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Summary

Cilia are microtubule-based structures that either transmit information into the cell or move fluid 

outside of the cell. There are many human diseases that arise from malfunctioning cilia. Though 

mammalian models provide vital insights into the underlying pathology of these diseases, aquatic 

organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out 

the underlying causes of these diseases. In this review we focus on recent studies that identify or 

describe different types of human ciliopathies and outline how aquatic organisms have aided our 

understanding of these diseases.
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Introduction

Cilia are tubulin based structures that protrude from the cell. True cilia (in contrast to 

stereocilia) have a similar structure. At the base of each cilium is a basal body made up of 

a centriole (Dahl 1963; Preble, Giddings, and Dutcher 1999; Reese 1965). The basal body, 

which is a microtubule organizing center, is thought to be the platform by which the rest of 

the cilium is assembled. At the apical end of the basal body is the transition zone (Diener, 

Lupetti, and Rosenbaum 2015). This zone likely contains hundreds of proteins that anchor 

the cilia and regulate trafficking into and out of the cilia (Diener et al. 2015). The structure 

that protrudes from the cells is the axoneme, which is supported by a ring of microtubules 
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(Sun et al. 2019). Two primary characteristics are used to classify types of cilia, monocilia 

versus multicilia and motile versus primary (sensory) cilia. With a few exceptions, in 

mammals primary cilia are typically present as a single sensory cilium that extends from 

the cell with an axoneme that contains nine microtubule pairs arranged in a ring (9+0 

arrangement) (Nikai, Rose, and Cattoni 1970) (Fig. 1). These sensory cilia allow cells to 

detect and respond to fluid flow, hormones, or other sensory stimuli from their extracellular 

environment. In contrast, motile cilia can be present as either monocilia (one per cell) 

or multicilia (many per cell) and function to move fluid in their environment. Typically 

in motile cilia, the outer ring of tubules contain arms made up of the microtubule motor 

protein, dynein, and an additional two inner microtubules which aid in ciliary movement 

(9+2 arrangement) (Rhodin and Dalhamn 1956). Because the development of motile cilia 

requires much of the same machinery as primary cilia, mutations that affect one type of cilia 

can affect other types within the organism.

In humans, there are many different syndromic diseases that are caused by malformed 

or dysfunctional cilia. Diseases in this category are called ciliopathies. There are many 

different ciliopathies, each give rise to specific phenotypes depending on the gene that is 

mutated. Some examples include Polycystic kidney disease, Nephronophthisis, Bardet–Biedl 

syndrome, Joubert syndrome, Oral-facial-digital syndrome I, and situs inversus. Though 

these diseases are characterized by malformed or malfunctioning cilia, the role cilia play 

in a number of ciliopathies is largely unknown or heavily debated. Additionally, with 

the advent of whole exome sequencing and the increased accessibility of genome wide 

association studies, researchers are finding new candidate genes underlying human many 

diseases. Given that generating mouse lines is both costly and time consuming, other model 

organisms that do not have these limitations such as Xenopus and zebrafish are being used to 

identify and study candidate genes (Grove, Eckardt, and McLaughlin 2016).

Aquatic organisms have been used for years to study the function of ciliary components. In 

1940s researchers were describing in Xenopus how motile cilia aid in the oocyte movement 

within the upper part of the oviduct (Waring, Landgrebe, and Neill 1941). Shortly after this, 

motile cilia were described as an adaptation in embryos to aid in the transport of small food 

particles to the stomach (Dodd 1950). Though zebrafish is a newer model organism it has 

also played a pivotal role in the study of cilia. In recent years, both ZFIN (the zebrafish 

genome database) and Xenbase (the Xenopus genome database) have put forth a unified 

effort to update their databases to aid in the modeling human diseases, including ciliopathies 

(Bradford et al. 2017; Nenni et al. 2019).

Aquatic organisms such as zebrafish (Danio rerio), Xenopus laevis, and Xenopus tropicalis 
provide many technological advantages over other vertebrate systems to study cilia function 

and development. The short developmental times and many offspring per clutch allow for 

experiments to be performed using hundreds of embryos in a matter of days. Ciliogenesis in 

these organisms can be seen within 24 hours of fertilization, and most of the ciliated organs 

are functional within a few days to a few weeks of development. Additionally, zebrafish 

have a short generation time, reaching maturity in three to four months, which allows for 

quick generation of mutant and transgenic lines (Lawrence et al. 2012). Also, the ability 

to easily isolate and culture stem cells from the Xenopus models allows for the generation 
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of tissue organoids that develop in a few days. Aquatic models develop externally and are 

therefore easier to manipulate through several different methods.

Genetic manipulation can be easily accomplished by microinjection in many aquatic 

vertebrate species. Injection of morpholinos, or antisense RNA, lead to a quick means 

of gene knockdown, and injection of CRISPR guide pools are an alternate technique to 

generate genetic mutants (Bhattacharya et al. 2015; Chang et al. 2013; Clements et al. 2017; 

Delay et al. 2018). Given that many of these techniques are highly efficient and phenotypes 

can be validated through rescue experiments, analysis can be done in the F0 generation 

without the need to generate lines. It is now common to validate a morpholino experiment 

with CRISPR knockouts to recapitulate phenotypes (DeLay, Baldwin, and Miller 2019). 

Also, since these organisms are aquatic, drug treatments can be administrated through the 

water in which the embryos are growing in order to identify treatments, perform rescues, 

or to validate phenotypes seen from another technique. Furthermore, transgenic animals can 

be created through the aid of TOL2 transposons, ISceI meganuclease, or CRISPR guided 

homologous recombination (Aslan et al. 2017; Corkins et al. 2018; Fisher et al. 2006; Miller, 

Lee, and McCrea 2014; Ogino, McConnell, and Grainger 2006). Some aquatic species 

also have advantages over their mammalian counterparts. Because Xenopus is fate-mapped, 

targeted injections can be carried out at the two cell stage to affect only half of the embryo, 

leaving the other half as an internal control. Alternatively, injecting at later cell stages allows 

for targeting specific subsets of tissues, avoiding lethal or compounding phenotypes (Moody 

1987b, 1987a). With accelerated genome sequencing in humans leading to identification 

of an abundance of putative disease genes, modeling novel mutations in aquatic organism 

greatly streamlines the identification of disease-causing genes, underlying pathways they act 

through, and potential treatments for diseases.

Primary cilia

Primary cilia, also known as sensory cilia, are typically monocilia that protrude from the 

cell. These sensory cilia allow the cells to respond to fluid flow, hormones, or other sensory 

stimuli from their extracellular environment. Most cell types have primary cilia at some 

point in their development, and loss of these cilia in humans leads to a wide variety of 

problems, including loss of senses such as vision, smell or hearing (Beales and Kenny 

2014). For example, the BBSome is part of the cilia transport machinery, and loss of 

BBSome components are associated with renal abnormalities and loss of smell (Laurence 

and Moon 1995; Uytingco et al. 2019; Veleri et al. 2012) Loss of primary cilia also leads to 

developmental abnormalities such as craniofacial deformities, vision problems, cystic liver 

and kidneys, and intellectual disabilities (Brugmann, Cordero, and Helms 2010; Noda et al. 

2016; Zhao and Malicki 2007). As an example, in humans, loss of the Joubert syndrome 

protein CEP290 leads to severe neurological disorders, cystic kidney disease, and vision loss 

(Srivastava et al. 2017). A number of these phenotypes are also seen in zebrafish and mice 

(Baye et al. 2011; Rachel et al. 2015).

Primary cilia are sensory organelles that affect several genetic signaling pathways. The 

two main pathways known to be regulated by cilia are Wnt and hedgehog signaling (HH), 

though other pathways such as PDGFRA are affected by the loss of cilia (Huangfu et al. 
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2003; Schmid et al. 2018; Wheway, Nazlamova, and Hancock 2018). How cilia regulate 

Wnt signaling, however, is heavily debated. Loss of primary cilia typically results in 

hypersensitivity to canonical Wnt signals (Ajima and Hamada 2011; Lancaster, Schroth, 

and Gleeson 2011; Ocbina, Tuson, and Anderson 2009). There are a few theories as to 

how this occurs. Components of the Wnt signaling pathway including GSK3, a β-catenin 

inhibitor, are found around the basal bodies of the cilia. Activation of these components may 

lead to β-catenin’s degradation (Corbit et al. 2008). As β-catenin is required for canonical 

Wnt signaling, degradation of β-catenin should lead to decreased Wnt signaling. Other 

theories involve calcium signaling, given that calcium ions can also inhibit Wnt signaling 

via the Wnt/Ca2+ pathway and the cilia contain mechanoresponsive calcium channels called 

polycystins (Kühl et al. 2000; Li et al. 2018). Alternatively, it is also possible that the 

polycystin complex more directly targets Wnt signaling through direct binding of β-catenin 

(Lal et al. 2008). Any or all of these theories potentially play a role in ciliary Wnt signaling.

Kidney cilia

Wnt signaling plays a pivotal role in kidney development and tubule formation, and with 

a few exceptions, many mutations that affect primary cilia result in kidneys abnormalities. 

The mammalian kidney develops in three stages: the pronephros, mesonephros, and the 

metanephros. All three forms of the kidney use many of the same genetic pathways with 

each successive remodeling of the kidney (Blackburn and Miller 2019; Brändli 1999). The 

basic unit of filtration, the nephron, is present in all three successive forms of the kidney. 

These nephrons are tubules that are primarily made up of primary ciliated epithelial cells 

(Fig. 2) (Carlier 1900). However, the pronephros of both zebrafish and Xenopus use motile 

multiciliated cells to drive fluid flow through the kidney (Dressler 2006; Kramer-Zucker 

et al. 2005; Serluca et al. 2009). Ciliopathies of the kidney are the result of dysfunctional 

primary cilia, as motile cilia are not found in mammalian kidneys. Therefore, researchers 

tend to use other systems such as epidermal and nasal cilia when studying motile cilia, while 

sensory cilia tend to be the primary focus in kidney ciliopathies.

The predominant kidney phenotype seen in ciliopathies is cystic kidney diseases (CKDs) 

which occur in ~1/800 births, making them one of the most common life-threatening 

hereditary disorders (Belibi and Edelstein 2010; Wilson and Goilav 2007). Specific 

manifestations of each CDK depend on the gene affected. However, a common cause 

is malformation or dysfunction of primary cilia (Gascue, Katsanis, and Badano 2011). 

The most common cystic kidney disease arises from heritable mutations in the polycystin 

proteins PKD1 or PKD2 (cilia localized Ca2+ transporter complex), resulting in adult onset 

autosomal dominant polycystic kidney disease (ADPKD) (Harris and Torres 2009; Peters 

and Sandkuijl 1992). The polycystin complex transports calcium into the cilium in response 

to fluid movement (Chen et al. 1999; Huang et al. 2007; Zhu et al. 1996). Treatment of 

ADPKD primarily focuses on treating the symptoms with the eventual requirement of a 

kidney transplant or dialysis (Gascue et al. 2011; Patel, Chowdhury, and Igarashi 2009; Rizk 

and Chapman 2008). PKD is the cause of ~5% of all kidney failures requiring transplant 

(Lowrie and Hampers 1981).

Corkins et al. Page 4

Genesis. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zebrafish PKD models of either pkd1 and pkd2 mutations have been established (Mangos et 

al. 2010; Obara et al. 2006). In addition, Pkd1 and Pkd2 morpholino knockdown results in 

cystic kidneys in both zebrafish and Xenopus (Zhang, Tran, and Wessely 2018). One of the 

underlying symptoms of polycystic kidney patients is the development of fibrosis. Fibrosis 

is the inappropriate extracellular matrix deposition, which normally occurs in response to 

injury. Morpholino knockdown of either Pkd1 or Pkd2 in zebrafish leads to inappropriate 

expression of collagen, which leads tail curvature defects. Knockdown of the collagen 

Col2a1 partially rescued this phenotype (Mangos et al. 2010). Given this tail curvature 

phenotype, pharmaceutical screens were undertaken to identify treatments for this disease 

(Metzner et al. 2020). From this screen, two novel pathways were identified alk5 kinase 

and non-canonical androgen receptors. Inhibition of these pathways not only rescues the 

curvature phenotype but also rescues the cystic kidney phenotypes seen in Pkd1 morphants. 

Additional work done in zebrafish has also found that the drug Metformin reduces the 

severity of cyst formation in pkd2 mutant models (Chang et al. 2017). Metformin is an 

AMPK activating drug. AMPK can directly phosphorylate β-catenin (Zhao et al. 2010), and 

Metformin has been found to inhibit Wnt signaling in mouse models of colin cancer (Park, 

Kim, and Kee 2019).

Forward genetic screens are possible in aquatic organisms, allowing for the identification of 

novel genes/pathways involved in human diseases. A mutagenesis was performed to identify 

novel genes that cause cystic kidney disease. For this screen they infected zebrafish with 

a virus that semi-randomly inserts a genetic element in the genome (Golling et al. 2002). 

This inserted element allows for quick identification of the affected genes. Approximately 

400 unique genes were mutated and screened for cystic kidney diseases. As zebrafish are 

transparent, large kidney cysts are directly observable under a dissection scope without the 

need for staining. From this screen, 12 genes were pulled with six novel genes that have 

no identified biochemical function and are conserved to humans (Sun et al. 2004). Most of 

these genes showed similar phenotypes outside of the kidney which mimicked that of other 

known ciliopathies. Though not a novel pathway, one of the biggest gene families pulled was 

that of the IFT complexes. One of the first human ciliopathies identified was the result of a 

mutation in the gene ift88 (aka Polaris, or ORPK) (Cano et al. 2004). This study identified 

a new member of this complex involved in cystic kidney development in vertebrates. It 

also identified novel genes in cilia biogenesis that also result in cystic kidneys. Not only 

does zebrafish provide a good model to identify new genes involved in the development 

of cystic kidney disease, but it has also led to the identification of novel genes involved in 

ciliogenesis.

Neural cilia

There are a number of ciliopathies that lead to intellectual disabilities, including 

Joubert syndrome, Meckel syndrome, Bardet–Biedl syndrome, and Hydrolethalus syndrome 

(Valente et al. 2014). How loss of a cilia gene leads to mental impairment is largely 

unknown. As with other symptoms that are caused by malformed or dysfunctional cilia, the 

hedgehog (HH) and WNT signaling pathways are likely the underlying cause.
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In humans, Joubert Syndrome is the result of a ciliopathy characterized by the absence or 

maldevelopment of a specific brain structure called the cerebellar vermis. This disease is 

associated with approximately 30 genes, and the majority of these genes either localize to or 

are involved in the assembly of the transition zones of the cilia (Shi et al. 2017). One of the 

more commonly associated genes with this disease is AHI1 (Jouberin or JBTS3). AHI1 is a 

ciliary transition zone protein of unknown function. The human AHI1 is structurally more 

similar to the zebrafish Ahi1 than the mouse Ahi1 (Zhu et al. 2019). Therefore, experiments 

were undertaken in zebrafish to understand the underlying defects upon loss of Ahi1. Joubert 

Syndrome patients not only have structural problems within the brain, but they also have 

vision problems (Parisi et al. 2006). During development of the visual system, the axons 

from each eye extend to the back of the brain crossing the midline and connecting to the 

opposite side of the brain (Joukal 2017). Given that zebrafish are optically clear, the neural 

retinal projections can be directly visualized by the injection of lipophilic dyes into the eye 

(Baier et al. 1996). This allows for easy tracking of axon migration. Either mutations in 

or loss of Ahi1 in zebrafish lead to problems with either crossing the midline or axonal 

elongation. Similar experiments have been done with other genes associated with Joubert 

syndrome, such as ARL13B (Zhu et al. 2020) and INPP5E (Luo, Lu, and Sun 2012). A 

novel causative gene Pibf1 was identified by exome sequencing of human Joubert syndrome 

patients, and the cilia phenotypes were verified in Xenopus (Ott et al. 2019).

A novel ciliopathy recently identified in Xenopus involves the protein Dyrk1a [dual 

specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A]. dryk1a is a gene that is 

associated with both Down syndrome and DYRK1A related intellectual disability syndrome. 

In humans, Down syndrome is the result of an extra copy of chromosome 21 which 

results in an extra copy of DYRK1A. On the opposite end of the spectrum DYRK1A 

related intellectual disability syndrome is the result of a mutated copy of DYRK1A leading 

to haploinsufficiency (Blackburn et al. 2019). Dyrk1a is not classically thought of as a 

ciliopathy gene, but recent work in Xenopus has found that dyrk1a is localized to puncta 

along ciliary axonemes and that loss of dyrk1a leads to loss of cilia in the epidermis 

(Willsey et al. 2020). RNAseq data indicate that cell cycle control genes are upregulated 

in Dyrk1a CRISPants. Since the cilia are thought to stall cell division, loss of cilia in 

DYRK1A related intellectual disability syndrome patients may lead to inappropriate cell 

division (Plotnikova, Pugacheva, and Golemis 2009; Tucker, Pardee, and Fujiwara 1979). 

Like many other ciliopathies loss of dyrk1a or many other cilia related genes involved in 

neural development are also associated with kidney abnormalities (Blackburn et al. 2019; 

Parisi et al. 2006).

Motile cilia.

Motile cilia form using similar machinery as primary cilia, but they are unlikely to have 

a sensory function. Motile cilia move fluid by oscillating back and forth in a wave like 

motion pushing against the fluid (Mov 1,2). Through electron microscopy, motile cilia can 

be identified through their characteristic central pair of microtubule filaments and dynein 

arms that extend from the 9 microtubule doublets within the axoneme (Fig. 1) (Rhodin 

1959). Dynein is a microtubule motor protein that functions to move the cilia (King 2012). 

In mammals, motile cilia are found in the respiratory epithelium, fallopian tubes, sperm, 
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and parts of the nervous system. Therefore, problems with motile cilia result in the inability 

to clear mucus from the lungs, leading to chronic infections and breathing difficulties 

(Austin-Tse et al. 2013). Additionally, infertility is seen in both genders, (Inaba and Mizuno 

2016; Milla 2016; Raidt et al. 2015; Schneider et al. 2005) and hydrocephalus results from 

insufficient movement of cerebral fluid by motile cilia (Lee 2013). Though multiciliated 

tissues can be made from pluripotent stem cells, the process is laborious and takes days to 

form. Therefore there are currently no efficient cell culture models of either motile cilia or 

multiciliated cells, indicating the need for an animal model (Firth et al. 2014).

Epidermal cilia are one of the most studied cilia models in Xenopus. Motile multiciliated 

cells cover much of the epidermis (Fig. 3) and start to differentiate around 10 hours after 

fertilization (Nieuwkoop and Faber stage 11.5), and the motile cilia are fully formed and 

properly orientated within 35 hours (Stage 28) (Collins, Ventrella, and Mitchell 2020; 

Werner and Mitchell 2013). The likely function of these cells is to maintain fluid flow over 

the embryo to prevent bacteria or fungi from colonizing the skin, similar to their role in the 

mammalian lung. Given that the orientation of these cilia is essential to maintain directional 

fluid flow, pathways such as the planar cell polarity pathway aligns the cilia (Mitchell et 

al. 2009; Park et al. 2008; Yasunaga et al. 2015). It is easy observe the function of these 

cilia, as Xenopus sitting in a dish will slowly move anteriorly due to the fluid flow from 

these ciliary movements. The ciliary flow can also be demonstrated by placing dyes or 

beads are near the head of the embryo and observing their progression towards the posterior 

end of the embryo (Mov 3). These cilia are also easy to visualize outside of the embryo 

with the injection of a number of ciliary, or membrane markers (Werner and Mitchell 2013; 

Woolner, Miller, and Bement 2010). This ease of visualization and manipulation has lead to 

a better understanding of the mechanisms that is involved in both motile and primary cilia 

development (Kim et al. 2018; Marra et al. 2019).

The Xenopus embryonic epidermis is a mucociliary organ that is much like that of the upper 

respiratory tract in terrestrial vertebrates (Whitsett 2018). In fact, it contains many of the 

same cell types as the mucociliary epithelium of the lung, making it a good model of this 

tissue (Haas et al. 2019; Walentek 2018). Also, many of the genetic pathways involved 

in differentiating multiciliated cells, such as Notch and Wnt, are conserved in both the 

mammalian respiratory system and the Xenopus epidermis (Haas et al. 2019; Marcet et al. 

2011; Rock et al. 2011; Schmid et al. 2017). In addition, lethal genes can be studied in 

Xenopus using organoids. Injection of mRNA, morpholino or CRISPR constructs followed 

by Isolation of pluripotent stem cells from blastula stage is and accessible technique. 

At the blastula stage, the cells sitting on top of the blastocoel, called the animal cap, 

can be explanted and differentiated ex vivo into many different tissue types, including 

kidney, neuronal and mucociliary epidermal tissues (Kim et al. 2020; Li et al. 2008; Sater, 

Steinhardt, and Keller 1993; Uochi and Asashima 1996). Given that each of these cells 

contain yolk, they will stay viable in a saline solution at room temperature for many days. 

The animal cap contains a pigmented epidermis. The removal of this epidermis stimulates 

the underlying cells to form a transparent mucociliary epidermis in under 24 hours, allowing 

for direct visualization of the developing mucociliary tissue. These advantages make it an 

attractive model that can overcome the technological challenges of mammalian systems.
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Xenopus and zebrafish have been used to identify the pathways that facilitate the 

development of multiciliated cells. Just like in mouse, in Xenopus and zebrafish the 

transcription factor FoxJ1 appears to be a master regulator of motile cilia (Chen et al. 

1998; Stubbs et al. 2008; Yu et al. 2008). In Xenopus and zebrafish FoxJ1 expression is 

largely restricted to motile ciliated cells such as multiciliated epidermal cells, multiciliated 

cells of the kidney and motile cilia of the node (Pohl and Knöchel 2004). Loss of FoxJ1 

leads to loss of motile cilia and its misexpression can lead to ectopic cilia formation. 

Though FoxJ1 regulates the formation of motile cilia, it does not appear to influence the 

development or function of primary sensory cilia. The Rtx family of transcription factors, 

like FoxJ1, transcriptionally activates genes required for the development of motile cilia 

(Lemeille et al. 2020). Rtx proteins (Rtx1, Rtx2, Rtx3) potentially regulate a large number 

of gene targets. Approximately 350 genes have been identified as potential Rtx targets in 

Xenopus. To identify novel genes involved in the formation of cilia, injections of 259 unique 

plasmids from the human orfeome library encoding Rtx2 target proteins labeled with GFP 

were carried out. Each protein was coinjected with an RFP cilia marker and assayed for its 

localization within the cilia (Tu et al. 2018). 40 of these genes localize to ciliary structures, 

and 28 of these 40 have not previously been reported to have ciliary function or localization. 

Though injection of 259 constructs is still a significant amount of work, there are very few 

vertebrates in which this task is even feasible.

Validation of potential genes involved in motile ciliopathies is feasible in both Xenopus 
and zebrafish. In zebrafish and Xenopus the nasal pit is surrounded by peripheral motile 

cilia (Fig. 4) (Rachev et al. 2020; Reiten et al. 2017). These cilia are the easiest cilia in 

the zebrafish embryo to visualize. These cilia function to direct the flow of fluid over the 

sensory cells within the pit, including cells with primary cilia. This flow increases sensitivity 

and temporal resolution of the animal’s ability to detect odors in their environment. In 

humans, primary ciliary dyskinesia is a syndrome defined by nonfunctional motile cilia 

leading to chronic respiratory infections. Although, many of these patients also suffer 

from the other problems associated with motile ciliopathies (Bush et al. 1998). A genome 

wide association study on patients suffering from primary ciliary dyskinesia identified ten 

candidate genes to be a possible cause of this disfunction. (Austin-Tse et al. 2013). These 

patients suffered from a motile ciliopathy in which dynein arms fail to form. This results in 

the development of cilia that are unable to move. To test these candidate genes, morpholinos 

were injected then assessed for ciliary movement by brightfield microscopy of the olfactory 

pit. Of these ten genes, three showed strong motile ciliopathy phenotypes (c21orf59, ccdc65, 

and c15orf26). Injection of mRNAs allows for the expression of the exogenous human 

protein. This expression rescues the phenotypes observed upon knockdown of these genes in 

zebrafish. This not only confirms the phenotypes are due to knockdown of their respective 

gene, but it also demonstrates that the knockdowns affect the orthologs of the human genes 

and the function of these genes are evolutionarily conserved from human to zebrafish. 

Furthermore, multiple mutations in C21ORF59 were identified in patients (Austin-Tse et 

al. 2013). Severity of these mutations were measured in zebrafish by knocking down the 

endogenous protein and then expressing a copy of the human mutation to see if any of the 

human mutations rescued the morphant phenotypes. In this study, not only were multiple 

gene targets knocked down to identify causative genes, patient mutations were modeled in 
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zebrafish, suggesting that these mutations likely play a causative role in the development of 

primary ciliary dyskinesia.

Complex and abnormal systems.

There are many biological systems that require a combination of motile cilia and sensory 

cilia. In the example given above, the zebrafish olfactory system uses motile cilia to 

maintain the flow of odors over primary cilia in the olfactory cleft. Both of the zebrafish and 

Xenopus pronephros use motile cilia to move fluid through the kidney tubules, which are 

lined with primary cilia. Another complex system is the left-right organizer.

Nodal cilia

The development of a left-right axis is an evolutionarily conserved process in vertebrates. 

Late in gastrulation near the onset of neurulation, a concavity called the node (aka gastrocoel 

roof plate, or Kupffer’s vesicle) is formed. In most vertebrates, the node contains sensory 

cilia on the edge of this depression, and motile monociliated cells within the cleft. These are 

abnormal motile cilia in that each cell contains a single cilia that do not have central pair 

of microtubules, but they do have the dynein arms required for movement (Huang, Hirota, 

and Sawamoto 2009). By currently unknown mechanisms, the establishment of planer cell 

polarity causes a posterior tilt of the motile cilia (Antic et al. 2010; Chien et al. 2018). This 

results in a leftward flow of fluid and activates the cilia on the left side of the node (Duncan 

and Khokha 2016; Okabe, Xu, and Burdine 2008; Schweickert et al. 2007). Activation of the 

cilia of the left half of the embryo results in opening of polycystin calcium channels. This 

influx of calcium represses calcium sensitive factors such as Coco (aka. Dand5) resulting 

in the activation of factors such as Nodal and Xnr1 on the left half of the embryo (Fig. 

5) (Kamura et al. 2011; Schweickert et al. 2010). When pathways that affect the node are 

disrupted, development organs such as the heart and intestine are likewise disrupted. In some 

circumstances, a complete reversal of left right patterning occurs which is known as situs 

inversus. In this case, the intestine curves in the opposite direction, the heart is flipped, and 

the liver is on the right side. Approximately 1 in 10,000 individuals have some reversal 

of their left-right axis (Sharma 2012). A complete reversal normally does not cause any 

problems (Duncan and Khokha 2016). However, if the axis only partially inverts, then a 

serious situation called Heterotaxy syndrome occurs, which results coronary and digestive 

problems potentially requiring surgical correction (Hynes, Gau, and Titus 1973; Stamm et al. 

2002; Yu et al. 2009).

In vertebrates, mutation of the Polycystin genes can not only lead to polycystic kidney 

disease but also left-right axis defects. Mutations in pkd1l1 (Pkd1 like #1) and pkd2 in 

vertebrates, lead to left-right axis problems (Bataille et al. 2011; Vetrini et al. 2016; Vick 

et al. 2018). Zebrafish studies have shown that Pkd1l1 forms a heterotetramer with Pkd2, 

which is important in regulating calcium signaling through the cilia within the node. In 

zebrafish, defects to nodal signaling can result in a distinctive curvature to the tail fin 

(Bisgrove et al. 2005). This obvious phenotype has allowed for high throughput screens 

using drug libraries to find treatments for Pkd2 caused by nodal ciliopathies (Metzner et al. 

2020). From this screen, drugs that inhibited Alk5, a TGFβ receptor, were shown to rescue 
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pkd2 tail curvature and cystic kidney phenotypes. Other potential drugs were identified as 

potential candidates for further study such, as COX-2 and HDAC inhibitors.

Genome sequencing of human patients has revealed many new putative disease genes. 

Recently, 61 candidate genes were identified as possibly causing axis problems in patients 

with situs inversus (Fakhro et al. 2011). Xenopus was used to test these genes as possible 

candidates in left-right axis formation. Seven genes showed promising expression within the 

ciliated cell of the node, and loss of five of these genes (rock2, galnt11, nek2, nup118, and 

tgfb2) resulted in axis defects, such as cardiac and intestinal looping anomalies. Loss of 

these genes also leads to misexpression of pitx2, which is a gene involved in axis formation 

and is largely only expressed on the left side of the embryo. Since these genes are expressed 

in other ciliary tissues, such as the kidney, it is likely that many of they play a role in 

either the development of or the signaling from cilia. Other genes have been identified 

from similar screens, starting from sequencing of human genome and utilizing Xenopus to 

identify factors involved in axis formation including Fgf4r (Sempou et al. 2018), Shroom3 

(Tariq et al. 2011), and Pfkp (Cowan et al. 2016).

Auditory and vestibular cilia

Ear cilia are made up of two types of cilia known as kinocilia and stereocilia. Kinocilia 

are true cilia made up of tubulin. In mice, the kinocilia are predominantly the classical 9+0 

form seen in sensory cilia; however, in mice 3–14% of the cilia have a 9+2 conformation 

associated with motile cilia (Sobkowicz, Slapnick, and August 1995). Stereocilia, however, 

are not true cilia, as they are made of actin and have more in common with microvilli 

than of cilia. The function of stereocilia is to attach to the kinocilia via cadherins and act 

as a directional signal (Müller 2008). One of these cadherins, Cdh23, was identified from 

a zebrafish mutant line called sputnik (Söllner et al. 2004). Kinocilia transmit sound by 

opening potassium channels in response to pulling from the attached stereocilia. Movement 

away from the stereocilia depolarizes the membrane by influx of potassium and movement 

towards the stereo cilia hyperpolarizes the membrane. Depolarization of the membrane leads 

to neurotransmitter release. Though few studies have focused on cilia in the Xenopus or 

zebrafish ear, we know that the zebrafish otic cilia have a similar structure and function 

as mouse cilia (Kindt, Finch, and Nicolson 2012; Whitfield 2020). However, unlike the 

adult human ear, regeneration of the ciliated sensory cells occurs in zebrafish (Monroe, 

Rajadinakaran, and Smith 2015). How this regeneration occurs is currently unknown, but it 

may help with understanding of hearing loss in humans.

Conclusion

Aquatic organisms, such as zebrafish and Xenopus, provide powerful tools to identify and 

dissect underlying causes of human diseases. Cilia are found in many tissues of the human 

and play a role in a multitude of cellular processes. Many of these disease manifestations, 

such as cystic diseases of the kidney, neurological malformations and the disrupted node 

function are conserved in zebrafish and Xenopus. The ability to perform mutagenesis and 

morpholino knockdowns in F0 organisms has provided the ability to rapidly screen many 

candidate genes from human genome sequencing studies. Expression of mRNAs allows 
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for validation of knockdown/knockouts and characterization of the human mutations. This 

also allows for large scale protein expression analysis of a few hundred genes, leading 

to the possibility of performing large scale genetic screens to identify novel pathways to 

study. Their aquatic nature allows for efficient large scale drug screens to identify possible 

treatments. Coupling these features with their transparent epidermis and the multiple 

functional assays that have been developed to study cilia allows for efficient analysis of 

human ciliopathies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Structure of cilia. The cilia are composed of three main sections, the axoneme which 

performs the sensory or movement function, the transition zone which likely contains over 

100 proteins which function to anchor the cilia and regulate transport to and from the cilia, 

and the basal body which is a centriole that functions as a tubulin organizing center to form 

the cilia. Diagram showing the cross section of the axoneme of common types of motile and 

primary cilia in vertebrates.
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Figure 2: 
Confocal images of wholemount zebrafish (3dpf) and Xenopus laevis (Stage 37) kidney 

cilia. Cilia were stained using an acetylated alpha-tubulin antibody (Sigma T6793) which 

labels the neurons and cilia. Kidney cilia are pseudocolored in green while neurons and 

epithelial cilia are pseudocolored in red. The zebrafish and Xenopus kidney are outlined 

in white dashed lines, and motile multiciliated cells in the kidney are pseudocolored in 

magenta. Images were taken on a Zeiss LSM800 confocal microscope.
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Figure 3: 
Images of Xenopus laevis motile epidermal cilia. A-C) Confocal imaging of acetylated 

alpha-tubulin stained whole mount Xenopus embryo. D-E) Scanning electron micrograph of 

the skin of whole mount Xenopus embryo. E-F) Transmission electron microscopy showing 

sections through cilia. F) Image showing basal body and axoneme of motile cilia G.) Image 

showing cross-section and the 9+2 microtubule structure of motile cilia. C,E) Zoomed in 

image of white dashed box in B and D.
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Figure 4: 
Confocal images of the motile cilia lining the zebrafish nasal (olfactory) pit. Dorsal view of 

8dpf zebrafish embryos with head towards the top of the image. Embryos were fixed and 

stained with acetylated alpha-tubulin (Green) (Sigma T6793) and DAPI (Blue). Acetylated 

tubulin labels both the cilia and neurons. Nasal pits are circled in white, and neural mast 

cells are circled in red.
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Figure 5: 
Diagram of a posterior view of the Left-Right organizer and its functions. Motile cilia 

(green) create a leftward flow of fluid over the cleft. This leftward flow activated primary 

cilia (red) on the left half of the cleft resulting in the opening of polycystin calcium 

channels. Calcium influx inhibits a protein Coco leading to activation of Nodal signaling.
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