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Letter to the editor
Alteration of the respiratory microbiome in COVID-19 patients with

different severities
Coronavirus disease 2019 (COVID-19) is rampant worldwide and

has affected more than 215 countries and regions. According to the

World Health Organization’s report, there were 226,018,919 COVID-

19 cases and 4,654,898 deaths as of March 14, 2021, although

300,002,228 vaccines have been administered globally. COVID-19

patients have different clinical phenotypes and can be divided into

asymptomatic, normal, mild, severe, and critical patients. However,

the factors that lead to severe/critical cases remain controversial,

and microecological dysfunction is one of the potential causes

(Saleh et al., 2020). Previous studies have reported that the gut

microbiome affects the severity of COVID-19 (Zuo et al., 2020; Lv

et al., 2021), but the correlations between the respiratory microbiome

(RM) and COVID-19 severity have seldom been detected. Since the

RM is closely related to the occurrence of COVID-19 (Wypych

et al., 2019), we propose to explore the RM characteristics in

COVID-19 patients with different severities and elucidate the RM

changes along with the clinical treatment.

In this study, we recruited 39 COVID-19 patients from The First

Affiliated Hospital of Guangzhou Medical University and Guangzhou

Eighth People’s Hospital, including 12 asymptomatic (Group 1), 15

normal/mild (Group 2), and 12 severe/critical (Group 3) patients

(Supplementary Methods; Table S1). After clinical examinations in

all COVID-19 patients (Table S1), we compared the clinical indices

between the three groups and discovered a deteriorated clinical sit-

uation in the older patients (Fig. S1). Compared with asymptomatic

patients, COVID-19 patients with normal/mild symptoms had signif-

icantly increased blood pressure and decreased leukocytes

(adjusted P < 0.05; Fig. S1), which was clinical evidence of viral infec-

tion. Among the severe/critical COVID-19 patients, we observed

disordered clinical indices, such as decreased heartbeats and lym-

phocytes and increased blood pH and body temperature (adjusted

P < 0.05; Fig. S1). Generally, the findings are in accordance with

those of previous studies, and the worsened vital signals in older pa-

tients suggest a high risk of developing severe/critical cases (Liu

et al., 2020; Zhou et al., 2020).

To investigate potential bacterial infections, we collected sputum

samples from the COVID-19 patients and detected their RMswith the

Oxford Nanopore Technology sequencing platform (Supplementary

Methods). A total of 4,692,525 clean reads, which were longer than

100 bp, were generated with an average of 120,316.1 ± 148,799.4

per sample. After taxonomical annotation, we discovered that the

reads were assigned to 1157 genera in all samples. Based on the

clinical indices and the Bray-Curtis distance matrix obtained from

RM compositions, we performed the permutational analysis of vari-

ance (PERMANOVA; Table S2) and discovered that disease severity

(R2 ¼ 0.083, P < 0.01) contributed significantly to the RM differences
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(Fig. 1A). Additionally, principal coordinate analysis (PCoA) revealed

the overlap of Group 1 and Group 2 and the separation of Group 3

(Fig. 1B). These results suggested that COVID-19 patients with

different severities had different RM characteristics, and the se-

vere/critical patients exhibited more distinct RM features as

compared with the asymptomatic and normal/mild patients. Howev-

er, we did not observe significantly different bacterial diversity among

the three groups, which might have been caused by the insufficient

sample size (Fig. 1C). To detect the common RM alterations in pa-

tients, we selected the top 10 abundant genera from Group 1, Group

2, and Group 3, respectively, and found distinct RM compositions

between the groups. The severe/critical patients exhibited signifi-

cantly decreased abundances of Neisseria, Rothia, and Prevotella

(adjusted P < 0.05; Fig. 1D), which are generally abundant in healthy

people (Schenck et al., 2016; Man et al., 2017), partially consistent

with previous discoveries. Moreover, the distinct RM characteristics

in Group 3 were confirmed when we performed sample clustering

based on the top 10 abundant genera (Fig. S2). To further confirm

the altered species in severe/critical patients, we selected the top

10 abundant species from the three groups and discovered the

significantly decreased Neisseria mucosa, N. subflava, Rothia muci-

laginosa, Prevotella intermedia, and P. jejuni (adjusted P < 0.05;

Fig. S3). Since individual RM differences were detected among pa-

tients in Group 3, we analyzed their RM and discovered individually

enriched pathogens, such as abnormally abundant Parvimonas

(40.93% in patient 8752), Flavobacterium (12.91% in patient 7336),

Staphylococcus (9.35% in patient 4706), and Gardnerella (46.76%

in patient 8015; Table S3). We deduced that the asymptomatic/

normal/mild COVID-19 patients possessed RM with characteristics

similar to those of healthy people. Conversely, the severe/critical pa-

tients contained individually distinct RM features, which differentially

infecting pathogens may cause (Man et al., 2017; Wu and Segal,

2018).

To further detect the longitudinal alteration of the RM in associa-

tion with COVID-19 during clinical treatment, we collected sputum

from the severe/critical patients the day after enrolment (T1), two

weeks after treatment (T2), and one day before discharge from the

hospital (T3). Notably, PCoA revealed a high coincidence of samples

from the T2 and T3 groups after clinical treatment, distinct from the

T1 group, suggesting significant impacts of treatment on the RM

(Fig. 1E). Since we have applied antibiotics to severe/critical patients,

we speculated that the results were caused by antibiotic application

(Table S1). In addition, we further performed b-diversity to detect the

RM differences among the T1, T2, and T3 groups and confirmed the

significantly altered RM in T2 and T3 patients after clinical treatment

(Fig. S4). However, the RM diversity in the patients did not change
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Fig. 1. RM characteristics of COVID-19 patients with different severities and their longitudinal changes during clinical treatment. A: The impacts of environmental factors on the RM. We

used the R2 value from PERMANOVA to evaluate the influences of the environmental factors. B: PCoA of the RM features at the genus level. The distribution of the samples from the

three groups is marked with circles with 95% confidence intervals. C: Comparison of bacterial diversity among the three groups. Shannon diversity was applied to represent bacterial

diversity. D: Comparisons of the genus abundances between the three groups. We selected the top 10 genera from the three groups and compared their abundances between the
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groups. The blue, orange, and red boxes represent Group 1, Group 2, and Group 3, respectively. E: PCoA of the RM alterations during treatment. The distribution of the samples from

the three groups is marked with circles with 95% confidence intervals. The samples from the T1, T2, and T3 groups are colored pink, green, and blue, respectively. F: Longitudinal

alterations of RM bacterial diversity during treatment. Shannon diversity was calculated at the genus level. G: Longitudinal changes in RM composition during treatment. The top 15

genera are colored by different colors on the right of the plot. H: The correlations between clinical indices and RM components. In the heatmap, the positive and negative relations are

represented by blue and red squares, respectively. I: Random Forest Model used to predict the severity of COVID-19. Based on three-fold cross-validation, the AUC value of the model

was 0.714. *, adjusted P < 0.05; **, adjusted P < 0.01; ***, adjusted P < 0.001. DBP, diastolic blood pressure; SBP, systolic blood pressure; Tmp, temperature; Leu, leukocyte; Lym,

lymphocyte.
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statistically during clinical treatment, although decreased Shannon

diversity was observed (Fig. 1F). During treatment, we discovered

continually increased Rothia and Prevotella, suggesting the recovery

of RM balance in the patients (Figs. 1G and S5). We also found

decreased pathogens, such as Gardnerella (from 46.76% to in pa-

tient 8015) and Parvimonas (from 40.93% to in patient 8752), hinting

at eliminating pathogens and reducing bacterial infection risks (Table

S4). However, Lactobacillus, which is recognized as a probiotic, also

decreased. Therefore, we speculated that the phenomena were

caused by the indiscriminate elimination of bacteria by antibiotics

(Schwartz et al., 2020), and we should remain cautious during anti-

biotic application.

Applying Spearman correlation analysis to the RM and clinical

indices, we found positive correlations between body temperature

and Aggregatibacter (R ¼ 0.433, adjusted P < 0.05) and Haemophilus

(R ¼ 0.408, adjusted P < 0.05), which implied the potential relation-

ships between the increased pathogens and the aggravated inflamma-

tions in patients (Fig. 1H; Table S5). Meanwhile, lymphocytes positively

correlated toVibrio (R¼ 0.376,P< 0.05) andSelenomonas (R¼ 0.426,

adjusted P < 0.05). In contrast, systolic blood pressure is negatively

associated with the abundance of Escherichia in the respiratory tract

(R ¼ �0.525, adjusted P < 0.05). To discriminate COVID-19 patients

with different severities, we further constructed a Random Forest

model using the RM compositions. In the model, the area under the

curve (AUC) value reached 0.714 with 3-fold validation (Fig. 1I). Facil-

itated by respiratory biomarkers for distinguishing patients with

different severities (Fig. S6), the COVID-19-risk model could predict

the clinical severity of the enrolled COVID-19 patients.

From previous reports, we have learned that the gut microbiome

involves the severity of COVID-19 through the host’s immune system

(van der Lelie and Taghavi, 2020; Yeoh et al., 2021) and the charac-

teristics of the RM in association with COVID-19 with different sever-

ities remain unexplored. This study explored the RM in COVID-19

patients with different severities, but there were several shortcom-

ings. First, we lacked RM controls from healthy people, enabling us

to detect the magnitude of RM alterations in COVID-19 patients. Sec-

ond, limited by the small sample size, the accuracy of the COVID-19

risk model needs to be improved with samples from other countries.

Last but not least, we should perform the gut metagenomic and

immunologic examinations in the patients, helping us gain a deeper

insight into the roles of the microbiome on clinical severities.

In conclusion, our study revealed differences in RM characteris-

tics in COVID-19 patients with different severities, emphasized bac-

terial coinfection in severe/critical patients, and established a COVID-

19-risk model for predicting the coinfection or clinical severity of

COVID-19 patients.

Data availability

The clinical information for the patients and the taxonomic infor-

mation of the respiratory microbiome can be accessed in the

Supplementary data. All other information is available from the au-

thors upon reasonable request.
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