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materials data
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Artificial intelligence (AI) and machine learning (ML) have been increasingly used in mate-

rials science to build predictive models and accelerate discovery. For selected properties,

availability of large databases has also facilitated application of deep learning (DL) and

transfer learning (TL). However, unavailability of large datasets for a majority of properties

prohibits widespread application of DL/TL. We present a cross-property deep-transfer-

learning framework that leverages models trained on large datasets to build models on small

datasets of different properties. We test the proposed framework on 39 computational and

two experimental datasets and find that the TL models with only elemental fractions as input

outperform ML/DL models trained from scratch even when they are allowed to use physical

attributes as input, for 27/39 (≈ 69%) computational and both the experimental datasets.

We believe that the proposed framework can be widely useful to tackle the small data

challenge in applying AI/ML in materials science.
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The field of materials science has seen a growing application
of artificial intelligence (AI) and machine learning (ML)
techniques, which has significantly contributed to

enhanced property prediction models as well as accelerated
materials exploration and discovery1–18. In particular, the so-
called deep learning (DL) algorithms – which are ML algorithms
based on deep neural networks – have shown a remarkable
capability to automatically and efficiently extract features from
raw inputs and build accurate models for different properties of
materials, often surpassing traditional ML techniques. This has
been made possible due to the increasing availability of large
materials databases19–23, mostly based on simulations such as
density functional theory (DFT)24, e.g., Open Quantum Materials
Database (OQMD)19, Automatic Flow of Materials Discovery
Library (AFLOWLIB)20, Materials Project (MP)21, and Joint
Automated Repository for Various Integrated Simulations
(JARVIS)22. Since the size of training data has a significant
impact on the quality of ML/DL models25, such large datasets
have greatly catalyzed the development of a data-driven paradigm
in materials science, popularly known as materials
informatics8,26–30.

However, highly accurate models are still limited to a few
selected materials properties due to the non-uniform size of
available data31. In other words, although the size of materials
datasets is increasing, it is limited to a few properties that are
relatively easy to measure/compute, and the field of materials
science as a whole is still in the small data regime for the most
part. There have been several studies where a small amount of
data (<1000 samples) was used to train ML models32–38. How-
ever, these studies emphasize more on the importance of manual
or domain knowledge-based feature engineering for training
models for a specific materials property and less on the gen-
eralizability of the solution for the small data problem in mate-
rials science. Therefore, transfer learning (TL)39 is often applied
to tackle limited dataset problems by utilizing the rich features
extracted from large datasets40–56. This involves first, training a
model on a sufficiently large dataset, which serves as the starting
point for the model training on the smaller dataset. For example,
Jha et al.45 used TL to transfer knowledge from a DL model
(ElemNet) built on a large source dataset (OQMD) of DFT-
calculated formation energies to small target datasets of DFT-
based and experimental formation energies, i.e., same property as
the source dataset. However, the unavailability of large datasets
for many other properties such as exfoliation energy, dielectric
constants, etc., greatly prohibits the application of DL and TL
techniques in such cases.

In this work, we present a cross-property deep-transfer-learning
framework that can transfer the knowledge learned by predictive
models trained on large datasets to build predictive models on
smaller datasets of other target properties, building upon the
previous works on transfer learning. The primary advantage of the
proposed cross-property deep-transfer-learning framework is that
it allows developing robust and accurate models on small datasets
of properties for which other larger datasets may not be readily
available. The block diagram of the proposed cross-property TL
methodology is shown in Fig. 1 and consists of two steps. First, a
DL model is trained from scratch on a big materials dataset (called
the source dataset) of an available property (called the source
property). The resulting model is called the source model. In the
second step, the source model is used to build the target model of
target property on a small target dataset. This can be done in two
ways: (a) Fine-tuning the source model on the target dataset; and
(b) Using the source model as a feature extractor to extract robust
features for the target dataset, which can subsequently be used to
build the target model using ML/DL. In this work, we use

ElemNet31 as the source model architecture, since it uses only raw
elemental fractions (EF) as input, and has been shown to learn
chemistry to materials using powerful DL techniques that have
consistently shown to excel on raw inputs. Therefore, all the
proposed cross-property TL models in this work are composition-
based and require only EF as input. This not only simplifies the
application of TL for the different properties used in this work,
thereby demonstrating good generalization, but is also expected to
facilitate the development of such models on other datasets and
properties in the future. We compare the proposed cross-property
TL models with scratch (SC) models, which perform model
training from scratch with EF as input, as well as composition-
based domain-knowledge-driven physical attributes (PA) as input
for a more stringent comparison. The improvements and insights
gained by using the proposed cross-property TL framework is
expected to be useful for materials science researchers and prac-
titioners to more gainfully utilize AI/ML/DL/TL techniques to
overcome the small data challenge in materials science.

Results
Datasets. We use two datasets of DFT-computed properties in
this work: Open Quantum Materials Database (OQMD)19 and
Joint Automated Repository for Various Integrated Simulations
(JARVIS)22.

The dataset from OQMD comprises 341443 unique composi-
tions, with their DFT-computed materials properties comprising
formation energy, bandgap, stability, energy per atom, volume, and
magnetic moment, as of May 2018. This dataset is used to derive
the source dataset to train for the source model. JARVIS dataset
comprises 28,171 unique compounds with up to 36 different
properties as of July 2020 (https://ndownloader.figshare.com/files/
22471022). We use two pre-processing steps to remove duplicate
and overlapping compositions. First, to deal with duplicates arising
due to different structures of the same composition, we only keep
the most stable structure available in the database i.e. each data
entry corresponds to the lowest formation energy among all
compounds with the same composition, representing its most stable
crystal structure. This is done independently for both datasets. Next,
the common compositions between OQMD and JARVIS were
removed from the OQMD dataset (denoted by OQMD-JARVIS) to
avoid any overlap between the source and target datasets, which
reduced the size of the source dataset from 341,443 to 321,140. This
is to ensure that the pre-trained model does not see any compounds
from the test set (which would be a subset of the target dataset).
Further, each of the materials properties of the JARVIS dataset were
confined to a range of permissible values, determined by looking at
the values’ distribution and consulting with domain experts. The
data size for each materials property in the source dataset (OQMD
and OQMD-JARVIS) and the target dataset (JARVIS) are shown in
Supplementary Table 1 and Supplementary Table 2, respectively.
Here, we use the OQMD dataset to refine the model architecture
design, the OQMD-JARVIS dataset to perform the source model
training used for TL-based models, and the JARVIS dataset to
perform the target model training followed by materials property
prediction and evaluation.

Modifications are made to the target dataset’s materials properties
to suit the DNN’s model input which are shown in Supplementary
Table 3. Total energy is excluded from the target materials properties
as only differences of raw total energy are meaningful. Source model
evaluation on the OQMD-JARVIS dataset uses only training and
validation set with a random train:validation split of 90 : 10 to
maximize the data used to train the source model for TL. Evaluation
using the JARVIS dataset uses a holdout test set and a random
train:validation:test split of 81 : 9 : 10.
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Model architecture design. We use ElemNet31 as our base archi-
tecture for training the source models and perform transfer learning,
as we use elemental fractions as input. ElemNet is a 17-layer archi-
tecture composed of fully connected layers57, dropouts58 at specific
intervals, Adam59 as the optimization function, and ReLU60 as the
activation function. It performs materials property prediction using
an 86-dimensional vector of elemental fractions as the materials
representation for the model’s input. We provide a detailed expla-
nation for all the model architectures used in this work in the
Methods section. To improve the existing ElemNet model’s perfor-
mance, we made some changes to the framework and the archi-
tecture, and evaluated how it affects its accuracy of predicting
formation energy using training data from OQMD. The original
ElemNet model is written in TensorFlow 1 (TF1)61. For this work, we
re-implemented ElemNet in TensorFlow 2 (TF2) with Keras62 inte-
gration to take advantage of the improvements and high-level
implementation of various components. This is also expected to
facilitate code interpretability and reuse by domain scientists who
may not be adept in programming. This change reduced the mean
absolute error (MAE) from 0.0417 eV/atom for TF1 to 0.0405 eV/
atom for TF2. Second, the ElemNet model uses the monte carlo
(MC) dropout63 technique, where dropout is used during training as
well as validation and testing phases. Using the dropout in this way
produces different activations and outputs for the same input data
each time we run the model, which may be useful for uncertainty
quantification but does not extract consistent features for a given
input. We thus disable dropout in this work so as to produce con-
sistent and reproducible feature representations for a given input. We
also found that disabling dropout further reduced the MAE from
0.0405 eV/atom to 0.0373 eV/atom. Thus, these two modifications
helped us reduce the formation energy’s MAE by ≈10% using the
same 17-layer ElemNet architecture. We use this improved ElemNet

architecture to perform the model training for both the source and
target dataset. The notations for specific models used in this work are
described in Table 1. For multi-target model training for each source
property, we first perform one run for all the SC/TL models using the
same training-validation split. We then identify the best-performing
model for each category in Table 1 and perform 10-fold cross-vali-
dation (CV) for that model. This is done independently for each
source property for the TL models. The mean validation MAE from
10-fold CV is used to select the best performing modeling config-
uration for SC as well as TL. Since the selected modeling config-
urations have 10 models each (from 10-fold CV), the one with the
least validation error is used to perform model testing on the holdout
test set.

Multi target transfer learning. Here, we demonstrate the perfor-
mance of TL models on different target materials properties when the
source model is trained on formation energy as the source property
for TL. We train ElemNet by using only elemental fractions with no
explicit use of physical attributes as model input. Here the MAE
obtained from the source model’s training on OQMD-JARVIS is
0.0369 eV/atom, which is slightly different (in this case better) than
the MAE obtained by performing the model training on the entire
OQMD which was 0.0373 eV/atom. This pre-trained source model is
then used to perform different types of transfer learning, including
feature extraction, fine-tuning, and freezing (which is a feature
extraction TL method if we perform feature extraction from the last
layer of the source model). We compare the performance of TL
models with the scratch (SC) models, i.e., ElemNet and traditional
ML algorithms trained directly on the target dataset from scratch.
The traditional ML algorithms used here include: Ada Boost, Elastic
Net, Linear Regression, SGD regression, Ridge, Support Vector
Machine, K-Neighbors, Decision Tree, Extra Tree, Bagging, Lasso,

Fig. 1 The proposed cross-property deep-transfer-learning approach. First, a deep neural network framework (e.g., ElemNet) is trained from scratch, with
randomly initialized network weights, on a big DFT-computed source data set (e.g., OQMD) using elemental fractions as input. Here, we refer to the model
trained on the source dataset as the source model. Next, the same architecture (ElemNet) is trained on smaller target datasets (e.g., JARVIS) with different
properties, using cross-property transfer learning, which can be done in two ways: 1. model parameters are initialized with that of the source model and
then fine-tuned using the corresponding target dataset; or 2. source model is used to extract features for the target dataset in terms of activations from
each layer of the source model, which are used as the input to build new ML and DL models (also called freezing method, if the features are extracted only
from the last layer).
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and Random Forest, with hyperparameter tuning using extensive grid
search for each of these ML algorithms as shown in Supplementary
Table 4. Table 2 presents the prediction accuracy of the best SC and
best TL model (selected based on their validation MAEs as shown in
Supplementary Table 5) on the test set for each of the 39 target
properties. Only formation energy is used as the source property for
this analysis. Table 2 indicates that TL models with formation energy
as the source property outperforms the SC models in 38/39 cases, i.e.,
in≈97% of the cases. From Supplementary Table 5, we also find that
within the TL models, feature extraction (FeatExtr) performs the best
in more than half of the cases, and freezing performs the worst in all
the cases.

The results clearly illustrate the benefit of using cross-property
TL, i.e., using TL even when the materials properties of the source
datasets and target datasets are different. We believe this is
because the source model, if trained properly, can learn to extract
useful features during the model training on the large datasets.
However, not all source properties are expected to be the same
with respect to the accuracy of the resulting TL models, which is
what we investigate next.

Multi source transfer learning. Here, we look into the effect of
using different ElemNet-based source models obtained by train-
ing on different source properties. Previously, we performed the
model training for the source model on OQMD-JARVIS using
only formation energy as the materials property. Other available
materials properties in OQMD include band gap, volume, total
energy per atom, stability, and magnetic moment. Supplementary
Table 6 shows the best MAE obtained after training ElemNet on
each of these materials properties. This gives us 6 source prop-
erties and 39 target properties, thereby 6 × 39 different combi-
nations of TL scenarios to study the effect of cross-property TL.

Table 3 presents the prediction accuracy of the best SC and best
TL model (selected based on MAE values from 10-fold CV as
shown in Supplementary Table 7; all six source properties used
for TL) on the test set for each of the 39 target properties. Table 3
indicates that multi-source TL models outperform the SC models
in 38/39 cases, i.e., in ≈97% of the cases. From Supplementary
Table 8, we can see that among the TL models, fine-tuning based
TL model performed the best for 8/38 target properties, and
FeatExtr based TL model using ML and DL performed the best
for 3/38 and 27/38 target properties respectively. Encut was the
only target property for which the best SC model was found to
perform better than the best TL model.

Comparison with physical attributes informed scratch models.
So far, we have observed the advantages of cross property TL using
different source models on a variety of materials properties even
when the source property and target property are different, and that

TL models typically outperform SC models, all of which use only EF-
based inputs, which is the simplest form of composition-based input.
However, it is possible to infuse domain knowledge into the model by
using more sophisticated composition-based attributes. For example,
MagPie5 represents a given composition by calculating a set of 145
physical attributes using easily available periodic table information,
which was shown to universally work well for creating ML models
for a variety of materials properties. In this work, although we want
to use only composition-based EF inputs for the TL models for
reasons described earlier, it would nonetheless be interesting to see
how they would compare against stronger scratch models built using
composition-based physical attributes (PA), thereby providing a
more stringent test of the potential of the proposed ElemNet-based
cross-property TL models. Hence, we use MagPie-derived attributes
as the model input for the PA-based scratch models to compare
against the TL models with EF-based inputs. Other types of attributes
can be used in ML modeling of material properties as well, like
structure-based ones, but they will not be investigated in this work
Table 4 presents the prediction accuracy of the best SC and best TL
model (selected based on MAE values from 10-fold CV as shown in
Supplementary Table 9; SC models now also allowed to use PA as
input) on the test set for each of the 39 target properties. As we can
observe from Table 4, the TL models still perform better than SC
models in 27/39 cases, i.e., in ≈69% of the cases. We also analyzed the
results to identify the best performing TL techniques and the source
properties across the various target properties, as shown in Supple-
mentary Table 10. From our analysis, we observe that, although all
the source models worked well for different properties, the source
model trained on formation energy performed the best on most (9/27
or≈33%) of the target properties. The source model trained on total
energy performed the second-best (8/27 or ≈30%). The source model
trained on stability performed the third-best (5/27 or ≈19%). The
source models trained on magnetic moment, band gap, and volume
performed best for three (3/27 or≈11%), two (2/27 or ≈7%), and
none of the target properties making volume the least contributing
source model. Hence, it is advisable to use a source model trained on
formation energy to perform cross-property transfer learning. We
can also see that among the TL models, FeatExtr based TL models
performed the best for 21/27 target properties. We also observed that
for a given target property, if the same/similar source property is
available (in our case, this was applicable to five target properties:
BgOptb, Deltae, Magoszi, Magout, and BgMbj), using that as the
source property to perform TL is better, as observed for 4/5 such
cases. Further, in 3 out of those 4 cases, TL performed using fine-
tuning was better than FeatExtr based TL. It is quite encouraging to
observe that the proposed EF-based TL models outperform even the
PA-based scratch models for more than half the cases. The majority
of properties for which PA-based scratch models perform better than
TL are very complicated ones, in the sense that they depend on
several material properties at once. For instance, the effective mass

Table 1 Notations for the different scratch (SC) and transfer learning (TL) modeling configurations used in this work.

Notation Description

Base Naive model that simply uses the average property value of the training data as the predicted value
SC :ML(EF) ML model trained from scratch using elemental fractions (EF) as input
SC : ML(PA) ML model trained from scratch using physical attributes (PA) as input
SC : DL(EF) DL model trained from scratch using EF as input
SC : DL(PA) DL model trained from scratch using PA as input
TL : ML(FeatExtr) ML model trained from the activations extracted from the source model (except for last layer)
TL : DL(FeatExtr) DL model trained from the activations extracted from the source model (except for last layer)
TL : FineTune Fine-tuning on the same DL framework using the pre-trained weights of source model
TL : ModFineTune Fine-tuning on the same DL framework using the pre-trained weights of source model except for the last layer which has randomly

initialized weights
TL : freezing DL model trained from the activations extracted from the last layer of the source model
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(PEM300K and NEM300K) condenses structural and electronic
information into one quantity, while Seebeck coefficients (NSb, PSb)
are related to thermoelectric effects. Their complexity is likely why
more sophisticated attributes incorporating domain knowledge help
in such cases, while it is remarkable how close EF-only TL models get
to the PA-based SC ones even in those cases. This provides more
credence to the efficacy of both the source ElemNet model in suc-
cessfully and automatically capturing relevant domain knowledge
from only raw EF, as well as of the proposed cross-property TL
methodology in effectively and appropriately transferring that
knowledge for building predictive models for a variety of target
properties on small target datasets.

Based on the above findings, our general recommendation for
cross-property TL for a given target property would be to use
feature extraction based TL using formation energy as the source
property. Further, if the target property is also available as a
possible source property, one may also want to try using the
corresponding source model with a fine-tuning based TL scheme.

Transfer learning on experimental data. Here, we demonstrate
the performance of TL models on experimental datasets with
formation energy and band gap as materials properties. As we
observed from our previous analysis that for a given target
property, using formation energy as the source property and/or
the same source property to perform TL is better, we use
the source model trained on formation energy and band gap for
this analysis. All the model training and testing are performed
with the same experimental setup and pre-processing with EF as
model input for TL models and EF/PA as model input for SC
models. For experimental band gap, as the corresponding for-
mation energy values were not available, the duplicate composi-
tions were handled by only keeping the entry with the lowest
band gap. Since there are only two experimental datasets, here we
performed a more rigorous 100-fold CV for both SC and TL
models, in order to get more MAE values to facilitate more
accurate statistical testing (see Supplementary Table 11), and
report the performance of the best model (selected based on the

Table 3 Prediction performance benchmarking for the
prediction task of “Multi Source Transfer Learning" on the
test set.

Property Data size Base MAE of best
SC model

MAE of best
TL model

KLU 28,056 18.77 11.96 11.15
KAA 28,171 5.234 2.978 2.832
BgOptb 28,163 0.988 0.279 0.251
Deltae 28,155 0.850 0.135 0.125
Encut 28,108 246.25 76.99 82.26
Ehull 27,297 0.131 0.055 0.050
Magoszi 25,844 1.225 0.438 0.405
Magout 25,357 1.176 0.393 0.376
Eps 25,150 3.829 1.462 1.262
PPF 16,250 650.5 543.1 494.0
NPF 16,250 658.1 546.3 512.3
Pem300k 16,763 1.918 1.293 1.228
Nem300k 16,760 1.918 1.282 1.197
PSB 14,439 163.30 68.34 60.25
NSB 14,144 108.69 57.83 54.53
Meps 11,349 4.905 1.926 1.776
MaxM 10,963 285.32 72.66 65.69
MinM 10,930 40.89 24.85 23.51
ETC11 10,839 81.66 37.35 33.19
ETC12 10,759 44.96 19.05 17.23
ETC13 10,846 42.54 15.65 13.93
ETC22 10,832 84.06 36.99 31.35
ETC33 10,856 84.12 38.93 34.22
ETC44 9986 29.55 17.24 14.63
ETC55 9755 26.61 14.90 11.74
ETC66 9739 27.59 15.83 13.10
BulkKV 10,743 49.11 11.83 11.28
ShearGV 10,209 24.28 11.90 11.01
BgMbj 7296 1.911 0.555 0.534
Spillage 3866 0.501 0.379 0.373
SLME 3006 9.439 7.193 6.420
MaxIrM 2302 426.0 108.2 103.4
MinIrM 2268 66.16 49.90 44.45
PMDiEl 2126 5.757 3.221 2.715
PMDi 2126 6.977 3.931 3.561
PMDiIo 2126 2.577 0.847 0.774
PMEij 1123 0.520 0.436 0.367
PMDij 689 46.47 24.43 23.46
Exfoli 557 62.93 59.37 51.56

The table shows the test MAE of the best model selected using Supplementary Table 7 (based
on validation MAE) when run on the test set for each of the target materials properties. The
selected modeling configurations are listed in Supplementary Table 8. All the model inputs are
based on EF.

Table 2 Prediction performance benchmarking for the
prediction task of “Multi Target Transfer Learning" on the
test set.

Property Data size Base MAE of best
SC model

MAE of best
TL model

KLU 28,056 18.77 11.96 11.37
KAA 28,171 5.234 2.978 2.821
BgOptb 28,163 0.988 0.279 0.251
Deltae 28,155 0.850 0.135 0.120
Encut 28,108 246.25 76.99 83.09
Ehull 27,297 0.131 0.055 0.050
Magoszi 25,844 1.225 0.438 0.405
Magout 25,357 1.176 0.393 0.369
Eps 25,150 3.829 1.462 1.304
PPF 16,250 650.5 543.1 508.6
NPF 16,250 658.1 546.3 493.0
Pem300k 16,763 1.918 1.293 1.111
Nem300k 16,760 1.918 1.282 1.183
PSB 14,439 163.30 68.34 60.53
NSB 14,144 108.69 57.83 53.32
Meps 11,349 4.905 1.926 1.832
MaxM 10,963 285.32 72.66 65.69
MinM 10,930 40.89 24.85 23.51
ETC11 10,839 81.66 37.35 34.03
ETC12 10,759 44.96 19.05 17.15
ETC13 10,846 42.54 15.65 13.90
ETC22 10,832 84.06 36.99 32.13
ETC33 10,856 84.12 38.93 33.89
ETC44 9986 29.55 17.24 14.76
ETC55 9755 26.61 14.90 11.71
ETC66 9739 27.59 15.83 13.81
BulkKV 10,743 49.11 11.83 11.01
ShearGV 10,209 24.28 11.90 11.11
BgMbj 7296 1.911 0.555 0.508
Spillage 3866 0.501 0.379 0.371
SLME 3006 9.439 7.193 6.877
MaxIrM 2302 426.0 108.2 104.6
MinIrM 2268 66.16 49.90 47.14
PMDiEl 2126 5.757 3.221 3.070
PMDi 2126 6.977 3.931 3.761
PMDiIo 2126 2.577 0.847 0.791
PMEij 1123 0.520 0.436 0.415
PMDij 689 46.47 24.43 22.32
Exfoli 557 62.93 59.37 48.11

Only formation energy was used as the source property for this analysis. The table shows the
test MAE of the best model selected using Supplementary Table 5 (based on validation MAE)
when run on the test set for each of the target materials properties. All the model inputs are
based on EF.
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validation MAEs from 100-fold CV) on the holdout test set for all
the models. In addition, here, we also used an AutoML library
called hyperopt sklearn64 for the scratch ML models in addition
to the extensive hyperparameter search to optimize hyperpara-
meters for all the ML models.

Table 5 presents the prediction accuracy of the best SC and best
TL model (selected based on MAE values from 100-fold CV as
shown in Supplementary Table 11) on the test set for each of the
two experimental target properties. As we can observe from
Supplementary Table 11 and Table 5, the TL models outperform
the SC models in both cases. For the experimental dataset on
formation energy, TL:FineTune using formation energy as the
source model and SC:DL(EF) performed the best for TL and SC
respectively. For the experimental dataset on band gap,
TL:DL(FeatExtr) using formation energy as the source model
and SC:DL(PA) performed the best for TL and SC respectively.
Interestingly, the proposed TL models were able to reduce the

MAE of the experimental dataset on formation energy to
0.0708 eV/atom as compared to the previous best recorded
MAE of 0.0731 eV/atom from ref. 45 on the same test set. Another
interesting observation from Supplementary Table 11 is that for
the experimental dataset on band gap, TL model using feature
extraction was more accurate than the TL model using fine-
tuning. We believe this might be due to the relatively larger
difference in the band gap values computed using DFT and
measured via experiments, as it is well-known that band gaps are
quite challenging to calculate accurately using DFT65,66.

Discussion
In this paper, we presented an AI/ML/DL framework for cross-
property transfer learning by building various source models
trained on materials properties from a large dataset, and trans-
ferring that knowledge to build better target models on various
properties from smaller datasets for enhanced materials property
prediction. To illustrate the benefit of the proposed approach, we
built source models using a deep learning framework called
ElemNet on the OQMD dataset for various materials properties
present in the dataset. This trained model was then used to
perform three kinds of transfer learning on the smaller JARVIS
datasets to find that the proposed TL models work well even
when the source property and target property are different, which
is expected to be especially useful to build predictive models for
properties for which big datasets are not available. We trained the
DL model and traditional ML models from scratch to compare
the transfer learning performance. The deep learning framework
ElemNet was originally designed to predict formation energy
using vector-based materials representation composed of 86 ele-
mental fractions as the model input. We made careful changes in
the model architecture design to improve the model’s robustness
and accuracy by modifying the software implementation frame-
work and the architecture component’s usage. We demonstrated
the proposed approach’s efficiency by evaluating and comparing
the TL models with SC models with the same vector-based
materials representation composed of 86 elemental fractions. We
then performed a more stringent test of TL models by incor-
porating vector-based materials representation composed of 145
composition-derived physical attributes for only the SC models.
We also perform additional statistical analysis by calculating the
95th percentile of the distribution of the absolute error (Q95) for
the best performing models of Tables 2–5, which is shown in
Supplementary Table 12. Even when SC models are allowed PA as
model input, TL models perform better than SC models in 26/41
cases for Q95, i.e., in 63% of the cases.

In order to see if the observed improvement in accuracy of TL
models over SC models is significant, we perform statistical
testing to estimate the one-tailed p-value for comparing the test
MAEs obtained on 41 target datasets (39 DFT-computed datasets
and two experimental datasets) using the Signed Test67,68 as we
are dealing with different datasets with different properties, whose
MAE differences may not be directly comparable69. Here, the null
hypothesis is that “TL model is not better than SC model” and
the alternate hypothesis is “TL model is better than SC model”. If
we take into account that the SC models are allowed PA as input,
we get the p-value= 0.00397 for MAE comparison and p-
value= 0.04291 for Q95 comparison using a sign test calculator70,
thus rejecting the null hypothesis at α= 0.05, suggesting that such
a difference in test MAE/Q95 between SC and TL models is
unlikely to have arisen by chance. We can thus infer that, in
general, TL models perform significantly better than SC models
for cross-property transfer learning. We also show the versatility
of the best performing TL method used in our analysis (the
feature-extraction TL method), which facilitates the extraction of

Table 4 Prediction performance benchmarking for the
prediction task of “Performance against Physical
Attributes" on the test set.

Property Data size Base MAE of best
SC model

MAE of best
TL model

KLU 28,056 18.77 10.79 11.15
KAA 28,171 5.234 2.722 2.832
BgOptb 28,163 0.988 0.279 0.251
Deltae 28,155 0.850 0.135 0.125
Encut 28,108 246.25 76.99 82.26
Ehull 27,297 0.131 0.058 0.050
Magoszi 25,844 1.225 0.438 0.405
Magout 25,357 1.176 0.393 0.376
Eps 25,150 3.829 1.280 1.262
PPF 16,250 650.5 495.0 494.0
NPF 16,250 658.1 484.2 512.3
Pem300k 16,763 1.918 1.086 1.228
Nem300k 16,760 1.918 1.086 1.197
PSB 14,439 163.30 56.49 60.25
NSB 14,144 108.69 48.93 54.53
Meps 11,349 4.905 1.784 1.776
MaxM 10,963 285.32 57.38 65.69
MinM 10,930 40.89 24.12 23.51
ETC11 10,839 81.66 34.53 33.19
ETC12 10,759 44.96 16.60 17.23
ETC13 10,846 42.54 14.09 13.93
ETC22 10,832 84.06 34.62 31.35
ETC33 10,856 84.12 35.82 34.22
ETC44 9986 29.55 15.23 14.63
ETC55 9755 26.61 12.40 11.74
ETC66 9739 27.59 13.53 13.10
BulkKV 10,743 49.11 11.83 11.28
ShearGV 10,209 24.28 11.26 11.01
BgMbj 7296 1.911 0.555 0.534
Spillage 3866 0.501 0.410 0.373
SLME 3006 9.439 7.193 6.420
MaxIrM 2302 426.0 87.67 103.4
MinIrM 2268 66.16 38.52 44.45
PMDiEl 2126 5.757 3.911 2.715
PMDi 2126 6.977 4.336 3.561
PMDiIo 2126 2.577 0.847 0.774
PMEij 1123 0.520 0.436 0.367
PMDij 689 46.47 26.46 23.46
Exfoli 557 62.93 54.26 51.56

The table shows the test MAE of the best model selected using Supplementary Table 9 (based
on validation MAE) when run on the test set for each of the target materials properties. The
selected modeling configurations are listed in Supplementary Table 10. The SC models are
allowed to use PA as input as well, while TL models only use EF-based inputs. The lowest
MAE values in each row are highlighted in bold.
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relevant and robust features on the target datasets that can then
be used with any ML/DL technique, thereby providing flexibility
and interoperability. Even within the extracted features, the fea-
tures extracted from the first four layers were found to perform
significantly better than the features extracted from later layers.
The so called freezing technique, which is essentially feature
extraction from the last layer, did not perform very well in our
study. This might be because the representations can change
significantly after every layer, gradually becoming more specific to
the particular dataset used for source model training, thus making
it difficult for the target DL model to learn the target property,
especially for cross-property TL. Moreover, this seems to be
consistent with the fact that of the 16 layers of ElemNet, the
representations extracted from only the first four layers were
found to result in accurate models. To see if there is a significant
difference between the two fine-tuning techniques (FineTune and
ModFineTune), we calculate the one-tailed p-value using Signed
Test67,68 as we have their results on 39 different datasets. Here,
the null hypothesis is “ModFineTune is not better than Fine-
Tune” and the alternate hypothesis is “ModFineTune is better
than FineTune”. After comparing the results from 6 (source
properties) × 39 (target properties)= 234 cases, we get the p-
value= 0.00104 using a sign test calculator70, thereby rejecting
the null hypothesis at α= 0.05, indicating that TL:ModFineTune
performs significantly better as compared to TL:FineTune for
cross-property transfer learning. These observations are intuitive
and encouraging. Thus, when building a predictive model on a
small target dataset with a given target property, if the same
source property is available, it is advisable to try using the cor-
responding source model as well as formation energy as the
source property, as we did for the experimental target datasets.

In order to understand how the performance of SC and TL
models varies with the size of the training data on a fixed test set,
we performed additional model training experiments for forma-
tion energy for different training data sizes using the same test set
(10% of the total data size) to create a learning curve that shows
prediction accuracy as a function of the training set size. Sup-
plementary Fig. 1 shows that in general, TL models outperform
SC models for all the training sizes for formation energy pre-
diction. We also studied the correlation between the target
properties, as shown in Supplementary Fig. 2. Although most of
the materials properties that show pair-wise correlation can be
explained with domain knowledge, we also observed some pair-
wise correlations that are not directly explainable by domain
knowledge. For example, we observe a strong positive correlation
between band gap and PSb, Exfoli, and ETC55 and a strong
negative correlation between PSb and Eps, PSb and Meps, band
gap and Eps, band gap and Meps, PMDiIo and band gap, Deltae
and band gap, SLME and band gap, KAA and band gap, PSb and
KAA, PSb and NEM300K, and PSb and PEM300K. It would be
interesting to see if it is possible to analyze and devise possible
relations between strongly correlated materials properties from
the dataset. Our analysis demonstrates that the prediction models
benefit from leveraging the source model trained on a large
dataset irrespective of the materials property used to perform the

source model training. The usefulness of TL methods such as
feature extraction TL method and the large dataset’s availability
appear to benefit the prediction performance on small target
datasets. This suggests that a pre-trained source model with a rich
set of features learned on an extensive source dataset can be
effectively used with the proposed cross-property TL framework
to build enhanced models on small datasets. This is because they
can better help the target model to learn their respective prop-
erties with more robustness and accuracy by refining the
knowledge and rich set of hierarchical features learned by the
source model. Although our current work only uses composition-
based attributes to train source models and perform TL on target
datasets for reasons described earlier, it is relevant to note that
some of the recent deep learning models for predicting materials
properties use graph-based methods52,71–73 and some form of
embedding with materials structure and/or composition-based
information as input. One could thus try to build upon the
proposed cross-property TL workflow by incorporating structure-
based information into the workflow via vector-based structural
attributes with fully connected deep neural networks31,74,75 or
graph-based neural networks52,72,73, if structural information is
available for both source and target datasets. The trained source
models could then be used in a similar way to either extract
robust features for the target datasets or directly fine-tune on the
target datasets. The proposed framework is thus quite flexible and
can combine different state-of-the-art deep learning models to
improve upon the performance and potentially be applied to
other materials properties for which enough data may not be
available. Further, the proposed TL framework is expected to be
easily adaptable to other scientific domains beyond materials
science. The presented cross-property transfer learning technique
is conceptually easy to implement, understand, use, and build
upon. In the future, we plan to develop web-based tools deploying
the best performing predictive models for different target prop-
erties, as well as extend the cross-property transfer learning fra-
mework along the lines discussed above.

Methods
Model architectures. We illustrate the architecture of the deep learning frame-
work ElemNet used for DL modeling in Supplementary Fig. 3. Due to the model
input’s numerical nature, ElemNet uses a series of fully connected layers57 and
ReLU60 as the activation function. Dropout58,63 is introduced at specific intervals
to reduce the deep neural network’s overfitting by regularizing the model. The
technical modifications from the previous ElemNet model used in this work
include re-implementing it in TensorFlow 2, and disabling the use of dropout in
order to create uniform output features for the feature extraction TL method to
maintain consistency, which also led to improvement in the accuracy of the model.
As this deep learning framework only uses elemental fractions as the model input,
it is called ElemNet. The implementation of the model used in this work is publicly
available at ref. 76. There are two broad types of representations that can be used for
this type of problem: composition-based and structure-based, both of which have
their advantages and limitations. By definition, the representations based on
composition alone are unable to distinguish between different structure poly-
morphs of the same composition, which would end up being duplicates in the data,
and thus would need to be removed before ML modeling. However, the resulting
composition-based models could be used to make predictions without the need for
structure as an input, which is useful since structure information is often una-
vailable or very expensive to calculate for new materials. Composition-based

Table 5 Prediction performance benchmarking for the prediction task of “Transfer Learning on Experimental Data" on the
test set.

Property (unit) Data size Base MAE of best SC model MAE of best TL model

Formation energy (eV/atom) 1643 1.0327 0.0964 0.0708
Band gap (eV) 4920 1.2061 0.4458 0.3551

The table shows the test MAE of the best model selected using Supplementary Table 11 (based on validation MAE) when run on the test set for each of the target materials properties. The SC models are
allowed to use PA as input as well, while TL models only use EF-based inputs. The lowest MAE values in each row are highlighted in bold.
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models can thus be used effectively for virtual combinatorial screening to narrow
down the vast space of promising materials systems by identifying promising
compositions, which could then be further explored with methods for structure
prediction and structure-based property prediction models. In this work, we use
composition-based representation, similar to refs. 1,5,31,45,77,78. To deal with
duplicates arising due to different structures of the same composition, we only keep
the most stable structure available in the database, i.e., the one with minimum
formation energy, in line with previous works.

Scratch and transfer learning models. We implemented two basic types of
scratch (SC) models and three basic types of transfer learning (TL) models in this
work. For SC models, we perform the model training directly on the target dataset
from scratch without providing the model with any form of pre-trained knowl-
edge. The model architecture used for SC models includes traditional machine
learning (ML) models, and deep learning (DL) framework called ElemNet. Two
vector-based materials representation are used in this work: elemental fractions
(EF), which is a vector of 86 elemental fractions corresponding to 86 elements; and
145 composition-derived physical attributes (PA). For transfer learning (TL)
models, we use a model pre-trained on the source dataset using only EF as the
vector-based-materials representation for the model input. The TL techniques
incorporated in this work include Fine-Tuning, Freezing, and a novel feature
extraction (FeatExtr) method. Fine-Tuning uses pre-trained model weights as a
starting point for further training on the smaller dataset with the same archi-
tecture as the source model. As the property we want to perform TL on can be
different for the source model and target model, we performed two types of fine-
tuning. First, we performed the traditional or intuitive fine-tuning (FineTune),
where we use all the source model weights without any modification. Next, we
performed modified fine-tuning (ModFineTune), where instead of reusing the
weights of the last layer, we randomly initialized those weights, since the last layer
learns to predict the source property and might become over-specific to the source
property, which could possibly make fine-tuning the model for the target property
more challenging in some cases. FeatExtr uses the pre-trained model’s activations
from a given layer as the materials representation for each compound of the target
dataset. As the DL model consists of 17-layers of architecture, we can have 16
different types of materials representation (excluding the last layer, which is the
output layer) for each compound with varying sizes, as the materials repre-
sentation size depends on the number of neurons in a given layer. For example, if
we extract the materials representation from the first layer of the ElemNet model,
each compound will be represented as a 1024-dimensional feature vector. The
same can be done with other layers with different number of neurons. The
resulting materials representation of the target dataset can thus be used as input to
any ML/DL model. We thus performed the feature extraction TL technique both
with traditional ML models as well as the ElemNet DL model. After training the
model on features extracted from 16 different layers to be used as input to the ML
models and the DL model, we report the best performing result. The freezing
method is a special case of the feature extraction method where we use the pre-
trained model’s activation from the last layer used for FeatExtr, which is the layer
before the output layer. The pre-trained DL model in this work is the ElemNet
model trained on OQMD, and thus it implies no explicit use of PA, i.e., the model
is trained by using only EF as input. We also incorporate a “Base”model as a naive
baseline for comparison with other methods. This model always uses the average
property value of all the training data provided to it as the predicted property of a
test compound.

Network and ML settings. The deep learning framework, ElemNet, was imple-
mented using Python and TensorFlow 261 and Keras62. The hyperparameters used
in the ElemNet comprise of the following: ReLU as the activation function after
each layer except for the last layer, Adam59 as the optimizer with a mini-batch size
of 32, learning rate as 0.0001. To prevent overfitting, we used early stopping with
patience of 200 epochs to stop the model training if the performance did not
improve on the validation set for 200 epochs. We implement the traditional ML
models using Scikit-learn79. The traditional ML models used in this work are Ada
Boost, Elastic Net, Linear Regression, SGD regression, Ridge, Support Vector
Machine, K-Nearest Neighbors, Decision Tree, Extra Tree, Bagging, Lasso, and
Random Forest. We carry out an extensive hyperparameter grid search to find the
best hyperparameters for all the ML models which is shown in Supplementary
Table 4. We use mean absolute error (MAE) as the loss function as well as the
primary evaluation metric for all models. We performed all the modeling experi-
ments using a fixed random seed of 1234567 to facilitate reproducibility.

Data availability
The datasets used in this paper are publicly available from their corresponding websites-
OQMD19 (http://oqmd.org) and JARVIS22 (https://jarvis.nist.gov), experimental
formation energy (https://github.com/wolverton-research-group/qmpy/blob/master/
qmpy/data/thermodata/ssub.dat), and experimental band gap from AutoMatminer80

(https://github.com/hackingmaterials/automatminer). The preprocessed data used for
training and testing the TL models in this work are available at (https://doi.org/10.5281/
zenodo.5533023). Source data are provided with this paper.

Code availability
The codes required to perform TL (using both feature extraction and fine-tuning) used in
this study is available at https://doi.org/10.5281/zenodo.5533023.
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