrocyte
functional phenotype loss, contributing to dedifferentiation
during in vitro culturing [44].

Due to the lack of basic knowledge on chondrocyte dedif-
ferentiation, the ideal approach for effectively maintaining
chondrocyte phenotype has not been determined. More in-
depth investigations are required before practical applica-
tion of small molecular compounds. Developing chemical
compounds that facilitate chondrocyte function is important,
as these potential drugs are likely to have a direct effect on
chondrocytes, enabling their adoption in cell-free cartilage
repair at joint surfaces in situ.

Small molecules facilitating reprogramming
to generate chondrocytes

It has been shown that induced pluripotent stem cells
(iPSCs) reprogrammed from patient somatic cells such as
fibroblasts can form scaffoldless hyaline cartilaginous tissue
in vivo, which can then be integrated into native cartilage
[45]. This offers new options for regenerating cartilage tis-
sue without ethical issues. Initially, the generation of iPSCs
required virus-mediated expression of defined transcrip-
tion factors (TFs) [46]. However, accumulating studies are
reporting that chemical cocktails can improve reprogram-
ming efficiency and even replace some of the defined factors
[47]. Hou et al. used a cocktail of seven small molecule com-
pounds (valproic acid (VPA), tranylcypromine, CHIR99021,
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616,452, forskolin, 3-deazaneplanocin, and PD0325901) to
achieve virus-free reprogramming of mouse fibroblasts into
iPSCs in a step-wise manner [8]. Because the induction effi-
cacy and the long period required for chemical reprogram-
ming were still problematic for practical application [48],
Zhao et al. significantly improved the efficiency of chemical
reprogramming from somatic cells to chemically induced
pluripotent stem cells (CiPSCs) and identified unique inter-
mediate cells (XEN-like state) [49]. They induced mouse
embryonic fibroblasts (MEFs) using an optimized protocol
and chemical combinations were adopted as follows: VPA,
CHIR99021, 616,452, tranylcypromine, forskolin, AMS580,
and EPZ004777 in stage 1; VPA, CHIR99021, 616,452,
tranylcypromine, forskolin, AM580, DZNep, 5-aza-dC, and
SGC0946 in stage 2, and CHIR99021 and PD0325901 in
stage 3. In 2019, they enhanced the reprograming process by
fine-tuning the chemical treatment and generated 500 CiPSC
colonies from 100,000 re-plated cells from stage 1 [14],
demonstrating that chemical reprogramming is a unique and
promising strategy for generating functional iPSCs.

Somatic cells can be directly reprogrammed into other
types of mature cells by bypassing pluripotency, meaning
that chondrocytes can be generated through transdiffer-
entiation. Chen et al. conducted a proof-of-concept study
using a combination of five small molecular drugs (VPA,
CHIR98014, 616,452, TTNPB, and Celecoxib) and induced
MEFs into three-dimensional fibrocartilaginous tissues with
in vivo mechanical function [50]. This approach avoids the
pluripotent state, poses a lower risk of tumor development,
and shortens the induction period, and may present a new
opportunity for future pharmaceutically engineered car-
tilage. However, achieving cell-fate conversion of human
somatic cells into functional hyaline chondrocytes via chem-
ical reprogramming remains uncertain. Evidence suggests
that more stringent chemical conditions are required for the
reprogramming of human adult cells, but this will require
a comprehensive understanding of human cell plasticity.
More importantly, the low efficiency and long-term repro-
gramming period are technical concerns that still need to be
addressed before any clinical application.

Several studies have demonstrated the convenience of
using small molecular compounds for in vitro generation
of functional chondrocytes. However, large gaps remain
between the establishment of a well-recognized standard and
the development of an in-house approach. First, most of the
screening described above were conducted with reference
to phenotypic measurements, not target-based drug design,
and finding a hit was likely coincidental, although the tar-
gets could be identified using a deconvolution process [51].
In our opinion, the targets of chondrogenesis induction and
reprogramming are highly relevant to major developmental
signaling pathways. For example, the CBF-RUNX1 com-
plex activates important genes involved in the differentiation
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of MSCs into cartilage. KGN can competitively bind to
human cytosolic filamin A, a key binding partner of CBFf,
to displace CBFf and accelerate its dimerization with tran-
scription factor RUNXI1 in the nucleus [52]. Similarly,
TD-198946 strongly induces chondrogenic differentiation
by regulating RUNX1 [24]. Cellular programs resembling
cartilage development, including the activation of Bmp6,
Tgfb2, and Wnt4, were demonstrated in a direct reprogram-
ming study [50]. These compounds exert their effects by
stimulating differentiation. SOX9 appears to be a common
target in the modulation of the dedifferentiated phenotype
[36, 38, 41], functioning as a master transcription factor
determining chondrocyte differentiation and phenotype [53].
However, the main molecular events involved in chondrocyte
expansion and dedifferentiation are still unclear, making it
difficult to efficiently regulate the chondrocyte phenotype in
long-term passaging.

Thus, boosting cartilage development may benefit chon-
drocyte generation. Nevertheless, there is a big caveat in
developing a quality-control system for the cell source.
Given that chondrocytes are not identical in different regions
[54], a precise identification of the differentiation state or
subtype is also urgently needed. Therefore, single-cell tran-
scriptomic datasets are a powerful tool for dissecting differ-
entiation trajectories and chondrocyte sub-identity [55-57].
The emergence of new techniques has made it more feasible
to precisely evaluate cell quality and investigate the chemical
condition of the medium used for differentiating cells into
correct orientations.

Small molecules for manipulating
chondrocyte pathological phenotype

Cell implantation is effective in the treatment of early
focal cartilage defects [58]. However, OA is a more com-
plex condition. Pharmaceutical interventions are usually
administered to patients with OA during the painful pro-
cess before disease end-stage as they contribute to symptom
control, making them increasingly popular, with more than
1300 clinical trials registered worldwide in the last 10 years
(https://clinicaltrials.gov). DMOADs are designed to slow
OA deterioration and inhibit structural disease progression
[59], but are still at the conceptualization stage.

Small molecular compounds may play a vital role in the
development of DMOADs capable of controlling early OA
in a more precise and defined manner. Here, we summarize
a list of over 170 representative small molecular OA drugs
previously or currently under clinical investigation (Table 1),
according to the US National Institutes of Health database.
Most of them are analgesics or anti-inflammatory agents.
Understanding pharmacological activities that specifically

block pathological processes and inhibit certain OA path-
ways is important for the manipulation of chondrocyte path-
ological phenotypes. In this section, we discuss potential
OA targets and the corresponding small molecular drugs
(Fig. 2).

Small molecules inhibiting inflammation

OA is characterized by low-grade inflammation and chronic
joint pain. Various inflammatory cytokines, including inter-
leukin 1(IL-1) and tumor necrosis factor (TNF) a, may play
a vital role in OA progression, and a direct inhibition of
inflammation controls pain and reduces cartilage matrix deg-
radation [60]. Here, several representative anti-inflammatory
candidates are introduced based on inflammation-induced
models or OA inflammatory pathways.

Diacerein is a symptomatic, slow-acting drug with anti-
inflammatory, anti-catabolic, and pro-anabolic effects on
cartilage in rat and dog models [61, 62]. The European
Society for Clinical and Economic Aspects of Osteoporo-
sis and Osteoarthritis (ESCEQO) confirmed that the effect
of diacerein in clinical trials was similar to that of non-ste-
roidal anti-inflammatory drugs (NSAIDs), but with fewer
side effects [63]. The mechanism by which diacerein inhib-
its inflammation and prevents cartilage ECM degradation is
potentially associated with the inhibition of IL-1f converting
enzyme, the reduction of IL-1p receptors on chondrocytes,
and the increase of IL-1 receptor antagonists. Diacerein was
also shown to affect matrix biosynthesis and subchondral
bone remodeling in an arthritis sheep model [63, 64].

Necrostatin-1(Nec-1) is an inhibitor of receptor-interact-
ing protein kinase 1 (RIPK1) and specifically inhibits the
phosphorylation of RIPK1, which regulates inflammation
and cell death. Liang et al. found that Nec-1 dramatically
suppressed the catabolic effect induced by IL-1f in mouse
chondrocytes, including the downregulation of MMP and
a disintegrin and metalloproteinase with thrombospondin
motifs 5 (ADAMTS-5). Nec-1 also significantly reduced the
destruction of OA cartilage in a destabilized medial menis-
cus (DMM) mouse model [65].

The transcription factor NF-kB is a key molecule in
classical inflammatory pathways [66]. Salubrinal, a spe-
cific inhibitor of elF2a phosphatase enzymes, attenu-
ated cartilage degradation in mice with OA by inhibiting
NF-kB [67]. NF-«B is also regulated by mechanical forces.
Gremlin-1 can be elevated by mechanical stimulation in
OA, which subsequently activates NF-xB signaling and
promotes matrix degradation by MMP13 and ADAMTS-5
[68]. NSC23766 and EHT1864 are inhibitors of Rac1 (an
upstream regulator of Gremlin-1) and can downregulate
the expression of Gremlin-1 [68]. Indeed, Racl was found
to be highly expressed in human and mouse OA carti-
lage, while its intrinsic inhibitor, OCRL, was inhibited
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Table 1 (continued)
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Springer

2014 No results posted/

Completed/

NCTO00599807(1V)/

Other (vitamin)

Vitamin D

2015 No results posted/
2011 No results posted

Completed/
Completed

NCTO01176344(111)/

NCTO00306774(1D), etc.
NCT02847702(11)
NCT02660424(11)
NCTO01873053(11)

2017 Company decision to terminate study

2020 No results posted

Terminated

Analgesic

VMO902A
VX-150

Completed

Analgesic

2015 No results posted

Completed

Anti-inflammation/

WIN-34B

Anti-matrix degradation

2019 No results posted

Completed

NCT02759198(11)

Analgesic/

YH23537

Anti-degradation

2021 No results posted

Not yet recruiting

NCT03850587(1II)

Anti-inflammation/

Analgesic

YYC301

2017 No results posted

Completed

NCTO01218035(1V)

Chondroprotector

Zoledronic acid

Data were collected from www.clinicaltrials.gov

RA rheumatoid arthritis, NA not applicable

[69, 70]. NSC23766 successfully suppressed chondrocyte
hypertrophy and ADAMTS-5 expression in an OA mouse
model [69].

Prostaglandin E2 (PGE2) is an important mediator of
inflammation [71]. Otsuka et al. investigated the effect of
PEG2 on the repair of chondral and osteochondral defects
in rabbits using a selective agonist of the PEG2 receptor
EP2 (ONO-8815Ly). They demonstrated that microspheres
loaded with ONO-8815Ly could promote the regeneration of
COL2-positive tissues, particularly at 12 weeks post-opera-
tion [72]. Similarly, the oral administration of KAG-308, a
selective agonist of the PEG2 receptor EP4, suppressed the
development of OA in mice by reducing chondrocyte hyper-
trophy and TNF secretion [73]. In addition, NSC117079,
which targets Phlpp protein phosphatases, attenuated
mechanical allodynia and slowed articular cartilage degra-
dation in a murine OA model. It also increased the produc-
tion of cartilage ECM in human OA cartilage explants [74].

Bradykinin (BK) is an intrinsic nonapeptide for vasodila-
tion and has been identified as an inflammatory mediator in
OA [75, 76]. BK mediates chronic inflammatory responses,
inflammatory factor release, and NF-xB signaling pathway
activation through the B2 receptor. Icatibant and fasitibant
are two inhibitors of BK B2 receptors [75]. A clinical trial
(NCT02205814) demonstrated that fasitibant had a moder-
ate effect on OA.

The renin—angiotensin system (RAS) is associated with
metabolic bone diseases and arthritis [77, 78]. RAS compo-
nents were also expressed in hypertrophic or IL-1p/TNF-a
stimulated chondrocytes [79], and Aliskiren, a RAS inhibi-
tor, suppressed IL-1, TNF-a, and ECM degradation and
chondrocyte hypertrophy in an OA rat model [80].

Transcriptional factor c-Fos/activator protein-1 (AP-1)
has been shown to regulate inflammation and matrix degra-
dation [81, 82]. In 2008, Aikawa et al. designed a de novo
small molecular inhibitor of c-Fos/AP-1, T-5224, using
three-dimensional (3D) pharmacophore modeling. Nota-
bly, administration of this compound prevented or resolved
arthritis by reducing inflammatory cytokines and MMPs in
mice [83]. In 2018, the same research group demonstrated
that T-5224 prevented articular cartilage destruction by
inhibiting MMP13 expression in a C57Black6/J OA model
and prevented OA osteophyte formation [84].

Since rheumatoid arthritis (RA) is also characterized by
inflammatory symptoms, RA drugs can potentially func-
tion like DMOADs and inhibit inflammation and pain.
Methotrexate (MTX), a drug targeting synovitis in RA, was
found to relieve pain and improve joint function in patients
with OA after a 6-month treatment course. However, the
outcome after 12 months of treatment was not significantly
different from that of the placebo group [85]. Ketamine is
an anesthetic clinically used to treat chronic pain [86]. It
was recently shown to alleviate RA by antagonizing the
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Epigenetic Factors

EPZ005687
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Other Pathways
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/—” &%
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Fig.2 Potential OA targets and representative developing small
molecular drugs. BMSCs bone marrow mesenchymal stem cells,
ECM extracellular matrix, IL-1f Interleukin 18; TNF-a tumor necro-

N-methyl-D-aspartate (NMDA) receptor and inhibiting
inflammatory and Th17 cellular responses [§7-89]. In an
OA rabbit model, ketamine protected articular cartilage from
joint inflammation [88].

Although small molecules had great anti-inflammatory
effects on OA, careful consideration must be given to the
clinical heterogeneity of OA, as only parts of the patients are
in the condition of acute high-level inflammation. Numer-
ous studies have shown that simply blocking inflammation
may not initiate the regenerative processes in cartilage [90].
Therefore, there is a need to increase our understanding of
OA pathology and clarify the role of inflammation in tissue
regeneration.

Small molecules for treating pain from OA

There is a strong association between inflammation and
pain in patients with OA and several studies have suggested
that pain from OA is driven by inflammation [91-93]. This
theory has not been conclusively confirmed due to the com-
plexity of measuring pain and OA pathogenesis [94]. How-
ever, as a major symptom of OA, pain is an important target
and the primary outcome measure of OA disease manage-
ment. There is an urgent need to develop analgesics with
satisfactory clinical outcomes for many patients. Generally,
both NSAIDs and glucocorticoids can target inflammation
to treat OA pain. However, their efficacies are often short-
lived and there are adverse effects associated with their
long-term use [95-99]. Recent years have witnessed several

°
o L J
BMSC

Inflammation & Matrix

¥ 3w 3t #{\,;i Degradation
* {‘? /\ Diacerein
J . NSC23766
MMP13 Nec-1
e ADAMI=S Salubrinal
- OQ T-5224
J j\)

MTX ... /

O ‘
© O

) i

Cartilage regeneration & |

ECM synthesis
KGN

- TD-198946
GW0742
SNX19 ...

.

sis factor o, MMP13 metalloproteinase 13, ADAMTS-5 a disintegrin
and metalloproteinase with thrombospondin motifs 5

promising candidates for pain control, including antibod-
ies against nerve growth factor and some chemical small
chemical molecules. These are discussed below based on
their molecular targets.

G-protein coupled receptors (GPCRs) are highly drug-
gable targets and are expressed in almost all cells that con-
stitute the components of pain signaling in humans [100].
They include opioid receptors. Morphine is a strong anal-
gesic that binds to opioid receptors and blocks the trans-
mission of nociceptive signals, but its use is restricted due
to safety concerns. Miller et al. provided a good summary
of the drugs in this class [101]. Among them, CR845 has
been shown to benefit OA. CR845 is a second, peripherally
restricted, selective agonist of kappa opioid receptors [102].
In a phase 2B clinical trial (NCT02944448), oral CR845
(Cara Therapeutics) was well tolerated, with a statistically
significant effect on pain. Another new drug, cebranopadol,
targets both nociceptin/orphanin FQ peptide receptor and
m opioid receptor. It showed more promising outcomes and
better safety profiles in clinical trials compared with tra-
ditional opioids [103, 104]. However, results from clinical
trials on OA are yet to be reported.

Apart from GPCRs, ion channels are also well-studied
components in the pain signaling pathway [105], includ-
ing OA chronic pain [106]. In this class, CNTX-4975, a
highly purified, synthetic trans-capsaicin targeting the
transient receptor potential vanilloid 1, has been tested in
clinical trials. Based on results from a 24-week, randomized,
double-blind study [107], a single injection of CNTX-4975

@ Springer
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had analgesic effects on pain associated with walking, knee
stiffness, and physical function. Additionally, NEO6860, an
oral transient receptor potential vanilloid 1 blocker, showed
positive clinical outcomes in a proof-of-concept study [101].

In conclusion, analgesics are the most commonly used
OA drugs (Table 1), as pain relief remains the most direct
need, considering patients’ perspectives during OA therapy.
Unfortunately, even after decades of research in this field,
drugs that can delay or prevent OA progression are still una-
vailable. One possible reason for this is that pain killers and
disease-modifying drugs are often investigated separately
in different fields of study [94, 108]. Importantly, we still
lack evidence showing that analgesics can induce structural
changes.

Small molecules regulating metabolism

Increasing evidence indicates that lipid metabolic disorders
are relevant to the development of OA [109-111]. Statin
drugs competitively bind to HMG-CoA reductase [112],
thereby inhibiting cholesterol synthesis. In 2014, Yamashita
et al. discovered that lovastatin treatment could rescue the
FGFR3 skeletal dysplasia phenotype in a patient-derived
iPSC chondrogenesis model [113]. Interestingly, recent
studies have reported that statins have potential as chondro-
protective reagents. Pathak et al. discovered that atorvasta-
tin protects rat OA cartilage explants from IL-1f-stimulated
degeneration in vitro [114]. Yudoh reported that, in a mouse
model which spontaneously develops OA, statins could
reduce articular degeneration [115]. However, clinical out-
comes of statin therapy for OA remain controversial, and
only partially indicate that statin use is associated with a
lower risk of knee OA progression and knee pain [116-118].
The pharmacological mechanisms underlying these effects
may be associated with the serum lipid control and anti-
inflammatory ability of statins [118].

Estrogen-related receptors (ERRs) are involved in the
metabolic activities of organs such as the liver, heart, and
skeletal muscles, and are also associated with type II dia-
betes and metabolic syndrome [119, 120]. One of the ERR
isoforms, ERRY, was shown to be highly expressed in the
cartilage of human patients with OA and in mouse models,
and promoted OA development by upregulating MMP3 and
MMP13. In the presence of the small molecule inhibitor
GSK5182, ERRy activation was inhibited and the OA phe-
notype was markedly ameliorated in a temporomandibular
joint OA rat model [121].

Mitochondrial dysfunction has been observed as a typical
feature of OA chondrocytes and is a promising pharmaco-
logical target for the maintenance of cartilage homeostasis
[122, 123]. Inflammation is thought to be responsible for
mitochondrial impairment, resulting in the increased pro-
duction of inducible nitric oxide (iNO) by chondrocytes.

@ Springer

Using an IL-1p-treated OA chondrocyte model, Eitner et al.
showed that activation of cAMP by forskolin could prevent
both iNO release and mitochondrial dysfunction [124].
However, the compound’s effect on the animal model was
not confirmed.

Oxidative stress is a major factor that can cause mito-
chondrial dysfunction [125] and increase MMP, collagenase,
and gelatinase levels in OA. Hence, antioxidation can be
regarded as a therapeutic strategy for OA. Curcuminoids are
strong, natural antioxidants. A randomized controlled trial
showed that curcuminoids could increase serum superoxide
dismutase (SOD) activity and decrease malondialdehyde
(MDA) concentrations to relieve oxidative stress in OA,
although its direct effect was not validated [126]. In 2019,
Shi et al. discovered a potential DMOAD, BNTA, which
stimulated ECM expression and suppressed inflammatory
factors. In a trauma-induced rat OA model, intra-articular
injection of BNTA delayed disease progression through
superoxide dismutase 3 (SOD3) [127]. This study confirmed
that SOD3 can act as a disease-modifying target. Withaferin
A (WFA) is a plant extract that has been utilized as a drug
in India. Choudhary et al. showed that treatment with WFA
upregulated the expression of SOX9 and inhibited reactive
oxygen species (ROS) synthesis, mitochondrial depolariza-
tion, and chondrocyte apoptosis induced by IL-1f or TNF-
a. Daily oral administration of WFA for 28 days alleviated
articular cartilage erosion and improved the subchondral
bone structure in rats [128].

Mitochondria are widely distributed in cells and are in
charge of complex processes required for cell survival,
thus many endogenous protective pathways are involved in
the regulation of mitochondrial function. Autophagy and
mitophagy are, therefore, potential targets. Autophagy is a
degradative process that breaks down subcellular content
in response to various stimuli and is a protective behavior
that prolongs cell survival [129]. Autophagy impairment
has been associated with OA [130]. Notably, trehalose, a
natural disaccharide, can exert cell protective effects under
various stress conditions in many cells [131] by activating
autophagy through the mammalian target of rapamycin
(mTOR)-independent pathway. In a study of OA, trehalose
promoted autophagic flux and attenuated mitochondrial
dysfunction, and this was validated using a DMM mouse
model [132]. Similarly, mitophagy is a quality-control pro-
cess that governs basal autophagy by targeting and elimi-
nating dysfunctional mitochondria [129]. Urolithin A is a
natural dietary compound that induces mitophagy and thus
prevents the accumulation of dysfunctional mitochondria
[133]. Exploring its effect on a mechanical loading model
using human chondrocytes in a hydrogel showed that Uro-
lithin A protected chondrocytes from mechanical injury and
supported cartilage homeostasis [134].
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Despite the importance of mitochondria in tissue home-
ostasis, few mitochondria-targeting drugs are available in
OA clinical trials [135]. This may be due to lack of non-
invasive methods for measuring mitochondrial function in
human cartilage in vivo. Interestingly, Harms et al. used the
protoporphyrin IX triplet state lifetime technique to nonin-
vasively measure mitochondrial oxygen tension (mitoPO,)
in a rat model [136], providing a potential tool for clinical
diagnosis. In addition, extensive investigations are needed
to identify OA metabolic subtypes.

Small molecules regulating epigenetic factors

Various physiological and pathological processes are epi-
genetically regulated, including skeletal development and
OA occurrence [137-141], indicating that pharmaceutical
interventions targeting epigenetics are promising as OA
therapies. H3K27 methylation is generally gene repressive
[142]. Enhancer of zeste homolog 2 (EZH2) is an H3K27
methylase that is highly expressed in some human patients
with OA [143]. The small molecule EPZ005687 inhibited
EZH2, downregulated ADAMTS-5 and MMP13 expres-
sion, and ameliorated chondrocyte hypertrophy in a murine
model [139]. Consistently, the expression of H3K27 dem-
ethylase KDM6B was reduced in human patients with OA,
and KDM6B knockout in mice accelerated OA progression
[138]. The KDM6B (JMJD3) inhibitor, GSK-J4, prevented
ex vivo cartilage destruction in humans and suppressed
disease development in a DMM-induced OA mouse model
[140, 144].

Thus, it is clear that epigenetic factors play an important
role in OA, but knowledge on whether or how they exacer-
bate the disease is currently lacking. A continuous evolution
of the technique in this field may provide high-resolution
insights and a comprehensive understanding, enabling
manipulation of specific targets at specific stages of OA.

Small molecules targeting other pathogenic
pathways

Wht signaling is one of the most essential pathways for chon-
drogenesis, osteogenesis, and OA progression [145-147].
Deshmukh et al. performed high-throughput screening and
found that SM04690 significantly inhibited Wnt signaling,
promoted chondrogenesis of human mesenchymal stem cells
(MSCs), and suppressed the expression of members of the
MMP family in chondrocytes [148]. A rodent model showed
that this small molecule could improve cartilage regenera-
tion, with increased cartilage thickness [103]. The under-
lying molecular mechanism was identified in 2019, and it
suggested that SM04690 (lorecivivint) modulated the Wnt
pathway by inhibiting CLK2 and DYRKI1A [149]. The drug
demonstrated general safety and tolerance without serious

systemic adverse effects in phase I and phase II clinical tri-
als. The study also showed clinical improvements in pain
and joint function following a single intra-articular adminis-
tration of 0.07 mg lorecivivint [150, 151]. No results are cur-
rently available for multiple rounds of administration of the
drug. However, if the ongoing phase III trials exhibit good
clinical efficacy profiles and marginal side effects [152],
lorecivivint will become a promising DMOAD approved
for knee OA therapy compared with intra-articular corti-
costeroid and hyaluronate injections [153]. Lietman et al.
also reported that inhibiting Wnt/p-catenin signaling could
ameliorate OA [154]. They successfully reduced cartilage
degeneration and synovitis in a mouse model using a small
molecular weight inhibitor, XAV-939 [154].

EGFR signaling is vital in cartilage development and OA
[155-158]. EGFR was recently shown to be activated in a
subpopulation of patients with OA. The specific inhibitor,
Gefitinib, which has been used in the treatment of non-small
cell lung cancer (NSCLC) for decades, inhibited EGFR acti-
vation and re-activated chondrocyte autophagy, restoring the
balance between ECM synthesis and degradation. This was
demonstrated and validated in a study of Col2al-creER™?
conditional knockout mice [159]. However, another study
illustrated that EGFR is important for articular superficial
layer maintenance and inhibiting EGFR accelerated OA
occurrence in mice lineages specifically overexpressing
heparin-binding EGF-like growth factor (HBEGF) [160].

As these pathways are essential for cell survival and
growth, simply inhibiting them may raise safety concerns
for practical use. However, designing a delivery system to
suppress a target in a specific chondrocyte subpopulation is
doable. It also highlights the importance of single-cell analy-
sis in OA pathology, which uncovers significant changes in
cell cluster distribution.

Small molecules targeting bone remodeling

Subchondral bone undergoes structural remodeling as OA
progresses [161] and is a potential a drug target. Strontium
ranelate (SrR) regulates the balance between bone formation
and resorption. Recently, SrR was shown to be capable of
ameliorating OA with clinical improvement in joint struc-
ture and symptom control [162—-164]. However, a separate
study found that SrR did not improve cartilage in an OA
porcine model and instead led to osteophyte overgrowth
[165]. Odanacatib (MK0822) is a cathepsin K (CatK) inhibi-
tor used to treat osteoporosis. High CatK expression in OA
leads to cartilage matrix degradation, making it a promis-
ing therapeutic target for DMOADs [166]. Unfortunately, a
2006 clinical trial studying the effect of treating OA using
odanacatib was terminated [167]. Other clinical profiles
indicated that the development of odanacatib was stopped
due to undesirable adverse effects such as higher incidence
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of cardio-cerebrovascular events [168]. Another cathepsin
K inhibitor, MIV-711, was also tested in a clinical trial, but
no significant effect was observed.

Increased attention has been paid on subchondral bone
remodeling in OA programs. However, the complex interac-
tions between cartilage and bone are still poorly understood.
Future advancements in this field will rely mainly on the
development of new methodologies for clinical diagnosis
for identifying OA subtypes relevant to bone remodeling.
The corresponding small molecules may work as potential
DMOAD:s or be used in combination with agents targeting
cartilage in OA pharmacological treatments.

Nevertheless, OA is not only caused by cartilage deterio-
ration or bone remodeling, but also shows a complex and
heterogeneous syndrome with multiple tissue involvement
[169]. Therefore, it is difficult to design a “one fits all” mol-
ecule able to treat all tissues, including cartilage, bone, liga-
ments, synovium, and meniscus. Interestingly, a few such
cases exist. For example, efforts have been made to explore
the effect of KGN, a star molecule in cartilage regeneration,
on other musculoskeletal tissues. As confirmed in various
animal models, KGN serves as an efficacious therapy in the
treatment of meniscus damage, intervertebral disc degenera-
tion, and tendon-bone interface injury [170-172]. However,
until meaningful clinical outcomes have been shown, design-
ing a “one fits all” molecule suitable for the whole joint
remains a considerable challenge.
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for cartilage regeneration

To efficiently develop new small molecular drugs, high-
throughput and high-content screening have become impor-
tant steps in the drug discovery workflow [173]. High-
throughput systems allow automatic, rapid, sensitive, and
specific screening of large-scale chemical libraries, taking
advantage of advanced image equipment and algorithms.
In this section, we briefly introduce the key elements in the
primary screening of new drugs for cartilage regeneration
(Fig. 3), including in vitro screening models, specific pheno-
type readout, and advanced methodologies that prospectively
have an impact on future chemical cartilage regeneration.

In vitro screening models
Chondrogenesis models

Cells capable of chondrogenic differentiation may become
an additional source for cell-based therapy in cartilage injury
intervention. It is, therefore, reasonable to set up chondro-
genesis models. Practically, easily obtained cells and simple
models are widely used. For example, in the discovery of
KGN [19], the authors used primary human bone marrow
MSCs in their chondrogenesis model. In their image-based
high-throughput screening, human bone marrow MSCs were
seeded in 384-well plates to form chondrogenic nodules.
Early cell condensation on day 3 was positively stained
using rhodamine B. This fluorescent tag did not identify
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Fig. 3 Rational screening strategy of small molecular drug discovery for cartilage regeneration
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chondrocyte ECM, but distinctly labeled cell condensation
in the imaging system. In this way, KGN was identified as
a hit among 22,000 structurally diverse molecules. In other
studies, the chondrocyte progenitor cell line, ATDCS, is
the most extensively adopted cell source because it is pro-
liferative and stable under expansion. The ATDCS5 cell
line is derived from mouse teratocarcinoma and can form
cartilage-nodule-like cell aggregates in the early stages of
chondrogenesis induction [174]. Shi et al. treated ATDCS5
cells with 2320 natural and synthetic small compounds for
7 days [127]. The cartilage-specific matrix component, pro-
teoglycan, was assessed using Alcian blue. Additionally, the
initial identification of TD-198946, SNX19, and oxytetra-
cycline all relied on the ATDCS screening system [24, 34,
175]. iPSCs are promising cell sources for drug screening
because of their genetically defined chondrogenic differ-
entiation potential [176]. Willard et al. used high-density
micromass culture to chondrogenically differentiate mouse
iPSCs and establish an iPSC-derived cartilage OA model
[177]. Using a high-throughput screen, they found that the
NF-kB inhibitor, SC-514, effectively reduced cartilage dam-
age in response to IL-1a.

Dedifferentiation model

In addition to stem/progenitor cells, primary chondrocytes
are useful tools for exploring the molecular features of car-
tilage degeneration and regeneration, although chondrocyte
dedifferentiation remains unsolved [178]. Thus, primary
isolated chondrocytes were less likely to be used in high-
throughput screening. However, Kobayashi et al. used
induced chondrogenic cells (iChons), which were trans-dif-
ferentiated from mouse dermal fibroblasts by defined factors
[179]. They exploited doxycycline-treated Coll1al EGFP
iChons as a dedifferentiation model in the screening assay
and identified a novel compound which inhibited SOX9 deg-
radation [36].

3D organoids

Significant progress has been made in organoids research.
Specifically, the concept of organ-on-a-chip has spread in a
range of fields, including cancer therapies, as well as stud-
ies of the liver, blood vessels, and lungs [180]. Organoids
are believed to be more sensitive to individual-specific drug
screening. Moreover, organoid models are estimated to be
cost-effective, simulate in vivo tissues, and respond more
accurately to candidate drugs. Cartilage is susceptible to
mechanical microenvironmental stimuli. Nevertheless, cur-
rent drug screenings are often performed in 2D monolayer
cultures because 3D cultures require a larger number of cells
and longer Z-stack imaging. Tuan et al. [181] introduced
an adult MSC-based 3D microsystem of the osteochondral

complex for elucidating the pathogenesis of degenerative
joint diseases and assessing the efficacy of potential thera-
peutics. The design of this 96-well microsystem involves a
layered osteochondral tissue (bone, osteochondral interface,
cartilage, or synovium) and mechanical loading modalities.
The microtissue mimics tissue interactions and cellular
responses to mechanical and inflammatory stimuli [181].

Cartilage explant models

Cartilage tissue explants are also an alternative model fre-
quently used in cartilage regeneration [182—-185]. Compared
with isolated cells, they are estimated to simulate in vivo
tissue and can serve as a “native cartilage” positive con-
trol [177]. When used in high-throughput screening, stand-
ardized ex vivo models provide a valuable platform. For
instance, Schwab et al. established an ex vivo culture system
for the long-term assessment of cartilage repair treatment
strategies [186]. They isolated pig osteochondral biopsies
and inserted them into an in-house developed six-well plate,
where the cartilage and bone were cultured in separate com-
partments containing specific media. The viability, matrix
content, and structural and mechanical properties of this
model were maintained for at least 56 days, making the sys-
tem a suitable tool for the characterization of cartilage regen-
eration treatment. Because the limited source of human joint
tissue poses a challenge in large-scale experiments, Spinnen
et al. developed a novel method that enables the prepara-
tion of 100 explant slices from a single human joint sample
[187]. They used an orthopedic tissue punch to create an
osteochondral cylinder punch (20X 10 mm) from a tibial
plateau and inserted the cylinder into a custom 3D-printed
microtome. The cylinder was then divided into eight disc-
shaped cuts with a thickness of 500-800 pm. The slices
showed positive sensitivity to pharmacological testing after
being cultured for three weeks. These findings indicate that
ex vivo models can be applied in large-scale drug screening.

In vitro pathological models

OA inflammatory in vitro models are mostly based on
the cellular responses of chondrocytes to inflammatory
cytokines. When treated with IL-1p or TNF-a, chondro-
cytes exhibit an OA-like phenotype, with higher levels
of expression of MMPs and ADAMTS4/5, and reduced
expression of ECM genes. Chen et al. also showed that
IL-1pB substantially affected the mechanical properties
of chondrocytes in vitro [188]. Alternatively, pathogenic
inflammatory factors; IL-1a, IL-6, and TGF-a, have also
been adopted in OA inflammatory models [189, 190].
Nevertheless, current inflammation-related models do
not fully reflect OA conditions. In these models, chondro-
cytes were treated with one or two specific cytokines, for
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example IL-1p or TNF-a. However, the concentrations of
other cytokines such as IL-8, vascular endothelial growth
factor (VEGF), and monocyte chemoattractant protein-1
(MCP-1), are all elevated in OA joints [191], but these
cytokines are rarely used. Moreover, cytokine-based
models often use concentrations higher than those found
in vivo [192]. To simulate the complex conditions associ-
ated with inflammation in OA, Hoff et al. added synovial
fluid from patients with OA to a cell culture [193]. Syno-
vial membranes isolated from patients with OA can also
be used in co-culture models [194]. Mechanical injury is
a major cause of OA. Jin et al. applied a mechanical pres-
sure model with a self-designed mechanical pressure con-
tainer that generated 10 MPa pressure on normal human
chondrocytes for 60 min. In their study [195], mechani-
cal pressure induced early apoptosis of chondrocytes. In
response to mechanical injury, chondrocytes were forced
to upregulate their expression of VEGF and downregulate
their expression of Smad4. In 2013, Kim et al. [196] found
that the accumulation of advanced glycation end-products
(AGEsSs) in aged cartilages was the major cause of ECM
stiffening. Treatment with ribose (one of the AGEs) sig-
nificantly increased MMP expression and reduced ECM
molecule expression in chondrocytes embedded in col-
lagen matrices, but not in those in 2D culture. Supple-
mentation with f-aminopropionitrile (BAPN), a specific
inhibitor of the LOX family, reversed these changes. This
study validated the feasibility of establishing mechanical-
associated in vitro OA models.

Phenotype readout
Dyes for cartilage ECM

Reliable phenotypic indicators for image recognition are
essential. Dyes for cartilage histological characterizations,
including Alcian blue, Safranin O, and Toluidine blue, are
regularly adopted in screening as they can positively mark
cartilage ECM composites. Le et al. used a fluorescently
labeled collagen-binding probe, CAN 35-Alexsa 488, to
quantify the total collagen content of ATDCS5 cultures
[34]. These phenotypic indicators provide clues for drug
selection but may not be completely specific to the carti-
lage lineage.

Reporter systems

Reporter systems make it easier to detect molecular phe-
notypes using imaging systems. The most widely used
cartilage reporter genes are Col2al and Collla2. Both are
highly expressed in all cartilages and are essential for chon-
drocyte differentiation and skeletal morphogenesis [197].

@ Springer

A 1998 study indicated that Collla2 chondrocyte-specific
enhancer elements share many similarities with the Col2al
48-bp enhancer, and Collla2 and Col2al might coordi-
nately regulate chondrocyte differentiation [197]. Yano et al.
and Hojo et al. used a Col2GFP-ATDCS5 reporter system
for high-throughput screening of potential DMOADs [24,
33]. Similarly, Kan et al. built an ATDC5-C2ER system to
optimize the detection and analysis of fluorescence [175].
Horton et al. generated a new mouse strain harboring a Col2-
pd2EGFP reporter transgene. Because pd2EGF has a much
shorter half-life than EGFP, it made a real-time reporter
for Col2al expression in vivo and in vitro. They also dem-
onstrated that this reporter has illustrated the decrease in
Col2al in cultured articular chondrocytes [198]. Tsumaki
et al. prepared chondrocytes from Coll1a2-EGFP trans-
genic mice to provide a time-course of chondrocyte dedif-
ferentiation [178]. They generated a Coll1a2-EGFP human
iPSC cell line using the piggyBac vector system and induced
it to form hyaline chondrocytes [45]. They used the Coll1a2
reporter cell line to screen 5822 compounds and found that
A-674563 enhanced the expression of chondrocyte markers
[36]. It is worth mentioning that the lineage-specificity of
these biomarkers remains controversial and knowledge on
hyaline chondrocyte biomarkers is still lacking. Generally,
it is not advisable to identify small molecule drugs using a
single-biomarker reporter in the primary screen. Therefore,
efforts need to be made to identify more reliable cartilage
biomarkers and establish multi-molecular reporter systems.

Mechanical property

As the mechanical microenvironment has been hypothesized
to modulate chondrocyte function and fate [199], the biome-
chanical properties of cartilage explants or single chondro-
cytes are critical for cartilage regeneration tests. During the
establishment of a post-traumatic OA model, Mohanraj et al.
induced injury compression on engineered cartilage analogs
and explants using a custom high-throughput mechanical
screening device [200]. This device allowed for the compres-
sion of 48 samples in a standard 48-well plate and continu-
ously recorded the load during injury. Although mechani-
cal properties were not included as a phenotype readout,
this case illustrated the possibility of applying mechanical
stimulation and examination in high-throughput screening.
In addition to cartilage tissue, chondrocyte mechanobiol-
ogy has also been extensively studied [199, 201-203], and
the atomic force microscope (AFM) has acted as a power-
ful tool for the characterization of single cells [201, 204].
The mechanical features of normal chondrocytes differed
from those of OA chondrocytes, indicating that biome-
chanics could be a useful technique for investigating OA-
related changes in human chondrocytes. However, as cur-
rent measurements are time-consuming, a customer-friendly
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instrument optimal for large-scale testing, which supports
easy and fast detection during high-throughput screening,
is urgently required.

Advanced methodologies in other fields
Optimal reporter cell line

Ideas and methods for improving screening efficiency can
be borrowed from other fields. Here, we introduce an inter-
esting study that used a genetically modified reporter cell
line for lung cancer drug discovery. Kang et al. developed a
method for systematically identifying optimal reporter cell
lines for annotating compound libraries (ORCALSs) [205].
They trans-genetically built a library of reporter cell lines
tagged with different fluorescence and allowed the algorithm
to choose which ORCALS optimally classify drugs in a large
compound library. They obtained an A549 reporter cell line
with fluorescence-labeled nucleus, cell membrane, and a
specific protein, XRCCS5, which could accurately identify
a training set of known drugs. This proof-of-concept study
presented a new strategy for improving the efficiency, scale,
and accuracy of phenotypic screening by optimizing reporter
cell lines.

Bioinformatic-based screening

Bioinformatics is generally used in genome and proteome
dissection, image/structure organization, and network analy-
sis. It has also been adopted in multiple drug discovery to
help predict drug targets and drug-target interactions using
large-scale datasets, which can greatly improve screening
efficiency. The Connectivity Map system (www.broadinsti
tute.org/cmap/), created by Lamb et al. in 2006, aims to cre-
ate a database that links clinical drug effects with human
genomics to provide more valuable information [206]. In
their study, they used ~5000 small molecule compounds
and ~ 3000 gene regulatory agents to process a variety of
cell lines. Through the development of the L1000 gene rapid
detection side system, they collected genome sequencing
data from these cell lines following drug treatment. The
effects and cell states were then ranked. As a result, their
connectivity Map indicated connections among small mol-
ecules with similar chemical mechanisms or physiological
processes. In 2016, Kidd et al. examined the responses of
221 immune cell types to 1309 drugs [207]. This network
can effectively predict 69,995 drug-immune cell interactions
and potentially predict immune responses or side effects in
future clinical applications. In 2018, Brum et al. identified
molecular targets that could positively regulate osteoblast
differentiation using a connectivity map [208], which is a
good demonstration of the applicability of this system for
drug development.

Chemistry synthetic toolbox

Despite multiple advances in drug discovery, transforming a
screening hit into a commercial drug is still slow and expen-
sive. The cost of each drug launch was estimated to be in
excess of 2.6 billion dollars [209]. Thus, increasing attention
is being paid to compounds that can be easily translated.
After the primary identification of candidates, the second
step is to optimize them through design-make-test-analy-
sis cycles [210]. The key mission for experts in medicinal
chemistry is to design and synthesize bioactive compounds
that have the potential for use as drugs. They get access to
chemical databases with reaction data (such as SciFinder
and Reaxys) to search for an exact structure for precedence.
If the exact compound is not found, a substructure search
is conducted. There are many cases where biological dis-
coveries are made by synthetic chemists exploring various
chemical routes, such as the development of benzodiaz-
epines, penicillin, tetracyclines, and taxanes [211, 212]. The
role of medicinal chemistry has changed considerably, and
expanding the synthetic platforms and design toolbox should
enhance the impact of new methodologies in future drug
discovery. Advances in chemistry are expected to greatly
accelerate the development of DMOAD:s.

Challenges and outlooks

Increasing numbers of small molecular drugs for cartilage
regeneration or OA modification have been tested in clinical
trials, but so far, none has had a significant long-term effect.
In our opinion, several issues and challenges warrant further
investigation.

First, the induction efficacy and time required for phe-
notype control are major concerns. The fact that small
molecules directly affect proteins, but not the genome,
may become a double-edged sword for practical applica-
tions. It may cause induction failure, as chemical com-
pounds are documented to only temporarily or reversibly
alter cellular phenotypes. Chemical methods also require
long-term step-wise induction. Second, individual patients
can respond differently to the same chemical. Accumu-
lating evidence supports the existence of OA subtypes
[213-215]. Magnetic resonance imaging has been used
to classify OA subtypes, but challenges still exist when
it comes to diagnoses providing meaningful guidance for
personalized therapeutic strategies. This necessitates a new
diagnostic criterion allowing for early and individualized
treatment, which not only relies on traditional imaging
examinations, but also molecular detection. Third, a more
in-depth understanding of cartilage biology and pathology
is necessary to provide complete and informative data.
This is important for the optimization of different chemical
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combinations to manipulate cell fate more precisely in a
defined manner. However, since cartilage injury and OA
are complex conditions, there are still obstacles when it
comes to selecting compounds that work against multiple
targets without excessive side effects, thus further investi-
gations need to be conducted. Last, cartilage-regenerative
drug screening systems are not satisfactory compared with
those in other fields. Previous cell models merely simu-
lated responses to one or two factors and the biomarkers
for chondrocyte phenotype readout are limited in number.
A continuous evolution in techniques is required to build a
3D cultured screening system allowing for multiple-factor
analysis.

In this review, we have summarized the latest research
on novel small molecular compounds which target car-
tilage regeneration. Advanced drug discovery strategies
derived from new concepts of regenerative medicine con-
tribute to the identification of potential small molecular
drugs for cartilage repair. Small molecule drugs are con-
venient and cost-effective to design, modify, and synthe-
size for personalized pharmaceutical management, and
will make a strong push for the development of new phar-
maceutical therapies for cartilage regeneration.
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