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Abstract

Accuracy of protein-ligand binding free energy calculations utilizing implicit solvent models is 

critically affected by parameters of the underlying dielectric boundary, specifically the atomic 

and water probe radii. Here, a global multidimensional optimization pipeline is developed to find 

optimal atomic radii specifically for protein-ligand binding calculations in implicit solvent. The 

computational pipeline has these three key components: (1) a massively parallel implementation of 

a deterministic global optimization algorithm (VTDIRECT95), (2) an accurate yet reasonably fast 

generalized Born implicit solvent model (GBNSR6), and (3) a novel robustness metric that helps 

distinguish between nearly degenerate local minima via a post-processing step of the optimization. 

A graph-based “kT-connectivity” approach to explore and visualize the multidimensional energy 

landscape is proposed: local minima that can be reached from the global minimum without 

exceeding a given energy threshold (kT) are considered connected. As an illustration of the 

capabilities of the optimization pipeline, we apply it to find a global optimum in the space of just 

five radii: four atomic (O, H, N, and C) radii and water probe radius. The optimized radii, ρW = 

1.37 Å, ρC = 1.40 Å, ρH = 1.55 Å, ρN = 2.35 Å and ρO = 1.28 Å, lead to a closer agreement of 

electrostatic binding free energies with the explicit solvent reference than two commonly used sets 

of radii previously optimized for small molecules. At the same time, the ability of the optimizer to 

find the global optimum reveals fundamental limits of the common 2-dielectric implicit solvation 

model: the computed electrostatic binding free energies are still almost 4 kcal/mol away from the 
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explicit solvent reference. The proposed computational approach opens the possibility to further 

improve the accuracy of practical computational protocols for binding free energy calculations.

Graphical Abstract

Introduction

Many cellular processes such as signal transduction, gene expression, and protein synthesis 

are controlled by the binding of biomolecules. In structure-based drug discovery, in 

silico, accuracy and computational efficiency of the binding free energy prediction of 

small molecules to biomolecular targets are of paramount importance for high throughput 

screening of potential drug candidates.1–4 However, fast and accurate computational 

prediction of binding free energies continues to be challenging,5–13 and its outcomes depend 

strongly on the molecular modeling technique, particularly, on how well the solvent effects 

are approximated.11,14 There are two major categories of solvent models used in this field:15 

explicit and implicit. Within the explicit solvent framework, the mechanistic detail and the 

energetic effect of every single water molecule are explicitly considered, which in turn 

results in considerable computational cost. The implicit solvent model,16–20 which treats 

the solvent as a continuum dielectric with polar as well as non-polar properties of water, 

may often offer a good balance between accuracy and speed. Within this framework, the 

generalized Born model21–30 is widely used due to its relative simplicity and efficiency.31,32

A key step in implicit solvent modeling is the determination of the solute/solvent dielectric 

boundary (DB), a region of space over which the dielectric constant ϵ(r) shifts from the 

value characteristic of the solute interior (e.g., ϵ = 1 or 4) to that of the solvent, (e.g., 80 

for water). Outcomes of implicit solvent calculations have proven to be extremely sensitive 

to the details of DB.33,34 The dielectric boundary is determined by the radii of the atom 

types comprising the protein as well as the size of the water probe.34,35 Treating the radii 

as free parameters, optimization of the dielectric boundary, considering only the minimum 

of four most abundant atom types in proteins (O, H, N, and C) along with the radius of 

the water probe, would require finding a minimum of the relevant objective function in a 

5-dimensional parameter space. In the past, such optimizations for solvation free energies 

of small molecules were performed — the optimal DB minimized the deviation of the 

computed target from an accepted reference, either experimental or estimated via explicit 

solvent.36–41 One potential technical issue with previously derived optimal radii is that the 
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true global optimum may not have been found – even for small molecules, the corresponding 

optimization problem is highly demanding, textbook numerical approaches are unlikely to 

find the global optimum in a rugged, multidimensional landscape. While this issue may 

not be critical in practice if a “good enough” local optimum is found, it still leaves the 

question open of how well one can do in principle. Finding a true global optimum can point 

to limitations of the underlying physical theory, and thus prompt further development. For 

practical calculations, a much more important limitation of optimal radii based on small 

molecule hydration energies is that it is highly likely that parameters defining the DB that 

are optimal for small molecule calculations are not optimal for estimates of protein-ligand 

binding free energies,6,42,43 which is of paramount interest.

To the best of the authors’ knowledge, global DB optimization targeting protein-ligand 

binding has not yet been performed, likely because of the sheer challenge of the 

corresponding optimization problem. The objective function landscape corresponding to the 

protein-ligand binding profile is very likely rugged, with numerous local minima. Finding 

the global minimum of such a non-convex function with many local minima is a very hard 

problem.44,45 Descent methods quickly terminate at a local minimum point. Evolutionary 

algorithms do not explore the entire feasible space, may not even converge to a local 

minimum point, and are generally inefficient in terms of the number of function evaluations. 

Statistical methods are likewise inefficient in higher dimensions d. Brute force search on a 

grid with S points in each of d dimensions has complexity Sd, which is intractable in practice 

even for modest S = 102 and d = 5 used in this feasibility study, for the computationally 

expensive function evaluations of interest here. Truly global methods such as Lipschitzian 

optimization are efficient, but require knowledge of the Lipschitz constant that is often 

unavailable. Recent advances in deterministic methods for global optimization46 have led 

to an algorithm (DIRECT) that is remarkably frugal in terms of the number of function 

evaluations, practical for d < 100, does not require knowledge of a Lipschitz constant, 

and is theoretically guaranteed to find a global minimum point. The sophisticated search 

strategy of DIRECT has been generalized to a massively parallel version, implemented in 

the package VTDIRECT9547 used here.

As if finding a global optimum point was not hard enough, the problem of finding a 

practically useful optimum is even harder: the optimum must also be robust to virtually 

inevitable perturbations in either the replication of the optimal parameters or in the objective 

function. The latter source of uncertainty is relevant here, as the objective function defined 

on a necessarily limited set used in the training is guaranteed to be somewhat different from 

that corresponding to the test set chosen by somebody else in a specific application of the 

optimal parameters. One approach is to design a robustness metric that can be employed as 

a post-processing step, decoupled from the objective function, and in principle applicable to 

the outcome of any optimization.48

This work has several novel aspects: first, the atomic radii are optimized specifically 

for protein-ligand binding free energy calculations. Second, a Statistical Physics inspired 

method is developed to select the best robust solution. The basic idea is that not only the 

value of the minimum of the objective function, but also the width of the “well” around 

the point should be taken into account. In order to have a better insight into the energy 
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landscape, it is essential to explore the objective function around candidate solutions. Here 

we propose a connectivity graph-based approach to the problem. Moreover, to the best 

of our knowledge, the global optimization technique VTDIRECT95 is new to the field of 

structural biology.

Materials and Methods

The electrostatic component of binding free energy

The total solvation free energy ΔGsolv of a molecule is decomposed into the polar and 

non-polar component:49

ΔGsolv = ΔGpol + ΔGnonpol . (1)

Given ΔGpol, one can calculate the polar component of binding free energy, ΔΔGpol, via the 

following thermodynamic cycle illustrated in Fig. 1; full details can be found in.50

ΔΔGpol = ΔGpol
complex − ΔGpol

protein − ΔGpol
ligand + ΔECoulombic . (2)

In general, the estimation of protein-ligand binding free energy is extremely computationally 

demanding. In order to make possible tens of thousands of such computations required for 

the DB optimization, single-point energy estimates are used here. The strategy of relying on 

single-point calculations in the optimization is consistent with the use of single snapshot, 

and fixed structures to obtain the explicit solvent reference ΔΔGpol values51 employed 

here. The use of single snapshots for the optimization is a limitation, but a necessary one: 

attempting to estimate ΔΔGpol for each trial point in the 5-dimensional atomic radii space 

based on thousands of snapshots, as is common in standard MMGBSA protocols,52 would 

have been prohibitively expensive in the context of the type multidimensional optimization 

we have pursued.

We choose ΔΔGpol, as opposed to the total ΔΔG, as the main reference for several reasons. 

First, the main objective is to find parameters for the optimal DB, which explains the 

focus on electrostatics. Second, many practical continuum solvent models are based on 

the approximation in Eq. 1, where the polar and non-polar components of the total free 

energy are decoupled from each other; while this approximation has its limitations,53–56 

it is widely used.15 Here, we decouple the polar and non-polar contributions by using as 

the reference ΔΔGpol values computed in explicit solvent (TIP3P), and not considering the 

non-polar contribution in finding the optimal parameters of the dielectric boundary. Another 

reason why we do not consider the non-polar component of the total binding free energy 

for optimizing the DB within this proof-of-concept work is because the total includes the 

entropy component– practical computational estimates of the latter involve potentially large 

uncertainties. Fundamentally, the DB is related to the shape of the molecule, while the 

entropy characterizes fluctuations about this shape, which is another argument for why it 

makes sense to consider optimizing parameters of the two separately, at least as the first 

approximation.
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Implicit solvent model

The generalized Born (GB) model has become popular in implicit solvent framework due 

to its reasonable compromise between accuracy and speed, and the availability of its diverse 

flavors in leading molecular modeling packages. In this work, the polar component of the 

solvation energy, ΔGpol, is calculated by the modification57,58 of the generalized Born59 

model:

ΔGpol = ∑
ij

ΔGij
pol ≈ − 1

2
1

ϵin
− 1

ϵout
1

1 + βα ∑
ij

qiqj
1

fij
GB + αβ

A , (3)

where ϵin = 1 and ϵout = 80 are the dielectric constants of the solute and the solvent, 

respectively, β = ϵin/ϵout, α = 0.571412, and A is the electrostatic size of the molecule, 

which is essentially the overall size of the structure that can be computed analytically. Here 

we employ the most widely used functional form fij
GB = rij2 + RiRj exp −rij2 /4RiRj

1
2 , where 

rij is the distance between atomic charges qi and qj, and Ri, Rj are the so-called effective 
Born radii of atoms i and j, which represent each atom’s degree of burial within the solute. 

The dielectric (solute/solvent) boundary enters into the model via these radii. The effective 

Born radii R are calculated by the “R6” equation:60–63

Ri
−3 = − 1

4π∮∂V

r − ri
r − ri

6 ⋅ dS , (4)

where ∂V represents the chosen representation of the dielectric boundary of the molecule, 

dS is the infinitesimal surface element vector, ri is the position of atom i, and r represents 

the position of the infinitesimal surface element. Note that the dielectric boundary (DB) 

is not an experimentally measurable entity, a number of different approaches exist19,34 

for representing it within the implicit solvent model. Solvent excluded surface (SES), 

also known as molecular surface (MS), is a widely used option to represent the DB in 

continuum electrostatic calculations,20,64–69 and we employ it here. While it was often 

argued70,71 that the DB based on SES is physically more realistic than computationally 

more facile alternatives such as VDW-based surface, opposite arguments and case studies 

exist.72 What is certain is that outcomes of continuum solvent calculations are very sensitive 

to details of the DB,33,34 including how internal cavities are treated. While the definition 

and representation of internal cavities within SES is relatively simple and robust, more 

sophisticated approaches exist, for example those based on multiple interacting surfaces 73 

or smooth Gaussian dielectric boundary.74

Within the SES-based representation of the DB, we use a grid based molecular surface 

implementation of “R6”, called GBNSR6,75 for calculating the integral in Eq. 4. The grid 

resolution is set to 0.5 Å by default. A detailed analysis of GBNSR6 and its input parameters 

can be found in Ref.75 Briefly, GBNSR6 approximates the ideal molecular surface with 

orthogonal grid patches. This approximation is based on the “field-view” method76 inspired 

by the conservation of the flux through different surfaces. GBNSR6 has recently been 

shown to be the most accurate among several other GB flavors in predicting the electrostatic 
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binding free energies, where the results from the Poisson-Boltzmann (PB) model were 

chosen as the reference.50 Notice that, while the PB40,65–67,77–81 is generally more accurate 

than the GB, using the PB model directly in a global multidimensional optimization pipeline 

for calculating ΔΔGpol is extremely computationally demanding. Specifically, the use of 

a high accuracy PB solver77 in our optimization pipeline would have been prohibitively 

expensive; GBNSR6 approximates the PB reasonably well, at a small fraction of the cost.

Radial distribution function

A set of 11 small molecules was selected from a larger set of 504 small drug-like 

molecules,82 see Tab. 1. The choice of these 11 structures was guided by a prior work,83 

where 10 ns long simulation trajectories were generated for all 504 molecules using 

implicit29 water Langevin dynamics at 298 K. To minimize possible uncertainties84 due to 

inadequate conformational sampling of flexible molecules, these 11 structures were among 

the ones with the lowest time averaged RMSD with respect to the original conformation. 

For the “solute atom”-“water oxygen” radial distribution functions (RDF) estimates, we 

performed explicit water simulations on these 11 shortlisted structures using Amber85 

v. 12 simulation package; molecule coordinate and topology files were obtained from 

elsewhere82 and molecule parameters were assigned using the GAFF force field.86 The 

molecules were solvated in a pre-equilibrated cubic box with the TIP3P model water with 

at least 12 Å distance from the solute to the nearest box edge. The solute-solvent system 

was prepared first by a shallow steepest descent minimization followed by a second order 

conjugate gradient minimization while restraining solute atoms in the Cartesian space using 

a harmonic potential of 200 kcal/mol/Å2. Subsequently, equilibration and production runs 

were performed using the Langevin dynamics with a collision frequency of 1 ps−1 and 

integration time step of 2 fs while the bonds were constrained by the SHAKE algorithm.87 

Positional restraints of 200 kcal/mol/Å2 were employed on solute atoms throughout, and 

electrostatic interactions were approximated via the Particle Mesh Ewald (PME) method, 

with 9 Å direct sum cutoff. Minimized solute-solvent system was equilibrated in two steps; 

first, the system was heated to 298 K for 1 ns using an NVT ensemble followed by a 

298 K, 1 bar NPT ensemble simulation for another 1 ns. The RDFs were computed from 

the later 18 ns of a total of 20 ns long trajectory from 298 K, 1 bar NPT simulations 

using the radial function in cpptraj88 feature of AmberTools between each solute atom and 

water oxygen. Positional restraints in the production runs were used to obtain a “clean” 

estimate of the bounds for the atom + water probe distances. Running the simulation without 

such restraints would likely lead to a larger amount of noise in the RDF, coming from 

conformational variability. This approach is consistent with our choice of a subset of the 

most rigid molecules from the small molecule data set listed in Tab. 1.

Objective function

Considering the five radii (ρw, ρC, ρH, ρN, ρO) as free parameters, the dielectric boundary 

optimization turns into a multidimensional constrained optimization with respect to 

minimization of error in calculating ΔΔGpol. The root-mean-square error (RMSE) objective 

function to be minimized is
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EC(p) = 1
N ∑

ci ∈ C
ΔΔGpol

GBNSR6 ci, p − ΔΔGpol
TIP3P ci

2, (5)

where ΔΔGpol
GBNSR6 ci, p  is the electrostatic binding free energy calculated by GBNSR6 for 

complex (ci) given point p in the 5-dimensional parameter space of (ρw, ρC, ρH, ρN, ρO). 

ΔΔGpol
TIP3P ci  is the reference electrostatic binding free energy calculated with TIP3P for 

complex (ci), and C is a given data set of N complexes. (In our case, C is a data set of N = 15 

small protein-ligand complexes.) The optimization is performed under the constraints on the 

probe and atomic radii listed in Eq. (9). parmed editor in AmberTools is used for replacing 

the five radii, that is an old point p with a new one, in complex ci, at each iteration of the 

optimization. For previously developed radii not optimized in this work, the equation above 

is also used to compute the RMSE for comparison, without any optimization. The above 

objective function is deliberately cast in a form that retains the units (dimensionality) of the 

physical target quantity, energy here.

Sampling around the minimum points

To have better insight into the behavior of the objective function, the robustness analysis 

was performed on one thousand sample points in the close vicinity of the best minimum 

points. Latin hypercube sampling (LHS),89 a common algorithm for high dimensions,90 was 

selected from the QNSTOP package91. Briefly, LHS partitions the multidimensional space 

into grid cells and generates random sample points so that there exists one and only one 

sample point per row and column. A 2-dimensional example to demonstrate the idea is 

shown in Fig. 2.

LHS is easily generalized to high dimensions where many well-known methods, such as 

naive Monte Carlo, fail to explore the space comprehensively. To find the size of the 

sampling box, the global minimum point was examined as follows: fix four of the five 

variables around this point alternatively, and change the fifth one so that the deviation from 

the optimal solution reaches 1.2 kcal/mol (~ 2kT). This strategy guarantees quite a wide 

region to gain meaningful samples, while avoiding potential overlaps between global and 

local solutions. Expectedly, this strategy produces an asymmetric rectangular sampling box, 

as the electrostatic characteristics of the atomic types are different:

lower bounds = ρW − 0.6 Å,  ρC − 0.5 Å,  ρH − 0.1 Å,  ρN − 1.0 Å,  ρO − 0.05 Å ,

upper bounds = ρW + 0.2 Å,  ρC + 0.5 Å,  ρH + 0.1 Å,  ρN + 0.3 Å,  ρO + 0.05 Å .

Data sets for training and test

The entire data set consists of 15 protein-ligand complexes for which ΔΔGpol estimates 

in explicit solvent (TIP3P) are available, and described in detail in Ref.51 This data set 

was used previously in similar contexts.50,51,92 Small in size (1635–1995 atoms) and 

diverse with respect to values of ΔΔGpol (0.71–25.01 kcal/mol), these complexes are good 
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candidates to resemble those in drug discovery. The complexes, ligands, and proteins 

are neutral, individually. This choice is deliberate, as it avoids various uncertainties and 

complications due to the use of Ewald summation and periodic boundary conditions in 

explicit solvent simulations used in a previous study51 to estimate the electrostatic binding 

free energies employed here as the reference. Also, the structures were restrained51 to 

mitigate uncertainties due to conformational variability. Unless otherwise specified, the 

data set is partitioned into two subsets of eight (1pbk, 1fkf, 1bkf, 1fkh, 2hah, 2fke, 1zp8, 

1f40) and seven (1b11, 1fb7, 1fkb, 1fkg, 1fkj, 1fkl, 3kfp) complexes in order to train and 

test the proposed computational protocol, respectively. This partitioning guarantees similar 

distribution of ΔΔGpol values between the two subsets.

VTDIRECT95: global multidimensional optimization method

The deterministic DIRECT (Dividing Rectangles) global minimization algorithm46 is a 

powerful optimization method for a moderate number of dimensions. DIRECT guarantees46 

global convergence if the objective function is Lipschitz continuous, without requiring a 

gradient or knowledge of the Lipschitz constant. With wide application in many practical 

nonlinear optimization problems, DIRECT has proven to be a straightforward and efficient 

optimization method. In a nutshell, DIRECT iteratively divides the search space into boxes, 

identifies the potentially optimal boxes (those most likely to contain a global minimum 

point), and subdivides them into smaller boxes. An illustration of this algorithm for a 

2-dimensional global search is given in Fig. 3.

VTDIRECT9547 is a Fortran 95 package containing a serial and a massively parallel 

implementation of DIRECT, scaling to several thousand processors, due to the usage of 

distributed control parallelism instead of a common master-slave paradigm, and dimension 

100. Sophisticated dynamic data structures and memory management strategies make 

VTDIRECT95 efficient and robust.93–95 VTDIRECT95 is used for optimizing the atomic 

radii and the probe radius in a feasible range, to be determined in “Results and Discussion”, 

so that the binding free energies calculated by GBNSR6 have the best agreement with 

those calculated by the reference explicit solvent model TIP3P.96 As with any mathematical 

software, VTDIRECT95 has a few input parameters whose understanding and tuning will 

improve performance. However, extensive tuning of these is not necessary, and the time 

spent tuning usually outweighs the time from a single run with reasonable (derived from 

domain knowledge) and default values.

VTDIRECT95 was employed for the 5-dimensional global optimization with respect to the 

objective function shown in Eq. (5), its argument being the vector of parameters: (ρw, ρC, 

ρH, ρN, ρO). We tune three parameters to improve efficiency of the global optimization with 

VTDIRECT95:

• eval_limit = 40000: This condition terminates the optimization after 40,000 

number of objective function evaluation. Each round of minimization took 1.5 

days using 64 CPUs (AMD Opteron (TM) Processor 6276) in parallel to run 

40,000 objective function evaluations. There was no decrease, within 5 decimal 

point accuracy, in objective function value beyond 38,000 iterations.
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• eps_fmin = 0.0001: This parameter stops subdividing any box further unless the 

expected change in the objective function in that box is greater than 0.0001. This 

prevents wasted compute time exploring the box where the objective function is 

not expected to change much. On the other hand, this is a rough estimate over 

the expected changes in each box. To avoid losing the global minimum, and after 

several trials, the best setting for this parameter turned out to be 0.0001.

• min_sep = 0.5: In computing multiple (k) lowest minima corresponding to 

the global and local minimum points, without limiting the distance between 

them, VTDIRECT simply returns the k best values, all likely next to each 

other. We define two minimum point (p1 and p2) in the radii space to be 

meaningfully different if their corresponding atomic radii are 0.2 Å far apart, 

on average, per dimension (that is per atom type). This constraint leads 

to a minimum 0.5 Å distance between two such points in a 5-dimensional 

space, i.e., d p1,  p2 = p1
1 − p2

1 2 + p1
2 − p2

2 2 + p1
3 − p2

3 2 + p1
4 − p2

4 2 + p1
5 − p2

5 2

= 5 × (0.2)2 ≈ 0.5
. 

min_sep is the corresponding parameter in VTDIRECT95 that controls the 

minimum distance allowed between any two optimal points. Note that this 

parameter is taken into account after the optimization, and it does not affect 

the global search itself, only which minima are reported.

In summary, we choose a combination of eval_lim and eps_fmin for an efficient exploration 

of the parameter space, and minimizing computational time wasted on those boxes that are 

not likely to contain the global minimum. After the search, by setting min_sep = 0.5 we 

select those best minima that are “meaningfully” far apart. The remaining parameters of 

VTDIRECT95 are left as default. See Supplementary Information for a complete list of 

parameters used in this work.

Proposed metric of optimum robustness

Even if globally optimal parameters have been found, there is no guarantee that their use 

in practice will always lead to the most optimal outcome due to multiple sources of error: 

for example, physical manufacturing of the system with the exact optimal parameters may 

not be possible in practice (case I) due to inevitable errors in the process. Besides, optimal 

parameters are obtained based on a limited training data set, so the objective function may 

be different for the actual problem (test set) where the optimal parameters are used in 

practice (case II). Although different strategies may be employed to mitigate over-fitting, 

these do not completely remove the risk of low transferability between data sets. Therefore 

we argue that a solution that is slightly less optimal than the global optimum, but leads to 

less error when replicated, may be preferred over the true global optimum. In this section, 

we propose a general metric for studying the optimum robustness, potentially applicable to 

the incidents of the two sources of error. The motivation is illustrated for the manufacturing 

source of “noise”, case I, which we believe is the most straightforward scenario. Later, a 

detailed application of the metric is developed for case II which is directly relevant to our 

problem of dielectric optimization.
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Motivation.—To illustrate, consider the 1-dimensional optimization scenario shown in Fig. 

4. In the first example (left panel), the two minima correspond to the wells at x = 0.5 

and x = 1.5, which are equally “wide”, meaning that inevitable small deviations of the 

parameters from the optimal values (shown within the orange interval) lead to the similar 

deviations of the objective function from the minimum. In that respect, both minima are 

equally robust. As the objective function E(x) at x = 0.5 is lower than that at x = 1.5 by a 

positive Δ, the minimum at x = 0.5 is preferred. In contrast, for the function shown in the 

right panel, one can argue that the local minimum at x = 1.5 is a better choice under some 

circumstances, even though the value of the objective function at x = 1.5 is higher by Δ 

than the global minimum at x = 0.5. This is because the local minimum well at x = 1.5 is 

wide and flat, so that deviations of the parameters from this local minimum – due to, for 

example, manufacturing errors in replicating the precise optimal parameter values– do not 

lead to appreciable deviations in the objective function. However, small changes (“noise”) 

in the parameters from the global minimum at x = 0.5 result in substantial deviations in 

E(x). The above reasoning about depth vs. width is intuitive, but not easy to express in a 

mathematical form. The main difficulty is comparing the depth and the width on the same 

footing: in general, these are not even expressed in the same physical units, e.g., energy vs. 

length in the case of the optimization discussed in this work. Insight into a possible solution 

to the problem comes from Statistical Physics:97 free energy

F = − ξ ln∑
x

e− E(x) − Eg /ξ
(6)

includes both the depth (energy) and the width (entropy) of a state, where Eg is the global 

minimum of E(x) and ξ = kT is, in effect, the strength of the “thermal noise”. The state x 
with the lowest free energy F corresponds to the most preferred thermodynamic state in the 

energy landscape E(x) of the system when it is coupled to a thermal noise.

Unfortunately, Eq. (6) is derived for the specific case of systems in thermal equilibrium, and 

can not be assumed to be valid a priori for a general optimization problem. Moreover, it is 

not clear how to choose ξ in Eq. (6) in general. For example, simply equating E(x) in Eq. (6) 

with an objective function that corresponds to the cost of car production is difficult to justify. 

Note that, in Physics, E(x) and ξ have very specific properties that factor into the specific 

form of Eq. (6). Despite these conceptual difficulties, free-energy like functions have been 

used in machine learning98 and optimization99 mainly as the objective function. However, 

it is worth mentioning that even if the entire energy landscape is explored with a perfect 

objective function, finding the most robust solution is nontrivial and necessitates further 

analysis. The discussed entropy idea cuts across multiple disciplines. For instance, von 

Neumann entropy was used as a measure of the complexity of protein binding pockets,100 

networks101 and graphs.102 Here, our focus is on the robustness of optimal solutions with an 

application to a problem related to computational drug discovery.

In what follows a more general metric of robustness of optima is designed, free from the 

limitations mentioned above. Several observations about the structure of Eq. (6) give insights 

into the general structure of mathematical expressions that might be useful in comparing 

widths and depths of minima. The factor e− E(x) − Eg /ξ in Eq. (6) penalizes heavily all the 
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contributions to the sum in F that exceed the global minimum Eg of E(x) by more than ξ; 

the value of ξ controls the penalty. In other words, only a few sample points contribute to the 

sum in F from a narrow well, while many more contribute from a wide well.

Proposed robustness metric.—Inspired by the above example from Statistical Physics, 

we propose the following measure of optimum robustness: the expected value 〈E〉 of the 

objective function taken over a representative neighborhood of the given optimum point. 

Specifically, 〈E〉 = ∫ E(X)P(X)dX where P(X) is the probability distribution appropriate 

for the specific problem; P(X) characterizes the uncertainty of replicating the optimal 

parameters or the objective function optimum or both. Suppose 〈E1〉 and 〈E2〉 are the 

expected values of the objective function around minimum point X1 and X2, respectively; 

then, by the proposed criterion, if 〈E1〉 < 〈E2〉 then minimum point X1 is preferred over 

minimum point X2. Otherwise, X2 is preferred. Qualitatively speaking, 〈E〉 is a robustness 

metric compromising between “width” and “depth”. Using Fig. 4 again as an illustration: 

on the left panel, the average of the objective function values in the left well is lower than 

that in the right one within their sampling boxes. In the right panel, while the narrow well 

contains the global minimum point, the average of its objective function values within the 

sampling box is higher than that of the wider well. The statistical meaning of the proposed 

robustness criterion can be made even more intuitive by noting that it is equivalent to the 

following: “choose X1 if the probability that 〈E1〉 < 〈E2〉 is greater than 1/2.” That is if 

the minimum is chosen by this criterion, chances are it delivers the lowest deviation from 

the reference, statistically speaking. The proof is particularly straightforward if one assumes 

normal distribution for P(X):  P E1 < E2 = 1
2erfc μ

2σ , where μ = 〈E1〉 − 〈E2〉, and σ2 is the 

corresponding variance.

Below we develop an approach to estimate 〈E〉 in practice. Motivated by the 1-dimensional 

statistical discussion earlier, consider an exponentially decaying weighted sample in a box B 
around a local minimum point X* (in n dimensions) given by

E ∣ X* = ∫
B

E(X)P(X)dX = ∫
B

AE(X)e−(1/2) X − X* tΣ−1 X − X* dX, (7)

where Σ is a n×n diagonal matrix with Σjj being the empirical variance of Xj*, for j ∈ 1, 

…, n. The specific form of P(X) = Ae−(1/2) X − X* tΣ−1 X − X* , where A is the normalization 

factor, is motivated by the common assumption of normal distributions for complex systems. 

However, note that, in general, no statistical distributional assumptions have to be made 

here, and that any reasonable decaying weight function P(X) based on the data could be 

used instead, as long as it satisfies the obvious normalization condition ∫
B

P(X)dX = 1. In 

what follows we verify the robustness of the proposed metric to the specific choice of P(X). 

Without loss of generality and for the sake of simplicity and illustration, in what follows 

we consider E(X) as a function of one variable X. In addition, for the sake of clarity and to 

simplify notation, we assume that the coordinate origin is shifted to X*.
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Uncertainty in reproducing the objective function.—Assume that the exact 

replication of optimal parameters is possible. (This is in fact the case in the 

dielectric optimization problem, where the exact optimal atomic radii can be generated 

computationally). As discussed earlier, it is unavoidable that, when a new data set (test set) 

is considered, the objective function will deviate from that used in the training to find the 

optimal parameters. To measure this deviation, consider the shape of the objective function 

in the close vicinity of the optimal parameters, see Fig. 5 left panel. Around its minimum 

point on the training set, the objective function is (nearly) a parabola such as E(X) = aX2 + 

c. Deviation from this parabola results in another parabola such as E′(X) = a′(X − b)2 + c′ 
on the test set. Note that shape conservation among all sets is a valid assumption because the 

training data set is supposed to be a legitimate representative of the whole set.

In general, each new test set will have its own values of a, b, and c. However, note that 

the value of the objective function at its minimum point on each parabola is not affected 

by changes in “a”. When several test data sets are studied, changes in “c” lead to positive 

and negative deviations from the optimal objective function. It is not unreasonable to assume 

that this distribution is symmetric around its mean, and therefore the deviations in “c” cancel 

out for a statistically significant number of test sets. Altogether, on average E′(0) ∝ b2. 

Using a 1-dimensional version of Eq. (7) for the illustration, b N 0, σ2 . What the zero mean 

of the distribution implies is that the training set is well chosen, that is representative of 

the problem and unbiased. We assume this to be the case; the assumption can be verified 

explicitly in each specific case. Given this distribution, the average of the objective function 

values is

E ≅ A∫
b ∈ B

E(b)e− b2

2σ2db, (8)

where B is the sampling box around b = 0, and A normalizes the PDF, see “Materials 

and Methods”. To estimate σ in principle, one needs to compare Ek(X) from a statistically 

significant number k of independent test sets; each Ek(X) is compared to E(X) from the 

training set to identify the value of bk, e.g., as in the example of Fig. 5 right panel. Then, σ is 

computed as a standard deviation of bk.

Numerical estimate of 〈E〉

Here we estimate the expected value E = ∫
B

E(X)P(X)dX of E(X) over the box B of volume 

V (B), where P(X) is the probability density function (PDF) of X in B taken from Eq. 

(7). E ≅ V (B)
N ∑i = 1

N E Xi P Xi . The PDF is normalized so that V (B)
N ∑i = 1

N P Xi = 1, for 

random variables X. We use N = 1000 points everywhere, except for the purposes of testing 

convergence where N = 5000 is used.

Results and Discussion

The key result of this work is a novel computational pipeline generally applicable to any 

multidimensional constrained optimizations, specifically studied for the dielectric boundary 
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optimization in this paper. This section introduces those components of the proposed 

optimization pipeline that are completely new, followed by an illustrative application to 

a concrete example, including an analysis. Existing methodological components, such as the 

GB model or VTDIRECT95 method, are described in “Materials and Methods”, along with 

several technical details. The gist of our proposed pipeline is shown in Fig. 6.

Bounds on physically meaningful values of atomic radii

To enforce physical realism and reduce over-fitting we use atom-oxygen radial distribution 

function (RDF) as the key constraint in constructing the dielectric boundary, see “Materials 

and Methods”. Note that unlike the DB, which is a theoretical concept, RDF is an 

experimental observable. Specifically, the probe radius (ρw) and the intrinsic atomic radii 

(ρi) are optimized simultaneously, under the physically justified constraint that ρi + ρw 

is bounded within one standard deviation of the first peak of the RDF, see Fig. 7. The 

first-peak region is defined as the region bounded by the minima before and after the first 

peak in an RDF. Combining all the “first-peak” RDF data for a particular atom-type i, the 

optimization range is then defined as the mean ± standard deviation over that data. In the left 

panel of Fig. 7 we show an example of RDFs obtained from molecular dynamics simulation 

trajectories of different molecules; after combining the first-peak regions and computing 

the standard deviation, the optimization region is defined by (Rmin, Rmax). The RDFs are 

computed using molecular dynamics simulations in TIP3P96 explicit solvent. As the result, 

the following upper bounds and lower bounds are obtained:

0.2 Å ≤ ρw ≤ 1.6 Å,
2.2 Å ≤ ρw + ρC ≤ 3.8 Å,
1.4 Å ≤ ρw + ρH ≤ 3.0 Å,
2.2 Å ≤ ρw + ρN ≤ 3.8 Å,
2.2 Å ≤ ρw + ρO ≤ 3.8 Å .  

(9)

The bounds for the water radius ρw were obtained as follows: the upper bound for the water 

probe radius was chosen (with a buffer of 0.2 Å above) as the standard water probe radius 

of 1.4 Å, the lower bound was chosen as (with a 0.2 Å buffer lower than) the standard water 

radius 1.4 Å minus the standard water oxygen-hydrogen bond length of approximately 1 Å. 

There are only a few complexes containing sulfur (S) atoms in the protein-ligand data set; to 

avoid any potential over-fitting, the S radius is set to 1.8 Å (Bondi) as the default. For a fair 

comparison, the same radius is considered for S in PARSE41 and ZAP-9.40

Application to optimization of atomic radii

Here we use VTDIRECT95 for global optimization of the probe and atomic radii. Results 

are shown in Tab. 2. The practically indistinguishable optima are re-ranked later using the 

proposed robustness metric.

In what follows, a 5-dimensional form of Eq. (8) will be applied as the robustness metric for 

ranking the optimal solutions. The generalization of σ2 in Eq. (8) is Σ being the empirical 

variance of the global optimal solution X* from the test set. Here Σ is a 5-dimensional 

diagonal matrix where diag(Σ) = σW
2 , σC

2 , σH
2 , σN

2 , σO
2 , see Eq. (7). In other words, diag(Σ)
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shows the variance of each radius resulting from the use of possible new test sets. The 

integration domain in Eq. (8) was estimated earlier in “Materials and Methods”, and we 

use it here. The initial test set was introduced in “Materials and Methods”; here the test 

set is partitioned into seven test cases each made of one single protein-ligand complex. 

We are thus considering an instance of the general problem where one is interested in 

the performance of the optimal parameters on a single protein. As a result, we have a 

statistically meaningful distribution of b values (see the right panel of Fig. 5).

To estimate Σ we must make approximations. We assume that in going from the training 

to a test set, the whole objective function (energy) landscape shifts as a whole, with a 

similar pattern around each minimum, Fig. 5. Because of the E(X) shift in going from 

the training to the test sets, Ek(X*) − E(X*) = δk > 0, where Ek(X) refers to the test 

case k, k ∈ {1, …, 7}. To find bk we require that E(bk) = δk, similar to how the 

sampling box bounds were identified, see “Materials and Methods”. We repeat this process 

per dimension, assuming that the deviation in each radii contributes equally to the total 

deviation in energy. Given seven test cases, we calculate the variance of b which finally 

results in diag(Σ) = (0.0096,  0.0024,  0.0025,  0.0324,  0.0009). We apply the same Σ to evaluate 

robustness of all the optima in Tab. 3 – the use of the same Σ is justified by the assumption 

that the overall shape of the test set objective function is similar to that of the training set.

Objective function values, Etrain, and the corresponding ranking on 1000 and 5000 sample 

points, Etrain
1000  and Etrain

5000 , for the lowest five optima, OPT1 to OPT5, are shown in Tab. 

3. In order to study the effect of the underlying sharply decaying weighting function on the 

final ranking, we considered a modified P(X), P ′(X), that equals A within the one standard 

deviation of the optimal solution, and zero otherwise. Formally,

P′(X) = A, if ∀i ∈ 1, …, 5  :   Xi − Xi* < ((diag(Σ)))i
1/2

0, otherwise
(10)

where A is the normalization factor, see “Materials and Methods”. The corresponding 

ranking on 5000 sample points, Etrain
5000 ′, is shown in Tab. 3.

Three conclusions can be inferred from this table: first, while all the Etrain values are 

within the kT range, the proposed robustness method accentuates the difference between 

the optima. This is particularly clear when OPT1 and OPT4 are compared. Later, we will 

show how these two solutions are qualitatively different in terms of their connectivity in the 

multidimensional landscape. Second, the ranking of the optima is conserved among 1000 

and 5000 sampling scenarios which supports the convergence of the method. Third, both 

weighting functions lead to similar ranking, which demonstrates the stability of the proposed 

ranking method to the choice of the weighting function. As a complimentary analysis, we 

will now compare OPT1 and OPT4, the most and least robust optimal solutions.

Objective function landscapes near optima.—To demonstrate the difference between 

OPT1 and OPT4 revealed by our robustness metric, the behavior of the objective function 

around these two optima is shown in Fig. 8. Comparing the left and right panel, wide wells 
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are clearly observed around OPT1, as opposed to OPT4 that has deep narrow wells around 

the optimum in each dimension.

Visualizing the optimization landscape

Visualization of a multidimensional landscape is problem specific as there is no single gold 

standard representation. We propose to reduce the complex landscape to a connectivity 

graph that can be constructed by a relatively limited sampling of the objective function 

around and between pairs of global and local minimum points. Our goal in this section is to 

facilitate the visualization of the 5-dimensional optimization landscape between the global 

and four local minimum points.

Distance plot.—The key idea is to reduce the N-dimensional landscape to a 2-dimensional 

one, within a relatively narrow “corridor” between pairs of the global and a local minima, 

and then to visualize only those points in the corridor whose objective function values are 

below a pre-defined threshold. For mapping the 5-dimensional space onto a 2-dimensional 

visualizable plot, the Euclidean distance is calculated from the sample point to each of the 

two minima, see Fig. 9 in which the procedure is illustrated for the global minimum (OPT1) 

and a local minimum (OPT2). The distances between a sample point (x) and the two minima 

(OPT1 and OPT2) are calculated in a large sampling box, shown in black in Fig. 9. We call 

these two distances d1 and d2, respectively; these become the coordinates of x in the new 2D 

representation. The large box covers the space between the smaller sampling boxes (shown 

in red) bounded around OPT1 and OPT2. In Fig. 10 (“distance plot”) only those points (with 

coordinates d1 and d2) whose objective function values are within the range of kT from the 

objective function value at OPT1 are shown. We call these points kT-reachable. Similar plots 

are shown for OPT1 versus the remaining local minima OPT3, OPT4, and OPT5.

kT-connectivity graph.—An examination of the objective function landscape shown in 

Fig. 10 suggests that OPT1 is “connected” to OPT2, OPT3 and OPT5, but “disconnected” 

from OPT4, assuming kT ~ 0.6 kcal/mol as a threshold of meaningful difference in the 

objective function. Below we formalize this intuitive notion of connectivity of minima of a 

multidimensional landscape. Namely, we define kT-connectivity graph, G(V,E), where V is 

the set of vertices and E is the set of edges. G is a star-shaped graph, in which V represents 

the global (OPT1) and local min points with OPT1 in the center, see Fig. 11. The central 

vertex (OPT1, in our case) and another vertex in G are connected if and only if there exists 

a “kT-path” between the two. We define kT-path as a continuous path between the global 

minimum point and another local minimum point such that all of the (sample) points along 

the path are kT-reachable, i.e., the objective function values for all the points along the path 

are within the range of kT from the global minimum. In practice, the goal is to ascertain 

kT-connectivity with a high degree of certainty using a finite number of sample points.

Establishing kT-connectivity.: This problem in general may be very difficult: for example, 

if kT-paths deviate significantly from a straight line connecting the two minima, extensive 

sampling of large portions of N-dimensional space may be required to establish one such 

path. Fortunately, in our case, kT-paths between OPT1 and any of OPT2, OPT3, and OPT5 

appear to be obvious, see Fig. 10. We are relying on the fact that the Latin hypercube 
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sampling (LHS) method employed here samples the 5-dimensional space quite uniformly, 

which means that a clear gap in kT-reachable points along a putative path may indicate the 

presence of a true barrier above kT in the objective function. While in the case of just 1000 

sampling points (orange dots), gaps of connectivity along the line connecting the minima are 

seen, increasing the sampling 5-fold (blue dots) clearly fills these gaps with kT-reachable 

points. We do not see a need to pursue a more formal proof here. However, if a formal proof 

of kT-connectivity for a given path is required, one can utilize the fact that our objective 

function is assumed Lipschitz-continuous, meaning that there exists a real constant K ≥ 0 

such that, for any X1 and X2:

E X1 − E X2 ≤ K X1 − X2 . (11)

Consider a set of N-dimensional spheres {S1, S2, …, Sn}, each of radius rK, such that the 

center of each sphere lies on the kT-path being verified, spheres i and i+1 overlap, and the 

center of the first and last sphere coincide with the two minima for which the path is being 

established. In short, the set of spheres completely covers the putative path. (To be specific, 

one can choose n such that the number of spheres needed for the coverage is minimal.) Now 

choose rK small enough so that 2KrK < 0.1kT, and choose the sampling density high enough 

so that each sphere contains at least one point X0 for which E(X0) is within 0.9 kT of the 

global minimum; then, by Eq. (11), all points in each Si are kT-reachable, and since the 

spheres overlap, the path we have just verified is indeed a kT-path between the two minima. 

Note that the rationale for 2KrK < 0.1kT is as follows: if a 0.9kT-reachable point X0 exists 

within a given sphere, then the maximum distance from it to any point X within this sphere 

is 2rK, and so the maximum deviation of E(X) inside this sphere from E(X0) is less than 

2KrK (by Lipschitz continuity), which in turn is less than 0.1 kT by the imposed condition 

on rK. Since |Eg−E(X0)| < 0.9kT, where Eg is the global optimum, it means that |Eg−E(X)| < 

0.9kT +0.1kT, thus X, and any other point inside the sphere, is kT-reachable.

Establishing kT-disconnectivity.: In stark contrast to OPT2, OPT3, and OPT5, the distance 

plot between OPT1 and OPT4 suggests that the latter are disconnected, see Fig. 11. While 

formal proof is not pursued in this work, we provide a qualitative rationale for why OPT4 

is so different from the other minima in its connectivity to the global optimum. Consider 

a path between OPT4 and OPT1 where all of the radii except ρO are kept at their OPT4 

values, while the oxygen radius (ρO = 1.81 Å at OPT4) converges to its OPT1 value (ρO = 

1.28 Å). In doing so, the objective function becomes large very quickly: a 0.1 Å decrease 

in the ρO of OPT4 leads to more than 4 kT deviation in the binding energy. This behavior 

is suggestive of the existence of a high barrier between OPT4 and OPT1. Comparing the 

kT-connectivity graph in Fig. 11 and Tab. 2 we observe that changes in ρO play a key role in 

the kT-connectivity graph: OPT1 and OPT2 that share an identical ρO are clearly connected, 

while OPT1 and OPT4, that have quite different ρO, are disconnected. This observation is 

also aligned with the electrostatic characteristic of oxygen which can substantially change 

the result of ΔΔGpol.

Forouzesh et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Optimized parameters of the dielectric boundary show promise

For the most robust optimum (OPT1 in Tab. 2), the deviation of the corresponding 

electrostatic binding free energy from the reference on the training and test sets are shown 

in Tab. 4. We also tested two other commonly used radii: PARSE and ZAP-9, optimized 

previously against solvation energies of small molecules. These two sets of radii are chosen 

for comparison since they have about the same number of independent atom types; to the 

best of our knowledge, no radii sets optimized specifically for protein-ligand binding exist. 

Four conclusions can be made. First, the global radii optimization methodology discussed 

here delivers around 1.5 kcal/mol improvement in the accuracy of the estimation of the 

electrostatic binding free energy on the test set compared to what can be achieved with 

existing radii sets with similar numbers of distinct atom types. This observation supports our 

key conclusion, that the proposed multidimensional global optimization procedure works 

as intended. Second, the remaining error is still appreciably larger than chemical accuracy 

of 1 kcal/mol, which means that the new radii set should be considered as a step in the 

right direction, but not the final solution. The fact that the global optimum is still outside 

the chemical accuracy is not surprising given the “bare minimum” number of atomic radii 

optimized, combined with the relatively simplistic two-dielectric continuum model and a 

small size of the training set of structures used in this proof-of-concept study. Third, the 

difference between the energies of training and test sets is significant – that issue will be 

addressed below. Finally, it is worth mentioning that OPT4 performs poorly on the test data 

set, RMSE = 7.92 kcal/mol. This, again, supports the use of the proposed robustness metric 

to eliminate the least promising optimization candidates.

Re-balancing of the training and test sets.—From Table 4 it is clear that the current 

training and test sets are not well balanced, in that the RMSE to the reference is almost 

3 kcal/mol smaller for the training set compared to the test set, for all three radii sets. To 

close this gap between the training and test sets, a data-driven partitioning idea is proposed. 

Shown in the left panel of Fig. 12, the current partitioning assigns 1b11 complex to the test 

set. In the revised partitioning, this complex, whose ΔΔGpol is an outlier, is assigned to both 

the training and test sets. The atomic radii are then re-optimized. Although the RMSE of the 

training set increases from 3.94 kcal/mol to 4.39 kcal/mol in this revision, a more consistent 

correlation with the reference explicit solvent model is observed. Moreover, the RMSE of 

the test set decreases from 6.62 kcal/mol to 4.98 kcal/mol that is quite close to the RMSE on 

the training set. The optimal atomic radii obtained by this re-balanced partitioning scheme 

will be explored in detail in a future study.

Conclusion

The main outcome of this work is a novel computational pipeline that can be employed 

to address highly complex and computationally demanding optimization problems where 

global optimization is desirable. Using the novel pipeline, we have performed, to the best 

of our knowledge for the first time, a global multidimensional optimization of atomic radii 

specifically for the purpose of computing protein-ligand binding free energies in implicit 

solvent. Our approach is distinctly different in several respects from the past efforts to 

optimize atomic radii for continuum solvent calculations. First and foremost, the introduced 
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optimization protocol targets binding free energy directly, which is computationally much 

more demanding than using the solvation free energy of small molecules as the reference, as 

was done in several previous studies. The necessary computational efficiency was achieved 

here by the use of a highly accurate numerical generalized Born model (GBNSR6), instead 

of the numerical Poisson-Boltzmann model employed in the past in radii optimization 

efforts. Second, the highly parallel optimization approach (VTDIRECT95) used in this work 

is able to deliver global, rather than local optima. Global optimization of parameters of the 

dielectric boundary at this scale was all but impossible in the past, but is now within reach 

through the computational pipeline developed in this work. Third, a new general metric 

was introduced for robustness analysis of the multiple nearly degenerate optimum points. 

The metric helped us to clearly distinguish several optima otherwise indistinguishable. The 

exploration of the complex multidimensional objective function landscape was facilitated by 

what may be a novel visualization approach.

With respect to the globally optimized atomic (and water probe) radii obtained with 

the new pipeline, at least two results have emerged that should be of interest to the bio­

computational field. First, compared to two well-known sets of “electrostatic” atomic radii, 

previously developed based on hydration free energies of small molecules, the new radii 

result in a better agreement with the explicit solvent electrostatic free energy, used as the 

reference. The improvement should be viewed as a consistency check of the optimization 

method rather than a claim of an immediate practical value of the new radii. It is still 

noteworthy that the number of distinct radii, or atom types, in the proposed radii set is 

only five, including that of the water probe. To the extent that better agreement with the 

explicit solvent improves the accuracy of implicit solvation with respect to reality, the 

new atomic radii warrant further exploration to see if they improve outcomes of practical 

protein-ligand binding calculations within the GB/PB framework. At the same time, the 

remaining error, relative to the explicit solvent, is still appreciably above the desired 

chemical accuracy threshold. Given that the global optimum was found, this result points to 

a fundamental limitation of the common continuum solvent model at the GB/PB level. The 

proposed optimization pipeline, and especially the proposed parameters (atomic radii) of the 

resulting “electrostatically optimal” dielectric boundary have several limitations, within the 

continuum solvent framework. To begin with, we expect the optimal radii to be specific to 

the dielectric boundary definition used here, i.e., sharp SES. Future efforts should explore 

to what extend the accuracy of the implicit solvent-based protein-ligand binding energies 

may improve if alternative definitions of the dielectric boundary are used.33 The optimal 

radii are also specific to the explicit water model used here as the reference (TIP3P); a 

future optimization effort should consider at least two different accurate water models as 

alternative accuracy targets. Another limitation of the approach is the focus on the polar 

component of the solvation, and the neglect of possible coupling to the non-polar part 

of the total binding free energy. Adding computationally feasible parts of the non-polar 

energy and optimizing against the resulting total may improve the outcomes. We also note 

that the optimization pipeline does not account for the entropy component of the binding 

free energy: thus if the given protein-ligand complex binding is dominated by the entropy, 

the optimal dielectric boundary will have little effect on the overall accuracy. However, 

the “electrostatically optimal” dielectric boundary proposed here may still serve as a good 
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starting point for more sophisticated optimizations that account for the entropy component. 

Finally, the training and test sets of protein-ligand complexes used here are relatively small, 

which raises transferability concerns. This limitation is not of the optimization pipeline, but 

of the specific radii set proposed.

In the future it would be interesting to explore to what extend the accuracy of the implicit 

solvent-based protein-ligand binding energies can improve if the number of atom types with 

distinct radii is increased – the developed computational pipeline can easily handle global 

optimization even if the number of atom types is doubled. However, fundamentally, the 

accuracy limitations revealed by this work point to the need to develop and test, within 

the context of protein-ligand binding, implicit solvation models of higher accuracy than the 

GB/PB for the electrostatic effects. Global optimization for models comparable in efficiency 

to the GB, such as fast numerical PB flavors, can be handled easily by the new pipeline. In 

fact, it will be easy to check if the optimal radii developed here perform as well, or nearly 

as well within the PB. Perhaps a more interesting investigation would involve models, such 

as 3D-RISM, which incorporates many of the explicit solvent effects beyond the PB, and has 

shown promise in end-point ligand binding estimates.103 An optimization pipeline based on 

VTDIRECT95 has the potential to handle such relatively expensive optimizations, given an 

appropriately scaled computational resource. This is because VTDIRECT95 can efficiently 

utilize all of the CPUs made available to it, for sampling of the vast parameter space. 

That is given 100x the computational power used in this work, not only will the parallel 

implementation scales to 100x per single-point evaluation, but it will also scale to 100x 

concurrent evaluations. Ultimately, we hope that the optimization methodology proposed 

in this work will help reduce the error of the implicit solvation approach relative to the 

experiment in protein-ligand binding estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Thermodynamic cycle for calculating the polar component of binding free energy.
The vacuum environment is shown in white background, and the water is in blue.
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Figure 2: Latin hypercube sampling (LHS).
This example shows how LHS generates random sample points in a 2-dimensional space so 

that there exists one and only one sample point in each row and column.
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Figure 3: Function evaluations performed by DIRECT after 0, 1, 5 and 10 iterations.
The objective function values are illustrated via the contours and the corresponding color 

bar on the rightmost panel. Comparing the first and second graphs on the top shows 

how DIRECT divides a 2-dimensional box after one iteration. On the bottom right figure, 

DIRECT finds the global minimum at (0.9,0.3) after 10 iterations. It also explores a large 

domain and evaluates the function near the local minimum at (0.4,0.3).
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Figure 4: Robustness analysis of two examples.
Left panel shows two equally wide wells, which are similarly robust to small perturbations 

of the parameters. Right panel shows a totally different behavior of the objective function, 

where the local minimum is more robust to perturbations.
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Figure 5: Deviation from the optimal solution (X*) given a new data set.
Left: changes in objective function value at X* = 0 (δ) is proportional to b2. Right: 

estimation of the standard deviation of b when several test sets are given.
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Figure 6: The proposed pipeline flowchart.
Radii constraints, optimum robustness metric and visual analysis are novel and explained in 

detail in “Results and Discussion”. GBNSR675 and VTDIRECT9547 are reviewed briefly in 

“Materials and Methods”.
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Figure 7: Solvent excluded surface (SES) exemplified for a “molecule” of six atoms.
SES is shown as the purple boundary, defined as the locus of the contact points (connected 

by circle arcs at contact discontinuities) of water probe (white circle) when it is rolled 

over the molecule (gray circles). An example of radial distribution function of atom-(water 

oxygen) obtained for atom type i from molecular dynamics simulations of various molecules 

containing that atom type is shown in gi−ow(R) plot to the left of the schematic. Each color 

in gi−ow(R) plot represents a separate instance of atom type i; the bounds (Rmin,Rmax) are 

computed as one standard deviation about the mean (shown as the double-headed red arrow) 

of the RDF first peak, inferred from the combined data of the first peaks for all the instances 

of the atom type i. These bounds are used to constrain ρi + ρw for simultaneous optimization 

of ρi, atomic radii of atom i, and ρw, water probe radius.
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Figure 8: Projection of OPT1 (global min) and OPT4 (local min) onto different radii coordinates.
Left panel shows the behavior of OPT1 objective function projected onto ρW, ρC, ρH, ρN 

and ρO within the sampling box and in the physical bound proposed in Eq. (9). Right panel 

shows similar graphs for OPT4. Radii (x coordinates) have different ranges in order to keep 

the objective function values (y coordinates) in a same range, which is 2kT form OPT1 

value.
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Figure 9: Procedure for creating a distance plot, exemplified.
OPT1 (global minimum) and OPT2 (local minimum) are selected in this demonstration. The 

large sampling box, shown in solid black, covers the space between the smaller sampling 

boxes (dashed red rectangles) around OPT1 and OPT2. These two smaller boxes are found 

by applying the sampling algorithm explained in the “Materials and Methods”. For each 

sample point x in the large box, 5-dimensional Euclidean distances d1 and d2, from OPT1 

and OPT2 (shown as stars) to x are calculated, and the corresponding objective function 

value is illustrated on the distance plot, shown in Fig. 10.
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Figure 10: Distance plots.
Shown are only those sample points whose objective function values are within the range of 

kT from OPT1. The 1000 and 5000 sample-point scenarios are shown in orange and blue, 

respectively.
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Figure 11: kT-connectivity graph.
Vertices represent the global minimum point (OPT1) in the center, and local minimum 

points around it. An edge between OPT1 and another vertex indicates that it is possible to 

move between the two mnima without exceeding a pre-defined threshold of the objective 

function, in our case kT ~ 0.6 kcal/mol.
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Figure 12: Re-balancing of the training and test sets, with TIP3P explicit solvent model as the 
reference.
Left: the current partitioning method partitions the whole data set of 15 small protein-ligand 

complexes into the training and test subsets with a similar distribution of ΔΔGpol. Training: 

RMSE=3.94 kcal/mol and r2=0.76. Test: RMSE=6.62 kcal/mol and r2=0.37. These results 

are obtained using the existing global optimum radii (OPT1). Right: New partitioning puts 

the single outlier (1b11) in both the training and test sets. Training: RMSE=4.39 kcal/mol 
and r2=0.68. Test: RMSE=4.98 kcal/mol and r2=0.57. These results are obtained using a new 

global optimum radii found by VTDIRECT95.
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Table 1:

The list of 11 molecules used in this work to compute the solute atom to solvent (TIP3P) oxygen radial 

distribution function.

111_trichloroethane 1234_tetrachlorobenzene

2_bromo_2_methylpropane diethyl_sulfide

methyl_methanesulfonate tetrafluoromethane

112_trichloro_122_trifluoroethane 1_methylcyclohexene

4_fluorophenol iodobenzene

morpholine
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Table 2:

The lowest five optimum parameter vectors found by VTDIRECT95.

ρ W ρ C ρ H ρ N ρ O E train

OPT 1 1.37 1.40 1.55 2.35 1.28 3.94

OPT 2 1.52 1.79 1.47 2.27 1.28 4.04

OPT 3 1.06 1.67 1.32 2.14 1.35 4.08

OPT 4 1.37 1.34 0.77 1.57 1.81 4.24

OPT 5 1.06 1.35 1.74 2.71 1.17 4.25

Radii are in Å and objective function values of the training set, Etrain, are in kcal/mol.
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Table 3:
Robustness analysis of the lowest five optimum parameter vectors found by 
VTDIRECT95.

Etrain
1000 and Etrain

5000  show the result of ranking using Gaussian distribution as the weighting function, while the 

last column, Etrain
5000 ′, uses P′ (X) defined in Eq. (10), all are in kcal/mol.

Etrain
1000 Etrain

5000 Etrain
5000 ′

OPT 1 4.73 4.71 4.45

OPT 2 4.75 4.75 4.51

OPT 3 5.00 4.97 4.75

OPT 4 5.75 5.78 5.37

OPT 5 4.87 4.90 4.61
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Table 4:
The accuracy (RMSE to the explicit solvent reference, Eq. (5)) of calculating ΔΔGpol 

values using the proposed optimal radii (OPT1) and two other popular sets of atomic 
radii.

Radii are in Å and RMSE value of the training and test sets, Etrain and Etest, are in kcal/mol.

Atomic Radii ρ W ρ C ρ H ρ N ρ O E train E test

OPT1 1.37 1.40 1.55 2.35 1.28 3.94 6.62

PARSE 1.4 1.7 1.0 1.5 1.4 10.80 8.07

ZAP-9 1.4 1.87 1.1 1.55 1.52 5.28 8.27
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