Skip to main content
. Author manuscript; available in PMC: 2021 Nov 16.
Published in final edited form as: Glob Environ Change. 2020 Nov 26;65:102192. doi: 10.1016/j.gloenvcha.2020.102192

Table 2.

Coefficient estimates, linear regression model predicting weight-for-height z-score (Model 1) and wasting (Model 2)

Variable Model 1
(WHZ)
Model 2
(Wasting)
Climate anomalies, 12 months before survey
Temperature −0.0226 ** 0.0105 ***
Temperature2 0.0070 −0.0031 **
Precipitation 0.0328 *** 0.0035 **
Precipitation2 −0.0188 ** 0.0016
 
Control variables
Child’s age (months) 0.0078 *** −0.0039 ***
Child’s age2 (months) 0.0000 0.0000 ***
Child’s sex = female 0.0356 *** −0.0147 ***
Child’s birth order −0.0088 ** 0.0011
Coresident under-5 children 0.0057 −0.0010
Mother’s age (years) 0.0002 0.0002
Mother’s education = primary+ 0.1023 *** −0.0178 ***
Residence = urban 0.0725 *** −0.0181 ***
Historical monthly temperature, mean −0.0516 *** 0.0053 ***
Historical monthly temperature, SD −0.4675 *** 0.0900 **
Historical monthly precipitation, mean 0.0002 *** 0.0000 **
Historical monthly precipitation, SD 0.0002 0.0000
 
Season of interview month fixed effects Yes Yes
Interview decade fixed effects Yes Yes
Province fixed effects Yes Yes
 
R2 0.0944 0.0612
Joint test, temperature ***
Joint test, precipitation *** **
Joint test, all climate variables *** ***
 
Sample size 182,272 182,272

p<0.10

**

p<0.05

***

p<0.001

Standard errors clustered at the community level. Historical climate variables measured at the cluster level. Interview month (ordinal) ranked by historical monthly precipitation within cluster. WHZ = weight-for-height z-score.