Skip to main content
. 2021 Nov 15;12:6595. doi: 10.1038/s41467-021-26921-5

Table 2.

Prediction performance benchmarking for the prediction task of “Multi Target Transfer Learning" on the test set.

Property Data size Base MAE of best SC model MAE of best TL model
KLU 28,056 18.77 11.96 11.37
KAA 28,171 5.234 2.978 2.821
BgOptb 28,163 0.988 0.279 0.251
Deltae 28,155 0.850 0.135 0.120
Encut 28,108 246.25 76.99 83.09
Ehull 27,297 0.131 0.055 0.050
Magoszi 25,844 1.225 0.438 0.405
Magout 25,357 1.176 0.393 0.369
Eps 25,150 3.829 1.462 1.304
PPF 16,250 650.5 543.1 508.6
NPF 16,250 658.1 546.3 493.0
Pem300k 16,763 1.918 1.293 1.111
Nem300k 16,760 1.918 1.282 1.183
PSB 14,439 163.30 68.34 60.53
NSB 14,144 108.69 57.83 53.32
Meps 11,349 4.905 1.926 1.832
MaxM 10,963 285.32 72.66 65.69
MinM 10,930 40.89 24.85 23.51
ETC11 10,839 81.66 37.35 34.03
ETC12 10,759 44.96 19.05 17.15
ETC13 10,846 42.54 15.65 13.90
ETC22 10,832 84.06 36.99 32.13
ETC33 10,856 84.12 38.93 33.89
ETC44 9986 29.55 17.24 14.76
ETC55 9755 26.61 14.90 11.71
ETC66 9739 27.59 15.83 13.81
BulkKV 10,743 49.11 11.83 11.01
ShearGV 10,209 24.28 11.90 11.11
BgMbj 7296 1.911 0.555 0.508
Spillage 3866 0.501 0.379 0.371
SLME 3006 9.439 7.193 6.877
MaxIrM 2302 426.0 108.2 104.6
MinIrM 2268 66.16 49.90 47.14
PMDiEl 2126 5.757 3.221 3.070
PMDi 2126 6.977 3.931 3.761
PMDiIo 2126 2.577 0.847 0.791
PMEij 1123 0.520 0.436 0.415
PMDij 689 46.47 24.43 22.32
Exfoli 557 62.93 59.37 48.11

Only formation energy was used as the source property for this analysis. The table shows the test MAE of the best model selected using Supplementary Table 5 (based on validation MAE) when run on the test set for each of the target materials properties. All the model inputs are based on EF.