
Catheter Position Prediction Using Deep-learning-based Multi­
atlas Registration for High-dose-rate Prostate Brachytherapy

Yang Lei#, Tonghe Wang#, Yabo Fu, Justin Roper, Ashesh B. Jani, Tian Liu, Pretesh Patel, 
Xiaofeng Yang
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 
30322

Abstract

Purpose: High-dose-rate (HDR) prostate brachytherapy involves treatment catheter placement, 

which is currently empirical and physician dependent. The lack of proper catheter placement 

guidance during the procedure has left the physicians to rely on a heuristic thinking-while­

doing technique, which may cause large catheter placement variation and increased plan quality 

uncertainty. Therefore, the achievable dose distribution could not be quantified prior to the catheter 

placement. To overcome this challenge, we proposed a learning-based method to provide HDR 

catheter placement guidance for prostate cancer patients undergoing HDR brachytherapy.

Methods: The proposed framework consists of deformable registration via registration network 

(Reg-Net), multi-atlas ranking and catheter regression. To model the global spatial relationship 

among multiple organs, binary masks of the prostate and organs-at-risk are transformed into 

distance maps which describe the distance of each local voxel to the organ surfaces. For a new 

patient, the generated distance map is used as fixed image. Reg-Net is utilized to deformably 

register the distance maps from multi-atlas set to match this patient’s distance map and then 

bring catheter maps from multi-atlas to this patient via spatial transformation. Several criteria, 

namely prostate volume similarity, multi-organ semantic image similarity and catheter positions 

criteria (far from the urethra and within the partial prostate), are used for multi-atlas ranking. The 

top-ranked atlas’ deformed catheter positions are selected as the predicted catheter position for this 

patient. Finally, catheter regression is used to refine the final catheter positions. A retrospective 

study on 90 patients with a five-fold cross validation scheme was used to evaluate the proposed 

method’s feasibility. In order to investigate the impact of plan quality from the predicted catheter 

pattern, we optimized the source dwell position and time for both the clinical catheter pattern and 

predicted catheter pattern with the same optimization settings. Comparisons of clinically relevant 

dose volume histogram (DVH) metrics were completed.

Results: For all patients, on average, both the clinical plan dose and predicted plan dose meet 

the common dose constraints when prostate dose coverage is kept at V100 = 95%. The plans from 

predicted catheter pattern have slightly higher hotspot in terms of V150 by 5.0% and V200 by 
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2.9% on average. For bladder V75, rectum V75 and urethra V125, the average difference is close 

to zero, and the range of most patients is within ±1 cc.

Conclusion: We developed a new catheter placement prediction method for HDR prostate 

brachytherapy based on a deep-learning-based multi-atlas registration algorithm. It has great 

clinical potential since it can provide catheter location estimation prior to catheter placement, 

which could reduce the dependence on physicians’ experience in catheter implantation and 

improve the quality of prostate HDR treatment plans. This approach merits further clinical 

evaluation and validation as a method of quality control for HDR prostate brachytherapy.
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1 INTRODUCTION

High-dose-rate (HDR) brachytherapy has been widely practiced as a standard treatment 

option for localized prostate cancer since the 1990s.1,2 In prostate HDR brachytherapy, 

10 to 18 catheters are interstitially implanted to cover the prostate gland using transrectal 

ultrasound (TRUS) guidance.3,4 After catheter implantation and CT simulation, source dwell 

position and duration are optimized by a treatment planning system, aiming to deliver 

conformal dose encompassing the whole gland while minimizing hot spots and sparing 

organs-at-risk. Clinically, prostate HDR is favored for patients with disease confined to the 

prostate or immediate surrounding tissue, and it serves as either a boost treatment combined 

with external beam radiation therapy (EBRT) or a standalone therapy (monotherapy), 

depending on the cancer risk types.5-7

Among the multiple steps of HDR brachytherapy, catheter placement is one of the important 

steps that directly impact the plan quality and potential treatment outcome. Currently, 

the catheter positions are selected by the radiation oncologist or urologist based on a 

standard implantation pattern using the largest prostate axial cross section as reference 

view.8 However, the standard pattern may not be optimal for all patients due to the large 

variation in prostate size, shape and distance to organs-at-risk (OARs).9 Brachytherapists 

have adopted a heuristic method to adapt catheter positions in real-time based on individual 

patient anatomy. This important step is often rushed due to the time-pressure associated with 

the operating room schedule and anesthetized patient. This empirical process introduces 

uncertainty and variation in catheter placement among different operators, which adversely 

impacting HDR plan quality consistency and standardization. Additionally, it is difficult 

to assess the plan quality quantitatively without prior knowledge of catheter positions. 

Thus, it is desirable to have a high quality patient-specific catheter position map available 

immediately prior to catheter insertion. This type of guidance can help physicians evaluate 

the achievable dose distribution prior to needle insertion, and minimize catheter placement 

variation.

The improvement of HDR prostate brachytherapy plans has been an active area of research 

in recent years. However, most of these studies focused on optimizing the source dwell time 

on the empirical catheter placement.10-12 Optimal catheter placement prediction combined 
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with the source dwell time optimization is a novel promising strategy to improve the current 

HDR procedures, which has been rarely investigated in the literature.13 Thus, an efficient, 

automated and clinically feasible catheter placement prediction method is desirable.14

In this study, we propose a new learning-based method to provide patient specific HDR 

catheter position pattern. The patient specific catheter pattern is predicted from a multi-atlas 

dataset using deep learning-based deformable registration and is expected to generate an 

HDR plan with similar quality of physicians’ empirical catheter placement. The proposed 

framework consists of three major steps, which are (1) deformable registration15 via 

registration network (Reg-Net), (2) multi-atlas ranking and (3) catheter regression. To model 

the global spatial relationship among multiple organs, binary masks of the target and organs 

at risk (OAR) were transformed into distance maps which describe the distance of each local 

voxel to the organ surfaces. Then, Reg-Net is utilized to deformably register the distance 

maps and contours of multi-atlas to match those of an arrival patient. By multi-atlas ranking 

and spatial transformation, the corresponding catheter locations of top-ranked multiple 

atlases are registered and fused to generate synthetic catheter locations of an arrival patient. 

The final catheter positions of this patient are then regressed from the deformed catheter 

locations. To evaluate our proposed method, we retrospectively investigated 90 prostate 

cancer patients who were treated with HDR brachytherapy. HDR plans were optimized for 

both the predicted and clinical catheter placement with same optimization parameters, and 

were normalized to the same prostate dose coverage for dosimetric comparison.

2 METHODS AND MATERIALS

2.A Method overview

Figure 1 outlines the schematic flow chart of this prediction process. During training, a Reg­

Net is trained without the need of ground truth deformation vector field (DVF) under several 

supervision mechanisms that perform learnable parameters optimization. The Reg-Net is 

implemented via a 3D CNN. Binary organ masks contain no image gradient within the 

organ, which cannot be directly used to drive the registration. We thus propose to generate 

organ distance maps by encoding the binary masks with distance from the organ surface. 

Voxels within a specific organ were encoded with negative distance values while voxels 

outside the organ were encoded with positive distance values. Distance maps of the prostate 

and OARs were concatenated as the input. The organ distance maps of the atlas and the 

patient are registered using the proposed Reg-Net. During inference, the resultant DVF of 

the registration is used to deform the atlas catheter locations to predict the patient catheter 

locations.

2.B Multi-atlas ranking

For a new arrival patient whose multi-organ contours and generated distance map are used 

as fixed data, our goal is to select its multi-atlas data and bring the catheter maps of these 

data to match the new arrival patient’s data. Situation similarity is used as ranking criterion 

for multi-atlas ranking. In this work, the situation similarity is composed of three criteria. 

Firstly, we assume that patients’ data with similar volume size of organs (urethra, prostate 

and bladder) should have similar number of inserted catheters. Thus, the first criterion is 
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the contour volume. From atlas data, based on contour volume size, we first select top k 
patients’ data as rough multi-atlas dataset.

Secondly, image similarity between new patient’s semantic image of contours and that from 

rough multi-atlas dataset are used as second criterion to pick top m ≤ k patients’ data as 

fine multi-atlas data. In order to assess the similarity between the new patient’s image and 

the multi-atlas datasets, initial rigid registration was necessary to roughly align the organs 

in the datasets. A supervised deep learning-based warping method is used to rapidly align 

the multi-atlas dataset to new patient’s data. This model is a spatial transformer network 

but implemented via 3D. The details of the network is introduced in 16. The model took 

multi-atlas dataset and new patient’s dataset as input and output the parameters that can 

perform affine registration that match the manual contour of multi-atlas data to the new 

patient’s data. The DSC calculated between deformed contour and new patient’s contour is 

used to training this network. The aligned multi-atlas datasets were then used to calculate 

the similarity and choose the top m atlases. In our work, the image distance map of atlas 

data and the new patient’s data is used as moving and fixed input image, respectively. The 

warped OAR contours of atlas data and new patient’s data are used for label similarity 

measurement, which is a loss term to supervise the network. The output of this network is 

the estimated parameters of rigid registration. After registration, NCC is used to compare the 

similarity between rough multi-atlas dataset’s semantic images and new patient’s semantic 

image. Since the number of catheters should be correlated to the volume size of prostate, the 

prostate volume size similarity is also used as similarity measurement for ranking.

Finally, we perform deformable registration based on the proposed Reg-Net (see details in 

the next section) to bring semantic image and distance map from fine multi-atlas dataset 

to match that of new patient. We further use two catheter position criteria for deformed 

catheters to select the best catheter positions. The catheter positions are expressed as a set 

of center points of the catheters on each slice. The first aspect is that the catheter position 

should be far from urethra. The second aspect is that the catheter positions should be within 

prostate. These two aspects are measured by the distance between center-of-mass of each 

catheter and surface of urethra and prostate. Based on the distance criterion, we select 

the deformed catheter location of the top similar atlas as the temporary deformed catheter 

locations. Note that the temporary deformed catheter locations may be over-bended and not 

physically achievable due to large deformation. Catheter regression is then performed to 

restrict the predicted catheter locations on straight lines in 3D volume. Details of this step 

can be found in section 2.D.

2.C Reg-Net

Due to the limited number of atlas libraries, it is difficult to find an exact matching atlas 

to the new patient’s image in terms of prostate and OAR’s size and shape. To enhance 

the robustness of the proposed method, multiple top-ranking atlases which were selected 

according to our atlas-selection rules were registered to the new patient. Reg-Net,17 a 

deep learning-based network that does not need ground truth DVF, is applied to perform 

deformable registration. Its network architecture is shown in Figure 1. The size of the 

input image pairs is reduced in the encoding path after several convolutional layers. In 
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order to generate DVFs with the same matrix sizes as the input images, we used a 

bilinear interpolation to up-sample the DVFs. It is true that transpose-convolution layers 

with trainable parameters is an alternative for up-sampling. However, we prefer bilinear 

interpolation with no trainable parameters since it tends to generate smoother DVFs that are 

more realistic in medical image registration, while transpose-convolution layers often derive 

unrealistic DVFs even with heavily weighted DVF smoothness regularization term. We also 

integrate two attention gates, called self-attention strategy, into the generator to highlight 

informative differencing features between moving and target input. This is achieved by 

feeding the feature maps of one layer and its previous layer from the encoding path to the 

attention gate.18 It can facilitate the network to capture structural differences between the 

moving and fixed images. Our previous studies show that the self-attention strategy allow 

Reg-Net parameters in shallower layers to be updated based on spatial regions that are most 

relevant to deformation estimation.17,19

Attention gates have been explored in the context of semantic segmentation in recent 

studies.20 Previous works demonstrated that the most relevant semantic contextual 

information can be captured by integrating attention gates into a standard U-Net without 

a very large reception field 21. In this study, we incorporated attention gates into the design 

of our Reg-Net. Figure 2 shows the subnetwork architecture of attention gate. The attention 

gates combined feature maps of adjacent/current layer and previous layer, i.e. the feature 

maps of different scales. To achieve the same resolution, convolutional layers Wg and Wh 

with different kernel sizes were used. Then, the two feature maps were added together and 

passed through an additional convolutional layer Wφ to obtain a matrix, called resampler. 

The resampler is regarded as a weighted matrix, whose elements correspond to the feature 

importance of the current feature map. Then, element-wise multiplication between resampler 

and current feature map is performed to derive the feature map that is weighted via the 

attention gate.

As can be seen from Figure 1, the attention gates operations were performed immediately 

prior to the concatenation in order to retain only relevant activations and remove irrelevant/

noisy responses. Additionally, the attention gates filtered the neuron activations during both 

the forward pass and the backward pass. Gradients originating from image background 

regions were down weighted during the backward pass. This allows model parameters in 

shallower layers to be updated based on spatial regions that are most relevant to a given 

task, i.e., deformation estimation. Thus, the attention gates could have the ability to highlight 

the features from previous layers, which can well represent the deformation between the 

selected atlas patient and test patient.

The accuracy and realism of generated DVF between new patient’s data and multi-atlas 

patients’ data should rely on the design of supervision, i.e., loss function. In this work, 

to achieve both accuracy and realism, the loss function consists of two parts which are 

the data similarity loss and the regularization loss. As discussed above, the moving and 

fixed data include both semantic image of contours and generated distance map, thus, the 

data similarity loss include both the similarity of these two kinds of data. For semantic 

image of contours, Dice loss is used as data similarity loss. For distance map, normalized 
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cross-correlation (NCC) loss is used as data similarity loss. Let Imov = {Icontour
mov , Idistance

mov }
denotes a set of the moving semantic image of contours and moving distance map. Let 

Ifix = {Icontour
fix , Idistance

fix } denotes a set of the fixed semantic image of contours and moving 

distance map, respectively. Let Ψ denotes the Reg-Net, and φ = Ψ(Imov, Ifix) represents the 

predicted DVF for a moving and target data pair. Then, the data similarity loss Lsim can be 

represented as follows:

Lsim = 1 − DSC Icontour
mov °φ, Icontour

fix + α ⋅ 1 − NCC Idistance
mov °φ, Idistance

fix
(1)

where Icontour
mov °φ and Idistance

mov °φ denotes the deformed semantic image of contours and 

deformed distance map, respectively, which were obtained by warping the moving contours 

and distance map by DVF φ using spatial transformer.22 DSC(∙) denotes the Dice similarity 

coefficient (DSC) between moving and fixed contours. NCC(∙) denotes the NCC between 

moving and fixed distance maps. α denotes the balancing parameter between Dice and NCC 

loss term.

Considering that the network is trained in a completely unsupervised manner, i.e., with 

no ground truth DVF for supervision,23 we added DVF regularization term to enforce 

smoothness constraint.. In this work, bending energy, which is a second derivatives of the 

DVF, is used as DVF regularization.2

Lreg = ‖∇2φ‖2 (2)

In total, the trainable parameters of Reg-Net are optimized via minimizing the similarity and 

regularization losses:

Ψ = arg minΨ Lsim + β ⋅ Lreg (3)

where β denotes the regularization parameter. Regarding the regularization parameter values, 

a rule of thumb is that the initial loss terms should be in the same order of magnitude 

numerically given equal priority. Therefore, we have empirically set the β to be 1.5 and α to 

be 1.2.

2.D. Catheter Regression

The temporary predicted catheter locations may not be physically achievable due to catheter 

over-bending and large deformation. Therefore, we need to post-process the predicted 

catheter locations so that the predicted catheters are straight, separate, and reasonably spaced 

with respect to each other. To achieve this, circles on the transverse plane with varying 

radius were drew to group the temporary predicted catheter locations inside these circles 

as one single catheter. As is shown in Figure 3, for a deformed atlas needle mask image 

that is derived by Reg-Net, we first set a circle (shown as green dashed circle in Figure 

3) that only covers one catheter position on first axial slice and is centered at that catheter 

position. The radius of this circle is set to r = 4mm. Because we found that the minimum 

distance between any two catheters’ location on one axial slice is about 8 mm. We then 
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find the most related catheter position on next axial slice. Since the catheter may not be 

exact perpendicular to the axial slices, we set an angle tolerance θ so that the radius on 

any two adjacent slices follow r′ = r + d∙tanθ, where θ is set to θ = 10°, d denotes the 

slice thickness. In addition, these two circles share same center location. By this setting, we 

can find the catheter location of the next slice if it is located within the blue dashed circle. 

We can then trace the center locations of the catheter slice by slice. Least square regression 

method was used to regress the temporary catheter locations on straight lines in 3D volume 

as the final catheter placement pattern.

2.E. Evaluation and validation

We retrospectively investigated 90 prostates HDR brachytherapy patients, each of which 

has clinical delivered treatment plans including catheter positions, CT images and contours 

of OARs. Twelve to eighteen (depending on prostate size) Nucletron ProGuide Sharp 

5F catheters were placed under TRUS guidance. CT images were acquired after catheter 

implantation by Brilliance Big Bore (Philips, Netherlands) with 140 kVp, 350 mAs, 0.5 mm 

pixel size and 1 mm slice thickness. On CT images, physicist reconstructed catheters, and 

radiation oncologist delineated the whole prostate and OARs including bladder, rectum, and 

urethra. Note that the CT images were not input to our model. The delineated contours were 

converted to binary maps first, and the binary maps and the distance maps calculated from 

the binary maps were input to our model. For all patients, both maps were set to the size of 

320×320×72 pixels with same pixel resolution as CT images. Both maps were also central 

cropped and zero-padded with the center set at the center-of-mass of prostate. This step is to 

align the atlas prostate with the testing patient prostate prior to Reg-Net registration.

A five-fold cross-validation was performed for evaluation. The 90 prostate datasets were first 

randomly and equally grouped into five subgroups, then, one group was selected as test data 

and the rest four groups were used as atlas. The experiment was repeated five times to let 

each subgroup used as test data exactly once. The aim of this five-fold cross-validation is 

not to determine the number of training epochs to stop the model training. The number of 

training epochs is determined by how fast the loss curve converged during training. If the 

loss is converged or reached at maximum training epoch number, the training of Reg-Net is 

stopped. The aim of the five-fold cross-validation is to let each patient used as test patient 

such that a Reg-Net model can be trained on the training data with no overlapping with the 

test patient.

In order to investigate the impact of plan quality from the predicted catheter pattern, we 

optimized the source dwell position and duration for both the clinical catheter pattern 

and predicted catheter pattern with the same optimization settings (Prostate: D90>100%, 

V100>90% of prescribed dose; OAR: Bladder and Rectum V75<1cc, Urethra V125<1cc). 

The optimization algorithm is inverse planning by simulated annealing (IPSA), which is 

currently used in Oncentra Brachy (Elekta, Sweden) treatment planning system of our clinic. 

For a fair comparison, no manual dose adjusting was done after auto optimization, and plan 

dose for both scenarios was normalized to cover 95% of prostate using prescription dose 

(V100=95%). The plan dose was quantified by clinically relevant DVH metrics and was 

compared with each other.
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Our algorithm was implemented in Python 3.6.9 and Tensorflow 1.8 with Adam gradient 

descent optimizer and was trained and tested on a NVIDIA Tesla V100 GPU with 32 GB of 

memory. The batch size is set to 8. The learning rate is set to 1E-4. The maximum training 

epoch number is set to 200. We add this information in revised manuscript. We also used 

several libraries and toolboxes such as numpy, scikit-image, pydicom, h5py, and scipy. In 

our work, the training of our proposed Reg-Net takes about 7.5 hours. For a new patient, the 

estimation of catheter placement takes about 5 minutes.

3 RESULTS

To evaluate the registration accuracy of the proposed Reg-Net, we calculate the dice 

similarity coefficients (DSCs) between the OAR masks of the deformed atlas patient via 

Reg-net and those of the testing patient. To demonstrate the effectiveness of this deformable 

registration step, we also calculate the DSCs between the OAR masks of the selected atlas 

patient before Reg-net and those of the testing patient. These metrics are shown in Table I. 

As can be seen from the comparison of the row of “atlas vs. test patient” and the row of 

“deformed atlas vs. test patient (α = 1.2)” (which is the performance of our hyper-parameter 

setting), before performing Reg-Net, the DSCs between the OAR mask image of the selected 

atlas patient and test patient are 0.83±0.06 for prostate, 0.43±0.15 for urethra, 0.65±0.18 for 

bladder, and 0.53±0.18 for rectum. After performing Reg-Net to deform the selected atlas 

patient to match the testing patient, the DSCs between the OAR mask image of the deformed 

atlas patient and test patient are improved to 0.95±0.04 for prostate, 0.86±0.07 for urethra, 

0.93±0.11 for bladder, and 0.86±0.04 for rectum.

In addition, the registration performance of Reg-Net depends on the hyper-parameter setting. 

To evaluate the influence of different choices of α in Eq. (1), we set the α by different 

values ranging from 0.6 to 1.4. To evaluate the performance of the registration accuracy, the 

DSCs between the OAR masks of the deformed atlas patient via Reg-Net under different 

settings of α and those of the test patient are calculated. By comparing the metrics of the 

DSC performance under different settings of α, we can evaluate the influence of different 

choices of α. These metrics is shown in Table I. As can be seen from the comparison of 

the row of “deformed atlas vs. test patient (α = 0.6 to 1.4)”, we can see that when α is set 

ranging from 0.8 to 1.4, the DSC of prostate shows little difference. Under the setting of α 
= [1.0, 1.2], the DSC of bladder shows highest average performance. Under the setting of α 
= [1.0, 1.4], the DSC of rectum shows highest average performance. In addition, under the 

setting of α = 1.2, the DSC of urethra reaches at highest average performance. Thus, we set 

the hyper-parameter α to 1.2 in this work.

Representative results of the proposed method are compared side-by-side with the clinical 

ground truth for 3 patients in Figure 4. The results in Fig. 4 (1), (2) and (3) represent 

cases with above-average, average and under-average performance, respectively. Note that 

the “average” is regarded as that the overall DVH metrics difference between prediction 

and clinical dose of that case is close to the average DVH metrics difference among all 

patients (Table II). For above-average case (Fig. 4 (1)), the predicted catheter pattern appears 

close to the clinical pattern in sufficient peripheral catheter placements, which results into 

similar DVHs as clinical plan. The average case (Fig. 4 (2)) keeps good peripheral loading 
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posteriorly but subtopimal laterally. The under-average case (Fig. 4 (3)) has noticeable 

insufficient catheter coverage at the patient left posteriolateral prostate, which causes higher 

heterogeneity in the prostate and OAR doses than clinical plan when prostate coverage 

(V100=95%) is normalized.

The difference distribution of plan DVH metrics between the clinical and predicted catheter 

placement among the 90 patients is shown in Fig. S1 of Supplementary Document as 

box plot. The statistical results are summarized in Table II. Overall, both scenarios 

met the common clinical dose constraints on average when prostate dose coverage is 

kept at V100=95%. The plans from predicted catheter pattern have slightly higher dose 

heterogeneity in terms of V150 by 5.0% and V200 by 2.9% on average. For bladder V75, 

rectum V75 and urethra V125, the average difference is close to zero, and the range for most 

patients is within ±1cc.

4 CONCLUSIONS AND DISCUSSION

This study presented a novel method to predict catheter placement pattern for HDR prostate 

brachytherapy a priori. In the proposed learning-based method, combined criteria were used 

to rank multi-atlas data. Then, deep learning-based multi-atlas registration was used to bring 

the catheter positions from the top-ranked atlases to the new patient. The proposed method 

provides clinically feasible catheter patterns and plans with similar quality in terms of target 

and OAR DVHs as clinical catheter placement. This strategy has great potential to improve 

HDR prostate brachytherapy standardization and plan quality control by reducing reliance 

on physician experience.

We investigated the dosimetric impact of the predicted catheter pattern by comparing its 

DVHs with those of plans generated using the clinical catheter pattern. The higher hot spot 

in prostate and volume dose in OAR indicates that the plans based on the predicted catheter 

pattern, although very close, are still slightly inferior to the clinical catheter plans. This can 

be attributed to several limitations. First, the performance and robustness of catheter plan 

prediction of this proposed method depends on the multi-atlas dataset’s variation. If the 

OAR contour size, shape and distribution of a new arrival patient are significantly different 

than any of those in the atlas dataset, the predicted catheter plan of this patient would 

be substantially affected. Including more patient data to increase the applicability of the 

multi-atlas dataset will be our future work. Second, the training of the Reg-Net model, that 

brings catheter position from atlas patient to new arrival patient, is performed by the loss 

of comparing the binary masks of deformed OAR contours and target OAR contours. No 

ground truth deformation vector field was used to supervise this model. Thus, learning-based 

deformable registration is inherently an ill-posed problem that only contours information is 

available for DVF estimation in our work. Additional constraints are therefore necessary to 

regularize the DVF to be physically reasonable and physiologically plausible. Although we 

used regularization term (bending energy) to force the realism of the deformation vector 

field, the realism of deformation vector field would still be difficulty to guarantee when 

ground truth deformation vector field is not available. Recently, biomechanically constrained 

model was integrated into deep learning to enhance the realism of generated deformation 

vector field,24,25 which may help our method in our future work.
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After the deformable registration, we selected the best catheter positions from the deformed 

catheters based on the distance from the catheters to the urethra and prostate surface. In this 

study, it is quantified by the distance between the center-of-mass of catheters and the surface 

of urethra/prostate. Such distance describes the general distance between the catheters and 

organs, and may not be the optimal metric for all patients. Other metrics such as orthogonal 

distance that quantifies the shortest distance may apply a more conservative criterion, and 

are worthy of further investigation.

In addition to the catheter pattern, the proposed method also provides the plan parameters 

(source dwell time and positions) and dose distribution that are optimized based on the 

predicted catheter pattern. It should be noted that the final plan and dose to be delivered 

to the patient may be different. One of the reasons is that the physicians have operating 

uncertainty in inserting catheters at predicted catheter locations.26 The specific anatomy 

of prostate and pubic bones of patients may also bend the catheters or even prohibit the 

placement of certain catheters, which leads to deviations from predicted catheter patterns. 

On the other hand, manual dose adjustment, which is not considered in this study, is usually 

applied after automatic optimization in clinical practice. It not only provides a better prostate 

dose coverage with less OAR dose for most patients, but also enables a more customized 

plan dose when physicians consider patient specific target/OAR dose tradeoff. Although the 

plan and dose that are directly optimized from the predicted catheter pattern may be changed 

during implementation, it still provides the physicians with the knowledge of potential 

achievable dose.

In this study, the binary maps of prostate and OARs used as input for the proposed method 

are from manual contouring on CT images. It thus requires a pre-plan CT image scan before 

OR. However, since the binary maps only provide the location and shapes of the organs, as 

long as they are accurate, our method is agnostic to the imaging modality used to generate 

contours. It is actually preferred to be from TRUS images obtained in the OR rather than 

CT because the patient has the same lithotomy position during TRUS images and catheter 

placement, which minimizes the difference of patient anatomy between prediction and 

catheter insertion. Moreover, the contours can also be obtained from automatic segmentation 

methods which have been developed with promising results on CT or TRUS in the last few 

years.27-30 Using auto-segmentation on TRUS can further streamline intraoperative catheter 

prediction.

In this study, we only considered the binary maps of prostate and OAR contours 

in deformation registration and multi-atlas ranking steps. Other factors such as the 

aforementioned pubic bone are not included as a factor in catheter prediction, which may 

cause deviation from predicted catheter pattern during clinical implementation. Future study 

may include the planning CT images that contains more anatomy information than binary 

contour maps as one of the registration loss in the step of deformation registration and as 

one of ranking criterion in the step of multi-atlas ranking. Moreover, dominant intraprostatic 

lesions have been recently considered as a focal boost target in HDR brachytherapy.31-34 

Incorporating the information of dominant intraprostatic lesion with prostate/OAR may 

enable catheter prediction for HDR prostate focal boost brachytherapy.
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Figure 1. 
Schematic flow chart of the proposed method for catheter position prediction. The first row 

shows the training procedure and the network architecture used in this work. The second row 

shows the inference procedure.
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Figure 2. 
Subnetwork architecture of attention gate.
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Figure 3. 
Schematic flow chart of the needle regression step used in the proposed method. The green 

dashed circle denotes the circle region which centered at one needle position of the most 

left axial slice of deformed atlas needle mask image. The radius for this circle is set to r = 

4mm. Then, for next slice, the searching region is shown by the blue dashed circle. The blue 

dashed circle has same center with the previous green dashed circle, but with a larger radius 

r′ = r + d∙tanθ, where θ denotes the angle threshold along z-axis and is set by θ = 10°, d 
denotes the slice thickness. The red dashed arrow denotes one regressed catheter.
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Figure 4. 
The comparison between clinical and predicted catheter placements and their resultant 

DVHs of three representative cases (row (1), (2) and (3)). Columns (a) and (b) show the 

2D clinical and predicted catheter placements at the central slice of prostate. Columns 

(c) and (d) show the 3D rendering clinical and predicted catheter placements. Column (e) 

demonstrate the DVHs of treatment plans from clinical (solid lines) and predicted (dashed 

lines) catheter placements. Red: prostate; yellow: bladder; brown: rectum; blue: urethra; 

green: catheter.
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Table I

Mean±Std of OAR mask DSC between testing patient and atlas patient under different conditions.

Prostate Urethra Bladder Rectum

Atlas vs. test patient 0.83±0.06 0.43±0.15 0.65±0.18 0.53±0.18

Deformed atlas vs. test patient (α = 0.6) 0.94±0.04 0.75±0.11 0.85±0.14 0.83±0.05

Deformed atlas vs. test patient (α = 0.8) 0.95±0.03 0.79±0.1 0.89±0.14 0.84±0.06

Deformed atlas vs. test patient (α = 1.0) 0.95±0.03 0.82±0.09 0.93±0.08 0.86±0.04

Deformed atlas vs. test patient (α = 1.2) 0.95±0.04 0.86±0.07 0.93±0.11 0.86±0.04

Deformed atlas vs. test patient (α = 1.4) 0.95±0.04 0.85±0.06 0.92±0.12 0.86±0.04
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Table II

Mean±Std of DVH metrics on plans based on clinical and predicted catheter placement and their difference.

Prostate Bladder Rectum Urethra

V150
(%) V200 (%) D90

(%) D2cc (%) V75
(cc)

D2cc
(%)

V75
(cc) V125 (cc)

Clinical 43.4±9.9 11.0±4.6 109.4±1.6 57.6±9.2 0.4±0.6 57.3±10.8 0.5±0.7 0.4±0.4

Predicted 48.4±10.9 13.9±6.9 110.3±1.9 61.1±9.4 0.6±0.8 58.7±11.0 0.6±0.7 0.8±0.5

Difference 5.0±6.5 2.9±4.3 0.9±1.5 3.5±3.4 0.2±0.4 1.5±4.1 0.1±0.4 0.3±0.4
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