Skip to main content
. 2021 Oct 26;12:721899. doi: 10.3389/fmicb.2021.721899

TABLE 1.

Summary of a few models of the E. coli cell cycle.

Model Definition Control parameters Agreement with the adder principle ρ i ρ d ρ id
sHC (Si et al., 2019) Sd = si exp(λτcyc) τcyc, si Requires presence of cross- or auto-correlations between control parameters. ρ i ρiηi2+ραηα2+ρiραηi2ηα2ηi2+ηα2+ηi2ηα2 ηiηi2+ηα2+ηi2ηα2
IA (Ho and Amir, 2015) si(n+1)si(n)/2 = δii Sd = si exp(λτcyc) τcyc, δii Only when λτcyc is non-stochastic. 1/2 12ηi2ηi2+ηα2+ηi2ηα2 ηiηi2+ηα2+ηi2ηα2
CCCP (Micali et al., 2018) ln(si(n+1)) = ln(si(n))/2 + A ln(SR) = ln(si) + λC ln(SH) = ln(SH)/2 + B ln(Sd) = max(ln(SR), ln(SH)) A, B, C Yes (by adjusting f, σH and σR). 1/2 σH2f2/2+σi2(1-f)2/2σH2f+σR2(1-f)+f(1-f)(μH-μR)2 (1-f)σiσH2f+σR2(1-f)+f(1-f)(μH-μR)2
IDA (Si et al., 2019) si(n+1)si(n)/2 = δii Sd(n+1)Sd(n)/2 = Δd δii, Δd Yes. 1/2 1/2 0
RDA (Witz et al., 2019) si(n+1)si(n)/2 = δii Sd(n+1)si(n) = 2δid δii, δid Only when δid is non-stochastic. 1/2 12(1+3σid2σii2)-1 (1+3σid2σii2)-1/2

The definition column indicates the equations defining the division and replication cycles. The control parameters are summarized in the next column. In the three rightmost columns we give the three correlations ρi, ρd, and ρid. We have used the following variables: (i) σii2: variance of δii, (ii) σid2: variance of δid, (iii) μi: mean of si, (iv) σi2: variance of si, (v) μα: mean of α=exp(λτcyc), (vi) σα2: variance of α, (vii) ηiii is the coefficient of variation (CV) of si, (viii) ηααα is the CV of α, (ix) μH: mean of ln(SH), (x) σH2: variance of ln(SH), (xi) μR: mean of ln(SR), (xii) σR2: variance of ln(SR).