Skip to main content
. 2021 Oct 26;15:735991. doi: 10.3389/fncom.2021.735991

Table 4.

The classification performance (in percentage) of four machine learning methods with GM and WM.

GM + WM
RetainedFeas OptimalFeas Sen Spec Acc AUC
SPEC 10,740 4,115 89.20 ± 2.31 79.26 ± 4.66 84.20 ± 3.01 84.23 ± 3.74
ReliefF 10,424 3,996 89.66 ± 3.84 80.01 ± 3.10 84.92 ± 1.80 84.84 ± 3.48
RFE 11,372 5,647 86.29 ± 3.07 78.47 ± 4.30 82.37 ± 3.26 82.38 ± 3.96
STABLASSO 4,425 2,753 87.43 ± 2.50 80.67 ± 1.72 84.25 ± 1.43 84.05 ± 1.88

The best performance for each indicator is shown in bold.