Table 3.
The classification performance (in percentage) of four machine learning methods on WM.
| WM | ||||||
|---|---|---|---|---|---|---|
| RetainedFeas | OptimalFeas | Sen | Spec | Acc | AUC | |
| SPEC | 9,922 | 6,048 | 72.18 ± 3.77 | 69.35 ± 3.54 | 70.39 ± 2.33 | 70.77 ± 3.65 |
| ReliefF | 9,922 | 5,457 | 74.87 ± 3.45 | 68.77 ± 2.95 | 71.18 ± 2.09 | 71.82 ± 3.28 |
| RFE | 7,937 | 3,360 | 69.85 ± 4.24 | 66.31 ± 4.08 | 68.16 ± 3.49 | 68.08 ± 4.16 |
| STABLASSO | 5,073 | 3,233 | 69.30 ± 4.28 | 71.93 ± 2.25 | 70.11 ± 2.90 | 70.62 ± 3.87 |
The best performance for each indicator is shown in bold.