Skip to main content
. Author manuscript; available in PMC: 2022 Jan 5.
Published in final edited form as: J Vis Exp. 2021 Jan 5;(167):10.3791/61536. doi: 10.3791/61536

Figure 3:

Figure 3:

Extinction and recall following flight conditioning (Day 4). A) Comparison of flight scores during extinction training showed rapid extinction of conditioned flight (n = 12; 16 trials, two-way repeated-measures ANOVA, cue × trial interaction, F(15,165) = 3.05, P < 0.01). Flight scores from first block of four trials (trial 1-4) of extinction observed significantly higher for white noise as compared to the tone (P < 0.05, Wilcoxon matched-pairs signed-rank test). B) Comparison of freezing showed a statically significant effect on freezing (%) following white noise (n = 12; 16 trials, two-way repeated-measures ANOVA, cue × trial interaction, F(15,165) = 3.55, P < 0.01). The freezing for the first block of four trials (trial 1-4) during extinction found to be significantly lower during white noise period as compared to the tone (Paired t-test, P < 0.01). C) Change in the context significantly affect the flight scores (n = 8; 4 trials, two-way repeated-measures ANOVA, cue × trial interaction, F(1,7) = 27.44, P < 0.01). Flight scores significantly reduced during white noise as compared to the tone period in the neutral context (two-tailed paired t-test, P < 0.01) D). Freezing responses across trials during retrieval were also significant (n = 8, 4 trials, two-way repeated-measures ANOVA, effect of cue F(1,7) = 27.67, P < 0.01). Exposure of WN in neutral context significantly increased the freezing responses as compared to the tone (two-tailed paired t-test, P < 0.001). The represented values are means ± SEM. *p<0.05, **p<0.01, ***p <0.001. Panels A-D are modified from Fadok et al., 2017.