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Abstract

We introduce Latent Meaning Cells, a deep latent variable model which learns contextualized 

representations of words by combining local lexical context and metadata. Metadata can refer to 

granular context, such as section type, or to more global context, such as unique document ids. 

Reliance on metadata for contextualized representation learning is apropos in the clinical domain 

where text is semi-structured and expresses high variation in topics. We evaluate the LMC model 

on the task of zero-shot clinical acronym expansion across three datasets. The LMC significantly 

outperforms a diverse set of baselines at a fraction of the pre-training cost and learns clinically 

coherent representations. We demonstrate that not only is metadata itself very helpful for the task, 

but that the LMC inference algorithm provides an additional large benefit.
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1. Introduction

Pre-trained language models have yielded remarkable advances in multiple natural language 

processing (NLP) tasks. Probabilistic models such as LDA (Blei et al., 2003), on the 

other hand, can uncover latent document-level topics. In topic models, words are drawn 

from shared topic distributions at the document level, whereas in language models, word 

semantics arise from co-occurrence with other words in a tighter window.

We build upon both approaches and introduce Latent Meaning Cells (LMC), a deep latent 

variable model which learns a contextualized representation of a word by combining 

evidence from local context (i.e., the word and its surrounding words) and document-level 
metadata. We use the term metadata to generalize the framework because it may vary 

depending on the domain and application. Metadata can refer to a document itself, as 

in topic modeling, document categories (i.e, articles tagged under Sports), or structures 

within documents (i.e., section headers). Incorporating latent factors into language modeling 
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allows for direct modeling of the inherent uncertainty of words. As such, we define a 

latent meaning cell as a Gaussian embedding jointly drawn from word and metadata prior 

densities. Conditioned on a central word and its metadata, the latent meaning cell identifies 

surrounding words as in a generative Skip-Gram model (Mikolov et al., 2013a; Bražinskas 

et al., 2018). We approximate posterior densities by devising an amortized variational 

distribution over the latent meaning cells. The approximate posterior can best be viewed 

as the embedded word sense based on local context and metadata. In this way, the LMC is 

non-parametric in the number of latent meanings per word type.

We motivate and develop the LMC model for the task of zero-shot clinical acronym 

expansion. Formally, we consider the following task: given clinical text containing an 

acronym, select the acronym’s most likely expansion from a predefined expansion set. It 

is analogous to word sense disambiguation, where sense sets are provided by a medical 

acronym expansion inventory. This task is important because clinicians frequently use 

acronyms with diverse meanings across contexts, which makes robust text processing 

difficult (Meystre et al., 2008; Demner-Fushman and Elhadad, 2016). Yet clinical texts are 

highly structured, with established section headers across note types and hospitals (Weed, 

1968). Section headers can serve as a helpful clue in uncovering latent acronym expansions. 

For instance, the abbreviation Ca is more likely to stand for calcium in a Medications section 

whereas it may refer to cancer under the Past Medical History section. Prior work has 

supplemented local word context with document-level features: latent topics (Li et al., 2019) 

and bag of words (Skreta et al., 2019), rather than section headers.

In our experiments, we directly assess the importance of section headers on zero-shot 

clinical acronym expansion. Treating section headers as metadata, we pre-train the LMC 

model on MIMIC-III clinical notes with extracted sections. Using three test sets, we 

compare its ability to uncover latent acronym senses to several baselines pre-trained on 

the same data. Since labeled data is hard to come by, and clinical acronyms evolve and 

contain many rare forms (Skreta et al., 2019; Townsend, 2013), we focus on the zero-shot 

scenario: evaluating a model’s ability to align the meaning of an acronym in context to the 

unconditional meaning of its target expansion. No models are fine-tuned on the task. We 

find that metadata complements local word-level context to improve zero-shot performance. 

Also, metadata and the LMC model are synergistic - the model’s success is a combination of 

a helpful feature (section headers) and a novel inference procedure.

We summarize our primary contributions: (1) We devise a contextualized language model 

which jointly reasons over words and metadata. Previous work has learned document-level 

representations. In contrast, we explicitly condition the meaning of a word on these 

representations. (2) Defining metadata as section headers, we evaluate our model on 

zero-shot clinical acronym expansion and demonstrate superior classification performance. 

With relatively few parameters and rapid convergence, the LMC model offers an efficient 

alternative to more computational intensive models on the task. (3) We publish all code1 to 

train, evaluate, and create test data, including regex-based toolkits for reverse substitution 

1. https://github.com/griff4692/LMC 
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and section extraction. This study and use of materials was approved by our institution’s 

IRB.

2. Related Work

Word Embeddings.

Pre-trained language models learn contextual embeddings through masked, or next, word 

prediction (Peters et al., 2018a; Devlin et al., 2019; Yang et al., 2019; Bowman et al., 2019; 

Liu et al., 2019; Radford et al., 2019). Recently, SenseBert (Levine et al., 2019) leverages 

WordNet (Miller, 1998) to add a masked-word sense prediction task as an auxiliary 

task in BERT pre-training. While these models represent words as point embeddings, 

Bayesian language models treat embeddings as distributions. Word2Gauss defines a normal 

distribution over words to enable the representation of words as soft regions (Vilnis and 

McCallum, 2014). Other works directly model polysemy by treating word embeddings as 

mixtures of Gaussians (Tian et al., 2014; Athiwaratkun and Wilson, 2017; Athiwaratkun et 

al., 2018). Mixture components correspond to the different word senses. But most of these 

approaches require setting a fixed number of senses for each word. Non-parametric Bayesian 

models enable a variable number of senses per word (Neelakantan et al., 2014; Bartunov 

et al., 2016). The Multi-Sense Skip Gram model (MSSG) creates new word senses online, 

while the Adaptive Skip-Gram model (Bartunov et al., 2016) uses Dirichlet processes. The 

Bayesian Skip-gram Model (BSG) proposes an alternative to modeling words as a mixture 

of discrete senses (Bražinskas et al., 2018). Instead, the BSG draws latent meaning vectors 

from center words, which are then used to identify context words.

Embedding models that incorporate global context have also been proposed (Le and 

Mikolov, 2014; Srivastava et al., 2013; Larochelle and Lauly, 2012). The generative models 

Gaussian LDA, TopicVec, and the Embedded Topic Model (ETM) integrate embeddings into 

topic models (Blei et al., 2003). ETM represents words as categorical distributions with a 

natural parameter equal to the inner product between word and assigned topic embeddings 

(Dieng et al., 2019); Gaussian LDA replaces LDA’s categorical topic assumption with 

multivariate Gaussians (Das et al., 2015); TopicVec can be viewed as a hybrid of LDA and 

PSDVec (Li et al., 2016). While these models make inference regarding the latent topics of a 

document given words, the LMC model makes inference on meaning given both a word and 

metadata.

Clinical Acronym Expansion.

Acronym expansion—mapping a Short Form (SF) to its most likely Long Form (LF)— is 

a task within the problem of word-sense disambiguation (Camacho-Collados and Pilehvar, 

2018). For instance, the acronym PT refers to “patient” in “PT is 80-year old male,” whereas 

it refers to “physical therapy” in “prescribed PT for back pain.” Traditional supervised 

approaches to clinical acronym expansion consider only the local context (Joshi et al., 2006). 

Li et al. (2019) leverage contextualized ELMo, with attention over topic embeddings, to 

achieve strong performance after fine-tuning on a randomly sampled MIMIC dataset. On 

the related task of biomedical entity linking, the LATTE model (Zhu et al., 2020) uses 

an ELMo-like model to map text to standardized entities in the UMLS metathesaurus 
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(Bodenreider, 2004). Skreta et al. (2019) create a reverse substitution dataset and address 

class imbalances by sampling additional examples from related UMLS terms. Jin et al. 

(2019b) fine-tune bi-ELMO (Jin et al., 2019a) with abbreviation-specific classifiers on 

Pubmed abstracts.

3. Latent Meaning Cells

As shown in Figure 1, latent meaning cells postulate both words and metadata as mixtures of 

latent meanings.

3.1. Motivation

In domains where text is semi-structured and expresses high variation in topics, there is 

an opportunity to consider context between low-level lexical and global document-level. 

Clinical texts from the electronic health record represent a prime example. Metadata, such 

as section header and note type, can offer vital clues for polysemous words like acronyms. 

Consequently, we posit that a word’s latent meaning directly depends on its metadata. We 

define a latent meaning cell (lmc)2 as a latent Gaussian embedding jointly drawn from word 

and metadata prior densities. The lmc represents a draw of an embedded word sense based 

on metadata. In a Skip-Gram formulation, we assume that context words are generated from 

the lmc formed by the center word and corresponding metadata. Context words, then, are 

conditionally independent of center words and metadata given the lmc.

3.2. Notation

A word is the atomic unit of discrete data and represents an item from a fixed vocabulary. A 

word is denoted as w when representing a center word, and c for a context word. c represents 

the set of context words relative to a center word w. In different contexts, each word operates 

as both a center word and a context word. For our purposes, metadata are pseudo-documents 

which contain a sequence of N words denoted by m = (w1,w2, …,wN) where wn is the nth 

word. (A.2 visually depicts metadata). A corpus is a collection of K metadata denoted by D 
= {m1,m2, …,mK}.

3.3. Latent Variable Setup

We rely on graphical model notation as a convenient tool for describing the specification of 

the objective, as is commonly done in latent variable model work (e.g., (Bražinskas et al., 

2018)). Using the notation from Section 3.2, we illustrate the pseudo-generative3 process in 

plate notation and story form.

2.Lowercase lmc refers to the latent variable in the uppercase LMC graphical model.
3.We use pseudo because the LMC is a latent variable model, not a conventional generative model. As with the Skip-Gram model, due 
to the re-use of data (center and context words), we cannot use LMC to generate new text, but we can specify an objective function on 
existing data.
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Algorithm 1

Pseudo-Generative Story

for k = 1…K do

 Draw metadata mk ∼ Cat(γ)

  for i = 1…Nk do

   Draw word wik ∼ Cat(α)

   Draw lmc zik ∼ p(zik|wik,mk)

   for j = 1…2S do

    Draw context word cijk ∼ p(cijk|zik)

S is the window size from which left-right context words are drawn. The factored joint 

distribution between observed and unobserved random variables P(M,W,C,Z) is:

∏
k = 1

K
p mk ∏

i = 1

Nk
p wik p zik ∣ wik, mk ∏

j = 1

2S
p cijk ∣ zik

3.4. Distributions

We assume the following model distributions: mk ∼ Cat(γ), wik ∼ Cat(α), and zik|wik,mk ∼ 
N(nn(wik,mk; θ)). nn(wik,mk; θ) denotes a neural network that outputs isotropic Gaussian 

parameters. p(cijk|zik) is simply a normalized function of fixed parameters (θ) and zik. We 

choose a form that resembles Bayes’ Rule and compute the ratio of the joint to the marginal:

p cijk ∣ zik =
∑m p zik ∣ cijk, m p m ∣ cijk p cijk

∑m ∑c p zik ∣ c, m p(m ∣ c)p(c) (1)

We marginalize over metadata and factorize to include p(zik|cijk,m), which shares parameters 

θ with p(zik|wik,mk). The prior over meaning is modeled as in Sohn et al. (2015). p(m|c) 

and p(c) are defined by corpus statistics. Therefore, the set of parameters that define p(zik|

wik,mk) completely determines p(cijk|zik), making for efficient inference.

4. Inference

Ideally, we would like to make posterior inference on lmcs given observed variables. For one 

center word wik, this requires modeling

p zik ∣ mk, wik, cik =
p zik, mk, wik, cik

∫ p zik, mk, wik, cik dzik

Unfortunately, the posterior is intractable because of the integral. Instead, we use variational 

Bayes to minimize the KL-Divergence (KLD) between an amortized variational family and 

the posterior:
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min
ϕ, θ

DKL Qϕ(Z ∣ M, W , C) Pθ(Z ∣ M, W , C)

4.1. Deriving the Final Objective

At a high level, we factorize distributions (A.3.1) and then derive an analytical form of the 

KLD to arrive at a final objective (4.1.1). We then explain the use of approximate bounds 

for efficiency: the likelihood with negative sampling (4.1.2), and the KLD between the 

variational distribution and an unbiased mixture estimation (4.1.3).

4.1.1. FINAL OBJECTIVE—To avoid high variance, we derive the analytical form of 

the objective function, rather than optimize with score gradients (Ranganath et al., 2014; 

Schulman et al., 2015). For each center word, the loss function we minimize is:

Lϕ, θ mk, wik, cik = ∑
j = 1

2S
max(0,

DKL qik‖∑
m

pθ zik ∣ cijk, m βm ∣ cijk

−DKL qik‖∑
m

pθ zik ∣ c, m βm ∣ c

+ DKL qik pθ zik ∣ mk, wik

(2)

where qik denotes qϕ(zik|mk,wik, cik). c represents a negatively sampled word. We denote the 

empirical likelihoods of metadata given a context / negatively sampled word as βm|cijk/βm ∣ c. 

Intuitively, the objective rewards reconstruction of context words through the approximate 

posterior while encouraging it not to stray too far from the center word’s marginal meaning 

across metadata. We include the full derivation in A.3.

4.1.2. NEGATIVE SAMPLING—As in the BSG model, we use negative sampling 

as an efficient lower bound of the marginal likelihood from Equation 1. c is sampled 

from the empirical vocabulary distribution p(c) to construct an unbiased estimate for 

Ec ∑m pθ zik ∣ c, m βm ∣ c . Finally, we transform the likelihood into a hard margin to bound 

the loss and stabilize training.

4.1.3. KL-DIVERGENCE FOR MIXTURES—The objective requires computing the 

KLD between a Gaussian (qik) and a Gaussian mixture ∑m pθ(z ∣ c, m)βm ∣ c . To avoid 

computing the full marginal, for both context words and negatively sampled words, 

we sample ten metadata using the appropriate empirical distribution: βm|cijk and βm ∣ c, 

respectively. Using this unbiased sample of mixtures, we form an upper bound for the 

KLD between the variational family and an unbiased mixture estimation (Hershey and 

Olsen, 2007): DKL(f‖g) ≤ ∑a, bπaωbDKL fa gb . πa is the mixture weight of f and ωb is the 

mixture weight of g. f is the variational distribution formed by a single Gaussian and g is the 

mixture of interest. Thus, the upper-bound is simply the weighted sum of the KLD between 

the variational distribution and each mixture component.
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4.2. Training Algorithm

Algorithm 1:

LMC Training Procedure

The training procedure samples a center word, context word sequence, and metadata from 

the data distribution and minimizes the loss function from Equation 2 with stochastic 

gradient descent. In Algorithm 1, we jointly update the variational family and model 

parameters, ϕ and θ respectively.

5. Neural Networks

The LMC model requires modeling two Gaussian distributions, qϕ(zik|mk,wik, cik) and 

pθ(zik|cijk,m). We parametrize both with neural networks, but any black-box function 

suffices. We refer to qϕ as the variational network and pθ as the model network.

5.1. Variational Network (qϕ)

The variational network accepts a center word wik, metadata mk, and a sequence of context 

words cik, and outputs isotropic Gaussian parameters: a mean vector μq and variance scalar 

σq. Then, qϕ ∼ N(μq, σq). At a high level, we encode words with a bi-LSTM (Graves et 

al., 2005), summarize the sequence with metadata-specific attention, and then learn a gating 

function to selectively combine evidence. A.4 contains the full specification.

5.2. Model Network (pθ)

The model network accepts a word wik and metadata mk and projects them 

onto a higher dimension with embedding matrix R. Rwik and Rmk are combined: 

ℎ = ReLU W model Rwik; Rmk + b . The hidden state h is then separately projected to 

produce a mean vector μp and variance scalar σp. Then, pθ ∼ N(μp, σp).

6. Experimental Setup

We pre-train the LMC model and all baselines on unlabeled MIMIC-III notes and compare 

zero-shot performance on three acronym expansion datasets. Because we consider the zero-

shot scenario, we restrict ourselves to pre-trained contextualized embedding models without 

fine-tuning. Out of fidelity to the data, we do not adjust the natural class imbalances. We 

explicitly test each model’s ability to handle rare expansions, for which shared statistical 
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strength from metadata may be critical. All models receive the same local word context, yet 

only two models (MBSGE, LMC) receive section header metadata. We include full details 

for Section 6 in A.5.

6.1. Pre-Training

MIMIC-III contains de-identified clinical records from patients admitted to Beth Israel 

Deaconess Medical Center (Johnson et al., 2016). It comprises two million documents 

spanning sixteen note types, from discharge summaries to radiology reports. Section headers 

are extracted through regular expressions. We pre-train all models for five epochs in PyTorch 

(Paszke et al., 2017) and report results on one test set using the others for validation.

6.2. Evaluation Data

It is difficult to acquire annotated data for clinical acronym expansion, especially with 

relevant metadata. One of the few publicly available datasets with section header annotations 

is the Clinical Abbreviation Sense Inventory (CASI) dataset (Moon et al., 2014). Human 

annotators assign expansion labels to a set of 74 clinical abbreviations in context. The 

authors remove ambiguous examples (based on local word context alone) before publishing 

the data. Our experimental test set comprises 27,209 examples across 41 unique acronyms 

and 150 expansions.

To evaluate across a range of institutions, as well as consider all examples (even ambiguous), 

we use the acronym sense inventory from CASI to construct two new synthetic datasets 

via reverse substitution (RS). RS involves replacing long form expansions with their 

corresponding short form and then assigning the original expansion as the target label 

(Finley et al., 2016). 44,473 tuples of (short form context, section header, target long form) 

extracted from MIMIC comprise the MIMIC RS dataset. The second RS dataset consists of 

22,163 labeled examples from a corpus of 150k ICU/CCU notes collected between 2005 and 

2015 at the Columbia University Irving Medical Center (CUIMC). For each RS datasest, we 

draw at most 500 examples per acronym-expansion pair. For non-MIMIC datasets, when a 

section does not map to one in MIMIC, we choose the closest corollary.

6.3. Baselines

Dominant & Random Class.—Acronym expansion datasets are highly imbalanced. 

Dominant class accuracy, then, tends to be high and is useful for putting metrics into 

perspective. Random performance provides a crude lower bound.

Section Header MLE.—To isolate the discriminative power of section headers, we 

include a simple baseline which selects LFs based on p(LF|section) ∝ p(section|LF). We 

compute p(section ∣ LF) = C(section, LF)
C(LF)  on held-out data.

Bayesian Skip-Gram (BSG).—We implement our own version of the BSG model so 

that it uses the same variational network architecture as the LMC, with the exception that 

metadata is unavailable.
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Metadata BSG Ensemble (MBSGE).—To isolate the added-value of metadata, we 

devise an ensembled BSG. MBSGE maintains an identical optimization procedure with the 

exception that it treats metadata and center words as interchangeable observed variables. 

During training, center words are randomly replaced with metadata, which take on 

the function of a center word. For evaluation, we average ensemble the contextualized 

embeddings from metadata and center word. We train on two metadata types: section 

headers and note type, but for experiments, based on available data, we only use headers.

ELMo.—We use the AllenNLP implementation with default hyperparameters for the 

Transformer-based version (Gardner et al., 2018; Peters et al., 2018b). We pre-train the 

model for five epochs with a batch size of 3,072. We found optimal performance by taking 

the sequence-wise mean rather than selecting the hidden state from the SF index.

BERT.—Due to compute limitations, we rely on the publicly available Clinical BioBERT 

for evaluation (Alsentzer et al., 2019; Lee et al., 2020). We access the pretrained model 

through the Hugging Face Transformer library (Wolf et al., 2019). The weights were 

initialized from BioBERT (introduces Pubmed articles) before being fine-tuned on the 

MIMIC-III corpus. We experimented with many pooling configurations and found that 

taking the average of the mean and max from the final layer performed best on a validation 

set. Another ClinicalBERT uses this configuration (Huang et al., 2019).

6.4. Task Definition

We rank each candidate acronym expansion (LF) by measuring similarity between its 

context-independent representation and the contextualized acronym representation. Table 

1 shows the ranking functions we used. ELMOavg represents the mean of final hidden states. 

For the LMC scoring function, ∑m p z ∣ LFk, m βm ∣ LFk  represents the smoothed marginal 

distribution of a word (or phrase) over metadata (as detailed in A.9).

7. Results

7.1. Classification Performance

Recent work has shown that randomness in pre-training contextualized LMs can lead to 

large variance on downstream tasks (Dodge et al., 2020). For robustness, then, we pretrain 

five separate weights for each model class and report aggregate results. Tables 2 and 3 show 

mean statistics for each model across five pre-training runs. In A.6.1, we show best/worst 

performance, as well as bootstrap each test set to generate confidence intervals (A.6.2). 

These additional experiments add robustness and reveal de minimus variance between LMC 

pre-training runs and between bootstrapped test sets for a single model. Our main takeaways 

are:

Metadata.—The MBSGE and LMC models materially outperform non-metadata baselines, 

which suggests that metadata is complementary to local word context for the task.

Adams et al. Page 9

Proc Mach Learn Res. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LMC Robust Performance.—The LMC outperforms all baselines and exhibits very low 

variance across pre-training runs. Given the same input and very similar parameters as 

MBSGE, the LMC model appears useful beyond the addition of a helpful feature.

Dataset Comparison.—Unsurprisingly, performance is best on the MIMIC RS dataset 

because all models are pre-trained on MIMIC notes. While CUIMC and CASI are in-

domain, there is minor performance degradation from the transfer.

Lower CASI Spread.—The LMC performance gains are less pronounced on the public 

CASI dataset. CASI was curated to only include examples whose expansions could be 

unambiguously deduced from local context by humans. Hence, the relative explanatory 

power of metadata is likely dampened.

Poor BERT, ELMo Performance.—BERT / ELMo underperform across datasets. They 

are optimized to assign high probability to masked or next-word tokens, not to align 

embedded representations. For our zero-shot use case, then, they may represent suboptimal 

pre-training objectives. Meanwhile, the BSG, MBSGE, and LMC models are trained to 

align context-dependent representations (variational network) with corresponding context-

independent representations (model network). For evaluation, we simply replace context 

words with candidate LFs.

Non-Parametric.—Random/dominant accuracy is 27/42%, 26/47%, and 31/78% for 

MIMIC, CUIMC, and CASI. Section information alone proves very discriminative on 

MIMIC (85% accuracy for Section Header MLE), but, given the sparse distribution, it 

severely overfits. On CASI/CUIMC, the accuracy plummets to 48/46% and macro F1 to 

35/33%. While relevant, generalization requires distributional header representations.

7.2. Qualitative Analysis

7.2.1. WORD-METADATA GATING—Inside the variational network, the network learns 

a weighted average of metadata and word level representations. We examine instances 

where more weight is placed on local acronym context vis-a-vis section header, and vice 

versa. Table 3 shows that shorter sections with limited topic diversity (e.g., “Other ICU 

Medications”) are assigned greater relative weight. The network selectively relies on each 

source based on relative informativeness.

The gating function enables manual interpolation between local context and metadata to 

measure smoothness in word meaning transitions. We select three sections which a priori we 

associate with expansions of the acronym MG: “Discharge Medications” with milligrams, 

“Imaging” with myasthenia gravis, and “Review of Systems” with magnesium (deficiency). 

We compute the lmc conditioned on “MG” and each section m, ranking LFs by taking the 

softmax over −DKL q z ∣ MG, m, c∅ p z ∣ LF, m∅ , where cØ and mØ denote null values. 

Figure 4 shows a gradual transition between meanings, suggesting the variational network is 

a smooth function approximator.
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7.2.2. LMCS AS WORD SENSES—A guiding principle behind the LMC model 

centers on the power of metadata to disambiguate polysemous words. We choose the word 

“history” and enumerate five diverse types of patient history: smoking, depression, diabetes, 

cholesterol, and heart. Then, we examine the proximity of lmcs for the target word under 

relevant section headers and compare to the expected representations of the five types of 

patient history. Section headers have a largely positive impact on word meanings (Table 4), 

especially for generic words with large prior variances like “history”.

7.2.3. CLUSTERING SECTION HEADERS—In Table 5, we select five prominent 

headers and measure cosine proximity of embeddings learned by the variational network4. 

In most cases, the results are meaningful, even uncovering a section acronym: “HPI” for 

“History of Present Illness”.

8. Conclusion

We target a key problem in clinical text, introduce a helpful feature, and present a Bayesian 

solution that works well on the task. More generally, the LMC model presents a principled, 

efficient approach for incorporating metadata into language modeling.
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Appendix A.: Appendix

A.1. Future Work

We hope the LMC framework and code base encourages research into metadata-based 

language modeling: (1) New domains. The LMC can be applied to any domain which 

discrete metadata provides informative contextual clues (e.g., document categories, sections, 

document ids). (2) Linguistic Properties. A unique feature of the LMC is the ability 

to represent words as marginal distributions over metadata, and vice versa (as detailed 

in A.8). We encourage exploration into its linguistic implications. (3) Metadata Skip-
Gram. Depending on the choice of metadata, the LMC model could be expanded to draw 

context metadata from a center metadata. This might capture metadata-level entailment. (4) 
Calibration. Modeling words and metadata as Gaussian densities can facilitate analysis 

to connect variance to model uncertainty, instrumental in real-world applications with 

user feedback. (5) Sub-Words. In morphologically rich languages, subword information 

has been shown to be highly effective for sharing statistical strength across morphemes 

(Bojanowski et al., 2017). Probabilistic FastText may provide a blueprint for incorporating 

subwords into LMC (Athiwaratkun et al., 2018).

4.No difference from using model network.
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A.2. Metadata Pseudo Document

For our experiments, metadata is comprised of the concatenation of the body of every 

section header across the corpus. Yet, when computing context windows, we do not combine 

text from different physical documents. Please see Figure 5 for a toy example.

A.3. Full Derivations

A.3.1. FACTORIZE & REDUCE

After factorizing the model posterior and variational distribution, we can push the integral 

inside the summation and integrate out latent variables that are independent:

∑
i, k

∫ qϕ zik ∣ mk, wik, cik log qϕ zik ∣ mk, wik, cik
pθ zik ∣ mk, wik, cik

dzik (3)

The integral defines a KL measure between individual latent variables, which can be 

expressed as

|W | 1
|W | ∑i, k

Eqik logqϕ zik ∣ mk, wik, cik
pθ zik ∣ mk, wik, cik

(4)

where |W| represents the corpus word count. Dividing and multiplying by |W| does not 

change the result:

Ep DKL qik pik (5)

We ignore |W|, as it does not affect the optimization, and denote the amortized variational 

distribution, model posterior, and the empirical uniform distribution over center words in the 

corpus as qik, pik, and p, respectively.
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Figure 5: 
Metadata Pseudo Document for DISCHARGE MEDICATIONS.

A.3.2. LMC OBJECTIVE—In the main manuscript, we outline the steps involved to 

arrive at the variational objective. Here, we break it down into a more complete derivation. 

Because the posterior of the LMC model is intractable, we use variational Bayes and 

minimize the KLD between the variational distribution and the model posterior:

min DKL(Q(Z ∣ M, W , C) P(Z ∣ M, W , C)) (6)

KL-Divergence can also be expressed in expected value form:

min EQ logQ(Z ∣ M, W , C)
P(Z ∣ M, W , C) (7)

The expectation can be re-written in the integral form as follows:

min∫ logQ(Z ∣ M, W , C)
P(Z ∣ M, W , C) Q(Z ∣ M, W , C)dZ (8)

Using the independence assumption of the latent random variables, we can factor Q and P as 

follows:
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min∫ …∫ log ∏i, kq zik ∣ mk, wik, cik
∏i, k p zik ∣ mk, wik, cik

∏
i, k

q zik ∣ mk, wik, cik dzik (9)

Taking the product out of the logarithm yields

min∫ …∫ ∑
i, k

log q zik ∣ mk, wik, cik
p zik ∣ mk, wik, cik

∏
i, k

q zik ∣ mk, wik, cik dzik (10)

We can push the integral inside the summation by integrating independent latent variables 

out:

min∑
i, k

∫ log q zik ∣ mk, wik, cik
p zik ∣ mk, wik, cik

q zik ∣ mk, wik, cik dzik (11)

Dividing the summation by the number of words in the corpus defines an expectation over 

the KL-Divergence for each independent latent variable. Here, |W| denotes the number of 

words in the corpus. Multiplying the above expression by |W| and dividing by |W| doesn’t 

change the result. Thus,

min |W | 1
|S| ∑i, k

Eqik log q zik ∣ mk, wik, cik
p zik ∣ mk, wik, cik

(12)

1
|W |Σi, k defines an expectation over the observed data. Therefore, we can write the above 

expression as

minEmk, wik, cik D Eqik[log q zik ∣ mk, wik, cik
p zik ∣ mk, wik, cik

] (13)

Here the expression mk,wik, cik ∼ D denotes sampling observed variables of document, 

center word and context words from the data distribution. We ignore |W| as it does not affect 

the optimization:

minEmk, wik, cik D DKL q zik ∣ mk, wik, cik p zik ∣ mk, wik, cik (14)

The above expression represents the final objective function. To optimize, we sample 

mk,wik, cik ∼ D and minimize the KL-Divergence between q and p. Here D represents the 

distribution of data from the corpus, which we assume is uniform across observed metadata 

and words.

A.3.3. ANALYTICAL FORM OF KL-DIVERGENCE—One can approximate KL-

Divergence by sampling. Yet, such an estimate has high variance. To avoid this, we derive 

the analytical form of the objective function. From Section A.3.2, we seek to minimize the 

following objective function:

DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ mk, wik, cik (15)
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The above equation can be expressed as

Eqik log qϕ zik ∣ mk, wik, cik − log pθ zik, mk, wik, cik + log p mk, wik, cik (16)

We can factorize pθ(zik,mk,wik, cik) using the model family definition

Eqik log qϕ zik ∣ mk, wik, cik − log p mk p wik pθ zik ∣ wik, mk ∏
j = 1

2S
pθ cijk ∣ zik

+ log p mk, wik, cik

(17)

Since, p(mk,wik, cik) = p(cik|mk,wik)p(wik)p(mk), we can re-write Equation 17 as

Eqik log qϕ zik ∣ mk, wik, cik − log p mk − log p wik − log pθ zik ∣ wik, mk

− ∑
j = 1

2S
logpθ cijk ∣ zik + logp cik ∣ mk, wik + logp mk + logp wik

(18)

logp(mk) and logp(wik) can leave the expectation and cancel as they do not include 

any latent variables. Since KL-Divergence is always positive, and the function we are 

minimizing is the KL-Divergence between the variational family and the posterior, we can 

write the following inequality:

Eqik log qϕ zik ∣ mk, wik, cik − log pθ zik ∣ wik, mk − ∑
j = 1

2S
log pθ cijk ∣ zik

+ log p cik ∣ mk, wik ≥ 0
(19)

Pushing the observed variables to the right-hand side of the inequality and negating both 

sides yields

Eqik −log qϕ zik ∣ mk, wik, cik + log pθ zik ∣ wik, mk + ∑
i = 1

2S
log pθ cijk ∣ zik

≤ log p cik ∣ mk, wik

(20)

To construct a lower-bound for the likelihood of context words given center word and 

metadata, p(cik|mk,wik), we minimize the negative left-hand side of Equation 20. That is, we 

minimize:

Eqik log qϕ zik ∣ mk, wik, cik − log pθ zik ∣ wik, mk

− Eqik[ ∑
j = 1

2S
log pθ cijk ∣ zik ] (21)

We can write Eqik log qϕ zik ∣ mk, wik, cik − log pθ zik ∣ wik, mk  as the KL-Divergence 

between qϕ(zik|mk,wik, cik) and pθ(zik|wik,mk). That is,
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DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ wik, mk − Eqik[ ∑
j = 1

2S
log pθ cijk ∣ zik ] (22)

Using the definition of p(cijk|zik) and re-arranging terms,

DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ wik, mk

− ∑
j = 1

2S
Eqik log∑

m
pθ zik ∣ cijk, m p m ∣ cijk p cijk

+ Eqik logEc ∑
m

pθ zik ∣ c, m p(m ∣ c)

(23)

Here, we re-write ∑c ∑d pθ zik ∣ c, d p(d ∣ c)p(c) in expected value form as 

Ec ∑d pθ zik ∣ c, d p(d ∣ c) . In addition, p(cijk) is the empirical probability value which does 

not contain the latent variable zik. Therefore, it can leave the expectation and be ignored 

during optimization:

DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ wik, mk

− ∑
j = 1

2S
Eqik log∑

m
pθ zik ∣ cijk, m p m ∣ cijk

+ Eqik log Ec ∑
m

pθ zik ∣ c, m p(m ∣ c)

(24)

Adding-subtracting Eqik log qϕ zik ∣ mk, wik, cik  to Equation 24 yields

DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ wik, mk

+ ∑
j = 1

2S
Eqik log qϕ zik ∣ mk, wik, cik − log∑

m
pθ zik ∣ cijk, m p m ∣ cijk

− Eqik log qϕ zik ∣ mk, wik, cik − log Ec ∑
m

pθ zik ∣ c, m p(m ∣ c) (25)

This additional operation defines two KL-Divergence terms:

DKL qϕ zik ∣ mk, wik, cik pθ zik ∣ wik, mk

+ ∑
j = 1

2S
DKL qϕ zik ∣ mk, wik, cik ∑

m
pθ zik ∣ cijk, d p m ∣ cijk

− DKL qϕ zik ∣ mk, wik, cik Ec ∑
m

pθ zik ∣ c, m p(m ∣ c)

(26)

To approximate Ec ∑m pθ zik ∣ c, m p(m ∣ c) , we sample a word using the negative word 

distribution (as in word2vec). As in the BSG model, we transform the second term into 

a hard margin to bound the loss in case the KL-Divergence terms for negatively sampled 

words are very large. The final objective we minimize is:
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DKL qik‖pθ(zik ∣ mk, wik) +

∑
j = 1

2S
max 0, DKL(qik‖∑

m
pθ(zik ∣ cijk, m)βm ∣ cijk)

− DKL(qik‖∑
m

pθ(zik ∣ c, m)βm ∣ c)

(27)

Here, we denote qϕ(zik|mk,wik, cik) as qik. c is sampled from p(c) to construct an unbiased 

estimate for Ec ∑m pθ zik ∣ c, m βm ∣ c .

A.4. variational network Architecture

Words (wik, cik), as well as metadata (mk), are first projected onto a higher dimension via 

an embedding matrix E. The central word embedding Ewik is then tiled across each context 

word and concatenated with context word embeddings Ecik. We then encode the combined 

word sequence:

h = LSTM Ecik; Ewik (28)

where ‘;’ denotes concatenation and h represents the concatenation of the hidden states 

from the forward and backward passes at each timestep. The relevance of a word, especially 

one with multiple meanings, might depend on the section or document type in which it is 

found. To allow for an adaptive notion of relevance, we employ scaled dot-product attention 

(Vaswani et al., 2017) to compute a weighted-average summary of h:

ℎword = softmax
Emk

T h
dime

h (29)

where dime is the embedding dimension. The scaling factor 1
dime

 acts as a normalizer to 

the dot product. We selectively combine information from the metadata embedding Emk
and attended context (hword) with a gating mechanism similar to (Miyamoto and Cho, 2016). 

Precisely, we learn a relative weight5:

pmk = sigmoid W gate Emk; ℎword + bgate (30)

We then use pmk to create a weighted average:

ℎjoint = pmkEmk + 1 − pmk ℎword (31)

Finally, we project hjoint to produce isotropic Gaussian parameters

5.In practice, we compute separate relevance scores for word and metadata and apply the Tanh function before taking the softmax. We 
do this to place a constant lower bound on min pmk, 1 − pmk  and prevent over-reliance on one form of evidence.
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μq = W μℎjoint + bμ σq = exp W σℎjoint + bσ (32)

As in the BSG model, the network produces the log of the variance, which we exponentiate 

to ensure it is positive. We experimented with modeling a full covariance matrix. Yet, it did 

not improve performance and added immense cost to the KLD calculation.

A.5. Additional Details on Experimental Setup

We provide explanations on a few key design choices for the experimental setup.

• MIMIC RS Leakage: It is important to note that we pre-train all models on 

the same set of documents which are used to create the synthetic MIMIC RS 

test set. While no acronym labels are provided during pre-training, we want 

to measure, and control for, any train-test leakage that may bias the reporting 

of the MIMIC RS results. Yet, we found removing all documents in the test 

set from pre-training degraded performance no more than one percentage point 

evenly across all models. For consistency and computational simplicity, we show 

performance for models pre-trained on all notes.

• Mapping section headers from MIMIC to CASI and CUIMC: We manually 

map sections in CASI and CUIMC for which no exact match exists in CUIMC. 

This is relatively infrequent, and we relied on simple intuition for most 

mappings. For example, one such transformation is Chief Complaint → Chief 
Complaints.

• Choice of MLE over MAP estimate for section header baseline: We choose 

the MLE over MAP estimate because the latter never selects rare LFs due to the 

huge class imbalances. This causes macro F1 scores to be very low.

• LF phrases: When an LF is a phrase, we take the mean of individual word 

embeddings.

A.5.1. PREPROCESSING

Clinical text is tokenized, stopwords are removed, and digits are standardized to a common 

format using the NLTK toolkit (Loper and Bird, 2002). The vocabulary comprises all terms 

with corpus frequency above 10. We use negative sampling with standard parameter 0.001 

to downsample frequent words (Mikolov et al., 2013b). After preprocessing, the MIMIC 

pre-training dataset consists of ∼ 330m tokens, a token vocabulary size of ∼ 100k, and a 

section vocabulary size of ∼ 10k. We write a custom regex to extract section headers from 

MIMIC notes:

r′ ? :∧ \s 4, \n [\d . # ] 0, 4 \s ∗ ([A − Z][A − z0 − 9/] + [A − z]: )′

The search targets a flexible combination of uppercase letters, beginning of line characters, 

and either a trailing ‘:’ or sufficient space following a candidate header. We experimented 

with using template regexes to canonicalize section headers as well as concatenate note type 

with section headers. This additional hand-crafted complexity did not improve performance 
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so we use the simpler solution for all experiments. The code exists to play around with more 

sophisticated extraction schemes.

A.5.2. CONSTRUCTING CASI TEST SET

For clarity into the results, we outline the filtering operations performed on the CASI 

dataset. In Table 6, we enumerate the operations and their associated reductions to the 

size of the original dataset. The final dataset at the bottom produces the gold standard test 

set against which all our models are evaluated. These changes were made in the interest 

of producing a coherent test set. Empirically, performance is not affected by the filtering 

operations.

Table 6:

Filtering CASI Dataset.

Preprocessing Step Examples

Initial 37,000

LF Same as SF (just a sense) 5,601

SF Not Present in Context 1,249

Parsing Issue 725

Duplicate Example 731

Single Target 1,481

SFs with LFs not present in MIMIC-III 8,976

Final Dataset 18,233

Because our evaluations rely on computing the distance between contextualized SFs and 

candidate LFs, we manually curate canonical forms for each LF in the CASI sense 

inventory. For instance, we replace the candidate LF for the acronym CVS:

”customer, value, service” ”CVS pharmacy; brand; store”

where ‘;’ represents a boolean or.

A.5.3. HYPERPARAMETERS

Our hyperparameter settings are shared across the LMC model and BSG baselines. We 

assign embedding dimensions of 100d, and set all hidden state dimensions to 64d. We apply 

a dropout rate of 0.2 consistently across neural layers (Srivastava et al., 2014). We use a hard 

margin of 1 for the hinge loss. Context window sizes are fixed to a minimum of 10 tokens 

and the nearest section/document boundary. We develop the model in PyTorch (Paszke et 

al., 2017) and train all models for 5 epochs with Adam (Kingma and Ba, 2014) for adaptive 

optimization (learning rate of 1e − 3). Inspired by denoising autoencoders (Vincent et al., 

2008) and BERT, we randomly mask context tokens and central words with a probability of 

0.2 during training for regularization. The conditional model probabilities p(w|d) and p(d|w) 

are computed with add-1 smoothing on corpus counts.
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A.5.4. MBSGE ALGORITHM

The training procedure for MBSGE is enumerated in Algorithm 2, where mk
1 represents 

the note type for the k’th document and mik
2  represents the section header corresponding 

to the i’th word in the k’th document. Rather than train three separate models, we train a 

single model with stochastic replacement to ensure a common embedding space. We choose 

non-uniform replacement sampling to account for the vastly different vocabulary sizes.

For evaluation, we average ensemble the Gaussian parameters from the variational network 

(qϕ), where x separately stands for both the center word acronym (wik), and the section 

header metadata mik
2 .

Algorithm 2

MBSGE Stochastic Training Procedure

while not converged do

 Sample mk, wik, cik ∼ D

 Sample x Cat wik, mk
1, mik

2 ; 0.7, 0.1, 0.2

δ ∇DKL qϕ zik ∣ x, cik pθ zik ∣ x

 ϕ, θ ← Update parameters using δ

Table 7:

Aggregated across 5 pre-training runs. NLL is neg log likelihood, W/M weighted/macro.

MIMIC CUIMC CASI

Model NLL Acc W 
F1

M 
F1

NLL Acc W 
F1

M 
F1

NLL Acc W 
F1

M 
F1

Worst

BERT 1.36 0.40 0.40 0.33 1.41 0.37 0.33 0.28 1.23 0.42 0.38 0.23

ELMo 1.34 0.56 0.59 0.51 1.39 0.55 0.58 0.48 1.21 0.51 0.52 0.36

BSG 2.06 0.43 0.42 0.38 12.2 0.48 0.48 0.36 1.38 0.58 0.56 0.33

MBSGE 1.26 0.60 0.62 0.54 7.94 0.61 0.61 0.48 0.96 0.68 0.67 0.43

LMC 0.82 0.74 0.77 0.68 0.91 0.69 0.68 0.56 0.80 0.71 0.73 0.50

Mean

BERT 1.36 0.40 0.40 0.33 1.41 0.37 0.33 0.28 1.23 0.42 0.38 0.23

ELMo 1.33 0.58 0.61 0.53 1.38 0.58 0.60 0.49 1.21 0.55 0.56 0.38

BSG 1.28 0.57 0.59 0.52 9.04 0.58 0.58 0.46 0.99 0.64 0.64 0.41

MBSGE 1.07 0.65 0.67 0.59 6.16 0.64 0.64 0.52 0.88 0.70 0.70 0.46

LMC 0.81 0.74 0.78 0.69 0.90 0.69 0.68 0.57 0.79 0.71 0.73 0.51

Best

BERT 1.36 0.40 0.40 0.33 1.41 0.37 0.33 0.28 1.23 0.42 0.38 0.23

ELMo 1.33 0.61 0.65 0.58 1.38 0.62 0.64 0.50 1.21 0.59 0.60 0.42

BSG 0.98 0.64 0.68 0.59 5.41 0.61 0.62 0.50 0.85 0.67 0.70 0.46
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MIMIC CUIMC CASI

Model NLL Acc W 
F1

M 
F1

NLL Acc W 
F1

M 
F1

NLL Acc W 
F1

M 
F1

MBSGE 0.96 0.68 0.71 0.62 4.81 0.67 0.67 0.57 0.83 0.72 0.73 0.50

LMC 0.80 0.75 0.79 0.70 0.89 0.70 0.69 0.58 0.78 0.72 0.74 0.52

A.6. Additional Evaluations

A.6.1. AGGREGATE PERFORMANCE

In the main manuscript, we report mean results across the 5 pre-training runs. In Table 7, 

we include the best and worst performing models to provide a better sense of pre-training 

variance. Even though it is a small sample size, it appears the LMC is robust to randomness 

in weight initialization as evidenced by the tight bounds.

A.6.2. BOOTSTRAPPING

For robustness, we select the best performing from each model class and bootstrap the 

test set to construct confidence intervals. We draw 100 independent random samples from 

the test set and compute metrics for each model class. Each subset represents 80% of the 

original dataset. Very tight bounds exist for each model class as can be seen in Figure 6.

Figure 6: 
Confidence Intervals for Best Performing Models.

A.6.3. EFFECT OF NUMBER OF TARGET EXPANSIONS

For most tasks, performance deteriorates as the number of target outputs grows. To measure 

the relative rate of decline, in Figure 7, we plot the F1 score as the number of candidate LFs 

increases.
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Figure 7: 
Effect of Number of Output Classes on F1 Performance. Best performing models shown.

A.6.4. ACRONYM-LEVEL PERFORMANCE BREAKDOWNS

We provide a breakdown of performance by SF on MIMIC RS between the LMC model and 

the ELMo baseline. There is a good deal of volatility across SFs, particularly for the macro 

F1 metric. We leave out the other baselines for space considerations.

LMC ELMo

Acronym Count Targets mPr mR mF1 wPr wR wF1 mPr mR mF1 wPr wR wF1

AMA 471 3 0.65 0.77 0.68 0.94 0.89 0.91 0.84 0.72 0.74 0.95 0.94 0.94

ASA 395 2 0.5 0.5 0.5 0.98 0.99 0.99 0.5 0.5 0.5 0.98 0.99 0.99

AV 491 3 0.57 0.69 0.58 0.88 0.79 0.82 0.58 0.41 0.13 0.92 0.08 0.11

BAL 485 2 0.68 0.84 0.72 0.93 0.87 0.89 0.64 0.87 0.65 0.93 0.78 0.83

BM 488 3 0.71 0.67 0.52 0.95 0.73 0.8 0.84 0.52 0.55 0.93 0.93 0.92

CnS 432 5 0.53 0.67 0.56 0.96 0.96 0.96 0.63 0.67 0.41 0.99 0.18 0.26

CEA 497 4 0.31 0.28 0.2 0.92 0.34 0.43 0.45 0.35 0.16 0.97 0.18 0.3

CR 499 6 0.47 0.61 0.38 0.97 0.84 0.88 0.17 0.17 0.01 0.91 0.04 0.01

CTA 495 4 0.49 0.44 0.46 0.98 0.94 0.96 0.51 0.89 0.49 0.97 0.85 0.91

CVA 474 2 0.93 0.91 0.91 0.92 0.92 0.91 0.78 0.5 0.37 0.76 0.57 0.42

CVP 487 3 0.61 0.76 0.51 0.92 0.63 0.75 0.45 0.56 0.44 0.91 0.72 0.77

CVS 237 3 0.47 0.78 0.38 0.88 0.47 0.53 0.47 0.34 0.34 0.78 0.78 0.74

DC 455 5 0.53 0.72 0.51 0.74 0.55 0.62 0.17 0.29 0.2 0.43 0.56 0.48

DIP 492 3 0.85 0.97 0.89 0.97 0.94 0.95 0.37 0.42 0.2 0.93 0.33 0.41

DM 484 3 0.61 0.86 0.57 0.92 0.78 0.83 0.65 0.75 0.51 0.97 0.64 0.77

DT 475 6 0.35 0.28 0.31 0.68 0.49 0.57 0.11 0.55 0.12 0.14 0.16 0.15

EC 473 4 0.59 0.74 0.54 0.95 0.93 0.93 0.27 0.59 0.16 0.1 0.04 0.05

ER 495 3 0.67 0.72 0.68 0.93 0.89 0.91 0.35 0.34 0.03 0.9 0.05 0.02

FSH 265 2 0.75 0.66 0.7 0.99 0.99 0.99 0.49 0.5 0.5 0.98 0.99 0.98
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LMC ELMo

Acronym Count Targets mPr mR mF1 wPr wR wF1 mPr mR mF1 wPr wR wF1

IA 171 2 0.51 0.74 0.35 0.99 0.49 0.64 0.51 0.5 0.02 0.99 0.02 0.01

IM 492 2 0.66 0.9 0.7 0.95 0.84 0.88 0.54 0.54 0.16 0.93 0.16 0.16

LA 454 3 0.7 0.98 0.75 0.99 0.98 0.99 0.48 0.62 0.19 0.96 0.06 0.05

LE 481 7 0.39 0.49 0.38 0.93 0.78 0.84 0.28 0.56 0.26 0.78 0.42 0.53

MR 492 5 0.44 0.62 0.35 0.96 0.5 0.63 0.42 0.72 0.26 0.92 0.34 0.31

MS 488 6 0.48 0.6 0.33 0.92 0.33 0.46 0.41 0.55 0.31 0.75 0.42 0.37

NAD 465 2 0.4 0.5 0.44 0.64 0.8 0.71 0.58 0.54 0.54 0.72 0.77 0.73

NP 463 4 0.44 0.58 0.48 0.93 0.87 0.89 0.53 0.38 0.32 0.91 0.88 0.84

OP 489 6 0.59 0.57 0.57 0.91 0.91 0.9 0.52 0.66 0.57 0.78 0.85 0.81

PA 412 6 0.38 0.48 0.29 0.82 0.46 0.44 0.43 0.43 0.26 0.92 0.35 0.36

PCP 488 4 0.44 0.59 0.32 0.67 0.43 0.45 0.48 0.41 0.35 0.77 0.44 0.45

PDA 478 3 0.49 0.53 0.48 0.83 0.74 0.75 0.86 0.8 0.82 0.8 0.81 0.79

PM 375 3 0.4 0.38 0.21 0.83 0.32 0.28 0.46 0.4 0.41 0.78 0.81 0.78

PR 241 4 0.67 0.75 0.58 0.82 0.71 0.76 0.6 0.35 0.31 0.78 0.47 0.39

PT 496 4 0.53 0.69 0.58 0.96 0.93 0.94 0.42 0.35 0.17 0.94 0.11 0.13

RA 490 4 0.5 0.57 0.47 0.91 0.72 0.78 0.66 0.56 0.58 0.91 0.9 0.9

RT 470 4 0.55 0.47 0.41 0.91 0.66 0.69 0.55 0.46 0.37 0.82 0.66 0.58

SA 454 5 0.8 0.77 0.61 0.99 0.84 0.85 0.58 0.65 0.48 0.73 0.82 0.77

SBP 489 2 0.59 0.55 0.24 0.86 0.25 0.2 0.64 0.74 0.54 0.87 0.57 0.61

US 290 2 0.91 0.91 0.91 0.92 0.92 0.92 0.86 0.61 0.6 0.82 0.75 0.69

VAD 482 4 0.44 0.48 0.25 0.9 0.37 0.51 0.25 0.27 0.04 0.8 0.07 0.13

VBG 483 2 0.79 0.75 0.7 0.83 0.71 0.7 0.96 0.95 0.95 0.96 0.95 0.95

AVG - - 0.57 0.65 0.51 0.9 0.72 0.75 0.52 0.54 0.37 0.83 0.52 0.52
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A.7. Efficiency

Figure 8: 
Accuracy by pre-training hours. All plots flatten after 40 hours (not shown).

Task performance at the end of pre-training is an informative, but potentially incomplete, 

evaluation metric. Recent work has noted that large-scale transfer learning can come at 

a notable financial and environmental cost (Strubell et al., 2019). Also, a model which 

adapts quickly to a task may emulate general linguistic intelligence (Yogatama et al., 

2019). In Figure A.7, we plot test set accuracy on MIMIC RS at successive pre-training 

checkpoints. We pre-train the models on a single NVIDIA GeForce RTX 2080 Ti GPU. We 

hypothesize that flexibility in latent word senses and shared statistical strength across section 

headers facilitate rapid LMC convergence. Averaged across datasets and runs, the number of 

pretraining hours required for peak test set performance is 6 for LMC, while 50, 51, and 55 

for MBSGE, BSG, and ELMo. The non-embedding parameter counts are 169k for the LMC 

and 150k for both the BSG and MBSGE. ELMo has 91mn parameters. Taken together, the 

LMC efficiently learns the task as a by-product of pre-training.

A.8. Words and Metadata as Mixtures

Consider metadata and its building blocks. A natural question to consider is the distribution 

of latent meanings given metadata. We can simply write this as

p zik ∣ mk = ∑
wik

p zik ∣ wik, mk p wik ∣ mk (33)

wik denotes an arbitrary word in document k and the summation marginalizes it with respect 

to the vocabulary. p(wik|mk) can be measured empirically with corpus statistics. We will 
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denote this probability value as ξwik ∣ mk. In addition, p(zik|,wik,mk) has already been defined 

as N(nn(wik,mk; θ)). Therefore,

p zik ∣ mk = ∑
wik

N nn wik, mk; θ ξwik ∣ mk (34)

The distribution of the latent space over metadata is a mixture of Gaussians weighted by 

occurrence probability in metadata k. One can measure the similarity between two metadata 

using KL-Divergence. This measure is computationally expensive because each metadata 

can be a mixture of thousands of Gaussians. Monte Carlo sampling, however, can serve as 

an efficient, unbiased approximation.

It is also a natural question to ask about the potential meanings a word can exhibit (Figure 

9). That is,

p zik ∣ wik = ∑
mk

p z ∣ mk, wik p mk ∣ wik (35)

p(mk|wik) can also be measured empirically. We denote this distribution as βmk ∣ wik.

p zik ∣ wik = ∑
mk

N nn wik, mk; θ βmk ∣ wik (36)

Figure 9: 
The meaning of “Amazon” can be interpreted as a mixture of Gaussian distributions in 

different metadata.
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A.9. Word and Metadata as Vectors

With a certain trade-off of compression, we can represent metadata as a vector using its 

expected conditional meaning:

Ezik ∣ mk zik = ∑
wik

ξwik ∣ mk∫ zikN nn wik, mk; θ dzik (37)

Since ∫ zikN nn wik, mk; θ dzik = Ezik ∣ wik, mk zik  The expectation can be simply written as 

the combination of the means of normal distributions that form metadata k:

Ezik ∣ mk zik = ∑
wik

ξwik ∣ mkE zik ∣ wik, mk (38)

The above equation sums the expected meaning of words inside a metadata weighted by 

occurrence probability. Following the same logic for words yields

Ezik ∣ wik zik = ∑
mk

βmk ∣ wikE zik ∣ wik, mk (39)
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Figure 1: 
The word “kiwi” can take on multiple meanings. When used inside a National Geographic 

article, its latent meaning is restricted to lie inside the red distribution and is closer to “bird” 

than “fruit”.
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Figure 2: 
LMC Plate Notation.
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Figure 3: 
Average accuracy @K across 5 pre-training runs.
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Figure 4: 
The latent sense distribution changes when manually interpolating the variational network 

weight between the word “MG” & different section headers.
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Table 1:

LFk represents the kth LF.

Model Ranking Function

BERT Cosine BERTavg
max(SF; c), BERTavg

max LFk
ELMo Cosine(ELMOavg(SF; c), ELMOavg(LFk))

BSG DKL(q(z|SF, c)||p(z|LFk))

MBSGE DKL(Avgx∈{SF,m} (q(z|x, c))||z|LFk))

LMC DKL q(z ∣ SF, m, c) ∑m p z ∣ LFk, m βm ∣ LFk
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Table 4:

Conditional latent meaning: history

Section Most Similar Words

Past Medical History depression, diabetes

Social History smoking, depression

Family History depression, smoking

Glycemic Control cholesterol, diabetes

Left Ventricle heart, depression

Nutrition diabetes, cholesterol
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Table 5:

Section header embeddings.

Section Nearest Neighbors

Allergies Social History, Prophylaxis, Disp

Chief Complaint Reason, Family History, Indication

History of Present Illness HPI, Past Medical History, Total Time Spent

Meds on Admission Discharge Medications, Other Medications, Disp

Past Medical History HPI, Social History, History of Present Illness
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