Table 4.
The classification performance (in percentage) of four machine learning methods with GM and WM.
| GM + WM | ||||||
|---|---|---|---|---|---|---|
| RetainedFeas | OptimalFeas | Sen | Spec | Acc | AUC | |
| SPEC | 10,740 | 4,115 | 89.20 ± 2.31 | 79.26 ± 4.66 | 84.20 ± 3.01 | 84.23 ± 3.74 |
| ReliefF | 10,424 | 3,996 | 89.66 ± 3.84 | 80.01 ± 3.10 | 84.92 ± 1.80 | 84.84 ± 3.48 |
| RFE | 11,372 | 5,647 | 86.29 ± 3.07 | 78.47 ± 4.30 | 82.37 ± 3.26 | 82.38 ± 3.96 |
| STABLASSO | 4,425 | 2,753 | 87.43 ± 2.50 | 80.67 ± 1.72 | 84.25 ± 1.43 | 84.05 ± 1.88 |
The best performance for each indicator is shown in bold.