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Abstract

As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential 

role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed 

by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential 

impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, 

biomechanical properties, and interactive ligands—which together contribute to the effect Pln 

has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect 

cartilage development and scrutinize the potential application of Pln to divisions of cartilage 

regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. 

The aim of this review is to deepen our understanding of the spatial and temporal interactions that 

occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve 

cell-based cartilage engineering and regeneration.
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Perlecan’s potential application in cartilage regeneration.
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1. Introduction

Lacking blood vessels, nerves, and lymphatics, articular cartilage is a unique tissue with a 

limitation in intrinsic repair and healing. Articular cartilage, meniscus, and nucleus pulposus 

(NP) are cartilaginous tissues with unique properties but they share similar functionalities 

[1]. Extracellular matrix (ECM) secreted by chondrocytes is composed of type II collagen 

(COL II), glycosaminoglycan (GAG), elastin fibers, and laminin. Structurally, from the 

inside out, the ECM surrounding chondrocytes is divided into three layers: the pericellular 

matrix (PCM), the territorial matrix, and the interterritorial matrix [2].

Basement membrane (BM) is a ubiquitous structure of the ECM, which separates cells 

from and attaches them to the interstitial matrix [3] and exists in various tissues of the 

human body [4]. BM is an essential structure for maintaining various roles in tissue function, 

including but not limited to signal transduction, acting as a mechanical barrier, and tissue 

organization [5,6]. In chondrocytes, the distribution of BM components, including laminin, 

COL IV, nidogen, and perlecan (Pln), varies with age; initially widely distributed in the 

territorial and interterritorial matrix of mouse cartilage, BM components become primarily 

localized to the narrow PCM of the chondrocyte during maturation [7]. As such, during 

cartilage development, the PCM may constitute an integral ingredient of the dynamically 

modulated chondrocyte BM [7].

Perlecan (Pln), encoded by a heparan sulfate (HS) proteoglycan 2 (HSPG2) gene sited on 

the telomeric region of human chromosome 1 or of mouse chromosome 4, is one of the 

most abundant HSPGs in not only the BM but also many other tissues lacking typical BM 
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structure and blood vessels such as the cartilage, meniscus, and intervertebral disc (IVD) 

[8–10]. There exists strong evidence that Pln plays a critical role in brain, bone, heart, and 

cartilage development [11,12]. Mutations in the HSPG2 gene result in two classes of skeletal 

disorders: Schwartz-Jampel syndrome, a mild disorder with increased risk of bone/cartilage 

loss, and Silverman-Handmaker type, a severe neonatal lethal dyssegmental dysplasia [13]. 

Pln deficiency is also a risk factor for osteoporosis [14].

Chondrocytes are enveloped by PCM, a narrow tissue region that, together with the enclosed 

chondrocytes, has been termed the “chondron”; the PCM, as a functional equivalent of 

BM, is distinguished from ECM in regard to its biochemistry, structure, and biomechanics 

[7]. In experimental settings where the HS chain of Pln is digested with heparinase III, 

no subsequent effect is observed on the elastic modulus of ECM, while the overall elastic 

modulus of both the general PCM and its interior regions increases [15]. This finding 

indicates that, besides COL VI, Pln can be considered as a defining factor exclusively 

localized to the PCM, which has also been found to have a significant effect on the structural 

integrity and biomechanical properties of PCM [15].

Given that HSPG2 gene regulation, structure, and function in chondrogenesis have been well 

summarized [16–19], in this review, we will outline present knowledge of the biomechanical 

and biochemical roles Pln plays in cartilage and, specifically, the effects Pln has on the 

development of articular cartilage, meniscus, and spinal tissues. Considering that Pln was 

also found to be substituted with both HS and/or chondroitin sulfate (CS) [20,21], this 

review will further discuss the role of the Pln CS chain in cartilage regeneration and 

reconstruction. Finally, this review will elucidate Pln’s role within the signaling pathways 

involved in cartilaginous tissue development, which might provide insights in favor of 

cartilage regeneration and reconstruction.

2. Pln structures

Pln is a secreted HSPG that was first isolated in 1980 from Engelbreth–Holm–Swarm tumor 

cells [22]. The name Pln is derived from the pearls-on-a-string-like appearance as shown 

by rotary shadowing electron microscopy. Human Pln has a 467 kDa protein core and five 

well-defined domains (I through V) of which domain I is exclusive to the proteoglycan (PG), 

while domains II-V share homology with various biological components [23–25]. (Figure 1) 

(Table 1)

2.1. Domain-specific structures and interactions

Human Pln domain-I (PlnDI), the domain exclusive to Pln, contains three potential 

binding sites for HS and a sea urchin sperm protein, enterokinase, agrin (SEA) module 

[23,24,26,27]. PlnDI is capable of interacting with vascular endothelial growth factor 

(VEGF), fibroblast growth factor (FGF), bone morphogenetic factor-2 (BMP-2), platelet­

derived growth factor (PDGF), hepatic growth factor, granulocyte-macrophage colony­

stimulating factor, and angiopoietin-3 through its HS side chains [27]. Through these 

interactions, PlnDI activates various intracellular signaling pathways. Furthermore, PlnDI 

also interacts with components, such as sonic hedgehog, von Willebrand factor A domain 

related protein (WARP), proline and arginine rich leucine rich repeat protein, laminin, COL 
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IV, V, VI, and Xl, nidogen-1, fibronectin, thrombospondin-1, fibrillin-1, interleukin 2 (IL-2), 

IL-8, and activin A to stabilize the ECM and BM [27].

Pln domain II (PlnDII) contains four copies of internal repeats highly homologous to the 

low-density lipoprotein (LDL)-binding region of the LDL receptor [23]. Following the 

LDL receptor-like domain, there exists a short segment between domains II and III that is 

homologous to the repeats of immunoglobulin (Ig) that are also found in domain IV [23]. 

This Ig-like repeat can modulate calcium binding and mediate Wnt/calcium signaling [27]. 

In addition, PlnDII also interacts with very low-density lipoprotein, connective tissue growth 

factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24), and fibrillin-1 

[28–30].

Pln domain III (PlnDIII) resembles the short arm of laminin chains [25]. It contains four 

internal cysteine-rich repeat subdomains that are separated by three laminin-like globular 

domains [23–25]. PlnDIII interacts with FGF-7/18, FGF-binding protein, and WARP 

[26,31–33].

Pln domain IV (PlnDIV) is the largest domain. Human PlnDIV contains 21 consecutive 

Ig-like repeats similar to those found in the neural cell adhesion molecule, whereas mouse 

PlnDIV only contains 14 consecutive Ig-like repeats [23,34,35], which decreases the core 

protein to 400 kDa [36]. This finding suggests that interspecies differences exist in the 

number of consecutive Ig-like subdomains. Additionally, the 14th Ig-like repeat of human 

Pln contains a potential GAG chain attachment sequence [24]. PlnDIV plays a crucial role 

not only in cartilage development through triggering chondrocyte condensation [37] but also 

in BM stabilization through interactions with fibronectin, nidogen-1/2, COL IV, fibulin-2, 

and PDGF [27].

Pln domain V (PlnDV) contains three laminin-like globular domains with two epidermal 

growth factors (EGF)-like domains among them; like PlnDIII, the three globular domains 

are similar to A chains of laminin [24,25]. Besides interacting with nidogen-1, FGF-7, 

fibulin-2, α-dystroglycan, progranulin, β1-integrin, ECM-1, acetylcholinesterase, and COL 

VI [27], PlnDV itself independently inhibits endothelial cell motility, tube formation, and 

blood vessel growth in angiogenesis assays [38].

The different domains each play a respective role in chondrogenesis. However, PlnDI and 

its binding GAG chains are often considered the most important as they provide the initial 

signal to activate chondrogenesis [39]. C3H10T1/2 cells, the mesenchymal fibroblast cell 

line, are able to enter chondrogenic differentiation when plated on the ECM protein Pln; 

however, these cellular Pln-stimulated nodules fail to express the chondrogenic maturation 

and subsequent terminal differentiation markers unless they are treated with BMP-2 [40]. 

This regulatory effect can be explained through two hypothesized mechanisms: (1) GAG 

chains could bind directly to cell surface receptors and stimulate cartilage differentiation 

through activating intracellular signaling pathways [39,41] and (2) GAG-bearing PGs could 

be able to serve as cell adhesion inhibitors that prevent cells from forming focal adhesions 

[39,42].
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2.2. Tissue source-dependent structural variation

An interesting study comparing the effects of ECM from different cell sources on cartilage 

regeneration concludes that ECM differs in its function depending on the cell sources used 

[43]. Similarly, Pln from different cell sources is speculated to play distinctive roles in 

cartilage regeneration. Specialized cell-derived Pln has distinctive HS chain substructures, 

which may lead to differences in its ability to bind to growth factors [44]. Specifically, 

Pln derived from smooth muscle cells, IVD, and chondrocytes has both HS and CS chains, 

whereas Pln from endothelial cells contains exclusively HS chains [45,46]. Similarly, Pln 

from smooth muscle cells binds both FGF-1 and FGF-2 through its HS chains and promotes 

FGF-2 signaling but not FGF-1 signaling, while Pln from endothelial cells binds both 

FGF-1 and FGF-2 and promotes the signaling of both [45]. During BaF-32 cell (an IL-3 

dependent and HSPG deficient myeloid B cell line [47]) proliferation, chondrocyte-derived 

Pln binds both FGF-2 and FGF-18 and forms HS chain-dependent ternary complexes 

with FGF-18 and FGF receptor 3 (FGFR3) [48]. Pln from endothelial cells can support 

BaF-32 cell proliferation with both FGF-1 and FGF-9, while Pln from chondrocytes is only 

responsive with FGF-9 [49]. Based on this differential bioactivity, it would be worthwhile 

to investigate which cell source would derive the most suitable version of Pln for use in 

cartilage regeneration, as there is no relevant research on the topic at present. The efficacy of 

adult stem cells in lineage-specific differentiation is greatly affected by the type of resident 

tissue from which they are isolated [50,51], which may expand our knowledge base.

3. Pln expression during development of cartilaginous tissues

As an essential component in these cartilaginous tissues [1], Pln plays a crucial role in 

developmental regulation.

3.1. Pln expression in the development of cartilage

When examining developing mouse embryos, approximately 40% of Pln-null mice at 

embryonic day 10.5 (E10.5) die as a result of defective cephalic development and about 

60% of Pln-null mice die just after birth due to respiratory failure [52]. Only 6% of 

Pln-null mice develop both chondrodysplasia and exencephaly [52], which resembles 

Schwartz-Jampel syndrome [53]. However, loss of Pln does not affect early embryonic 

development, as results from E5.5 and E9.5 show that lack of Pln does not decrease 

the mouse embryo implantation rate [54]. Immunolocalization of Pln is first detected in 

angiogenic tissue at E10.5, earlier than in cartilaginous tissues; then from E11 to E13, Pln 

is abundantly expressed in developing cartilage undergoing endochondral ossification [55]. 

Genetic analysis indicates that, in normal limb bud cartilage, HSPG2 mRNA is first detected 

at E13.0 and shows weak expression in hypertrophic chondrocytes at E14.0; in condylar 

cartilage, HSPG2 mRNA is first detected in newly formed cartilage at E15.0 and declines in 

expression in the hypertrophic chondrocyte region [56]. Meanwhile, Pln immunoreactivity is 

evident throughout the tibial cartilage, indicating that these cells which develop into mature 

chondrocytes actively synthesize Pln, while hypertrophic chondrocytes downregulate Pln 

synthesis [56]. Loss of Pln reduces proliferative activity in E14.5 cartilage and aggrecan 

quantity in E16.5 cartilage, but has little effect on COL II [52]. Additional studies looking 

at human specimens have found that PlnDIII and V are expressed in cartilage anlagen and 
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zones of chondral ossification beginning at gestational week (GW) 8 [57]. After GW 12, Pln 

becomes strongly localized to developing cartilaginous tissues in humans [49].

As Pln supports cartilage maturation [55] and chondrocyte differentiation [58], Pln 

expression persists from postnatal, to juvenile, adolescent, and adult cartilage in human 

samples [49]. During this time, Pln may be present in forms possessing HS chains, CS 

chains, or both. During chondrocyte differentiation, Pln deposition is increased and the 

sulfation pattern of its CS chains changes depending on the different cell zones of the growth 

plate [59]. When Pln distribution is measured in aging cartilage—ranging from newborn 

to eight-year-old sheep—a significant age-dependent decline in Pln levels is observed in 

hyaline and growth plate cartilage [60].

3.2. Pln expression in the development of meniscus

As seen in articular cartilage, Pln is also expressed during the development of the meniscus, 

a wedge-shaped fibrous cartilage located in the knee joint. While immature meniscus is full 

of blood vessels and rich in blood supply, later in development, this blood supply gradually 

decreases [61]. In adulthood, the blood supply of the meniscus only exists in the peripheral 

10%−30% [1]. Pln distribution in the meniscus may be partly related to its special blood 

supply structure, as Pln is a core component of vascular BM [47]. In a study examining the 

meniscus of merino sheep (from newborn to 19-month-old), Pln is found expressed in the 

inner third of the meniscus, co-localized with COL II and aggrecan [62]. A similar study 

based on the ovine lateral meniscus of merino sheep demonstrates that Pln exists in the inner 

and middle meniscal zones of 7- to 19-month-old samples but decreases in 7- to 10-year-old 

samples [63]. Interestingly, atomic force microscope (AFM) shows that micromechanical 

properties of the meniscus Pln-labeled PCM and ECM display regional variations; the elastic 

modulus of the Pln-labeled PCM in the outer region was significantly higher than the inner 

region, and ECM moduli were constantly higher than region-matched PCM sites in both the 

outer and inner regions [9].

3.3. Pln expression in the development of IVD

As a component of PCM, Pln is found in various embryonic and adult tissues, including 

the spinal tissues of animals and humans [52,55,58,64]. In developing mouse embryos, the 

initial accumulation of Pln can be detected in the IVD and basal lamina of surrounding 

tissues at E13.5, and high levels of Pln begin to accumulate in the cartilage primordium 

of these regions at E15.5 [58]. Similar research also demonstrates that Pln expression in 

the cartilage primordium of the vertebral bodies begins at E10.5 and becomes prominent 

by E13; by E14, Pln deposition is rich in the developing NP [55]. Immunolocalization in 

12- to 14-week-old human fetal tissues further confirms that Pln is mainly distributed in 

NP and internal annulus fibrosus (AF) but shows weak expression in the tissues around the 

developing IVD and exhibits no expression in the notochordal tissues [64]. Interestingly, 

Hayes and Melrose recently detected Pln expression in the cytoplasm of both the NP and AF 

of the sheep IVD and proposed that Pln might be trafficked by transport vesicles connecting 

the cell nuclear and extracellular environment, indicating a novel transcriptionally regulatory 

site for the multifunctional roles Pln plays in the IVD [65,66]. In HSPG2−/− mice, cartilage 

and vertebral bodies show fibrous invasion from the perichondrium resulting in disruption 
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of the growth plate, suggesting that Pln plays a critical role in maintaining the integrity of 

the matrix structure [52]. Pln in human fetal spine is substituted with HS chains and the 

7D4 CS sulfation motif; however, as the tissue matures, this epitope decreases in frequency 

and becomes virtually undetectable [67,68]. 4C3, 7D4, and 3B3[–] positive progenitor cell 

populations play important roles not only in IVD development but also in hematopoiesis, 

skin morphogenesis, and chondrogenesis [20].

Interactions between Pln and various ECM components contribute to matrix stabilization, 

cell-cell/ECM ligation and IVD cell involvement in the mechanical sensory processes that 

regulate tissue homeostasis and remodeling [69,70]. For example, elastin, an important ECM 

component located within translamellar cross bridges and between adjacent annular layers, 

plays a functional role in developing spinal tissues [71]. A series of related studies have 

discovered that elastic fiber-associated proteins fibrillin-1 and latent transforming growth 

factor beta (TGF-β) binding protein-2 (LTBP-2) are found in the annular lamellae in 

human fetal IVD and are associated with Pln [71]. Some literature shows that the Pln HS 

chains may contribute to fibrillin-1 assembly and distribution in the IVD [69] and LTBP-2 

also appears to be co-localized with Pln in the outer layer of AF [71]. Notably, in the 

posterior layer of AF, Pln, and LTBP-2 are strongly co-deposited in the PCM of annular 

fibrochondrocytes [72]. In addition, Pln and COL VI, co-deposited in the PCM of IVD 

cells, are able to connect cells and their surrounding matrix into a network structure [73]. 

Furthermore, Pln can be helpful for chondrogenic differentiation of the developing IVD cells 

through the combination with FGF-18 and FGFR3 [68]. These results demonstrate that Pln 

is not only a marker of chondrogenesis [49], but also plays a crucial role in regulating early 

spinal tissue development.

4. Pln mediated biomechanical and biochemical impact on 

chondrogenesis

Consisting of five domains, each with its own structure and corresponding functions, Pln 

serves a multitude of complex biomechanical and biochemical roles in cellular maintenance 

and signaling pathways. Many domains contain homologous features with other biological 

components (i.e., laminin chain short arm, LDL receptor), as it is this structural adaptability 

that facilitates Pln’s ability to bind and interact with a myriad of ligands in the PCM and 

ECM to activate intracellular signaling pathways as well as help in stabilizing the ECM and 

BM.

4.1. Biomechanical role of Pln in cartilage

Because mechanical signals are integral to cartilage development, pathophysiology, and 

regeneration [74], various cellular components have been studied to investigate their roles 

in creating these mechanical signals. As previously reported, the mechanical distribution 

in articular cartilage is heterogeneous and anisotropic at the microscopic level [75,76]. 

Stiffness mapping depicted with AFM indicates that the ratio of the modulus between PCM 

and ECM in the articular cartilage of different species—including human, porcine, and 

murine—is usually fixed; however, the modulus of ECM is significantly higher than that 

of PCM in said species [77]. A similar study examining porcine medial meniscus cartilage 
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has demonstrated that the elastic modulus is significantly elevated in the outer region of 

the Pln-labeled PCM when compared to the inner region [9]. Interestingly, most studies 

identify PCM of chondrocytes by COL VI labeling [78–80]; over time, Pln labeling has 

also been recognized as a reliable method to identify PCM [15]. Notably, regions in the 

PCM labelled by both COL VI and Pln were found to have lower elastic moduli than 

those labelled by Col IV alone, indicating that local Pln presence in the PCM lowers the 

elastic moduli [15]. However, in a murine model of the Schwartz-Jampel syndrome disorder, 

HSPG2 knockdown results in abnormal PCM organization, altering these matrix properties 

and decreasing chondrocyte stiffness [81].

It has been shown that PCM may act as a regulator in mechanical-biological signaling 

transduction in chondrocytes, in which Pln plays an essential role [82–84]. HSPG2 
knockdown led to defective PCM formation and early onset of osteoarthritis (OA), 

whereas the concentration of ECM proteins, including many collagens, increased [85]. 

Physiologically related hydrostatic loading can significantly increase HSPG2 gene 

expression in cartilage [86], and these changes vary based on the magnitude or duration 

of the applied loading. For example, in bovine cartilage, Pln expression is not altered after 

one cycle of physiologic, cyclic hydrostatic loading administered within one week, but does 

become increased after two and three cycles of loading [87]. Interestingly, Pln expression 

sensitivity to mechanical loading varies significantly depending on the age group from 

which the cartilage was derived. Under dynamic mechanical compression, a downregulation 

of Pln is observed in aged cartilage while no changes are observed in young cartilage 

[88]. This age-dependency is speculated to be regulated through Smad2/3P signaling and is 

associated with the mechanisms that lead to the development of OA [88]. Under mechanical 

loading, Pln is regulated through its interaction with FGF-2, which facilitates FGF-2’s 

ability to initiate signal transmission quickly and allows Pln to directly participate in the 

signaling response during loading [84]. It is thought that, while in the resting state, FGF-2 is 

blocked on the cell surface and cannot bind to FGFR for signal transduction [84], but ECM 

deformation under mechanical loading allows the FGF-2-bound Pln to be presented to the 

cell surface receptor—thus activating downstream signaling pathways.

4.2. Biochemical role of Pln in chondrogenesis

Pln function is regulated by the interactions of the Pln core protein and GAG chains with 

different molecules in cell proliferation, adhesion, and nutrient metabolism [18,26,89,90]. 

Specifically, during chondrogenesis, specific growth factors and ligands (shown in Table 1) 

have been reported to be involved in Pln activity.

FGF—The human and mouse FGF gene families are comprised of 22 members [91,92]. 

Among these, FGF-2 and FGF-18 have been implicated in cartilage development [93].

FGF-2 has been reported to promote chondrocyte proliferation [94] and protect against 

development of OA by inhibiting a disintegrin and metallopeptidase with thrombospondin 

type 1 motif 5 (ADAMTS-5) formation [95]. FGF-2 participates in chondrocyte regulation 

by binding to FGFR1 and FGFR3—both of which play unique roles in the FGF-2 signaling 

pathways. The FGF-2/FGFR1 signaling pathway promotes deleterious activities such as 
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matrix metalloproteinase (MMP) activation and inhibition of ECM synthesis, while the 

FGF-2/FGFR3 signaling pathway increases cell proliferation and ECM production [46,93]. 

Pln regulates these pathways by interacting with FGFs/FGFRs to form a complex that 

later contributes to signal transduction [96]. Specifically, the FGF-2/Pln complex acts as a 

mechanotransducer [84]. As a low affinity receptor for FGF-2, Pln from developing growth 

plate chondrocytes is able to sequester FGF-2 away from the high affinity receptors on 

chondrocytes [97]. Immunohistochemical results show that Pln and FGF-2 are bound in all 

regions of cartilage, including weight-bearing and non-weight-bearing areas as well as the 

superficial zone and the mid zone of human and porcine cartilage [84]. Pln that is localized 

to the PCM of chondrocytes in developing growth plate cartilage rudiments contains HS 

chains and CS chains, each of which plays a distinctive role in binding FGF-2. While FGF-2 

is able to freely bind to the HS chain of Pln, it is only able to be delivered to the FGFRs 

(FGFR1 and FGFR3) when the CS chain of Pln is removed [98].

As a regulator of chondrocyte proliferation, hypertrophy, and vascularization in the growth 

plate, FGF-18 plays different regulatory roles by binding to various FGFRs [99]. During 

long bone development, FGF-18 affects chondrogenesis through FGFR3 based signaling and 

osteogenesis through FGFR1 and/or FGFR2 based signaling [100,101]. In a cell culture 

system containing fetal rudiment chondrocytes, exogenous FGF-18 is able to enhance Pln 

expression in cartilaginous matrices [102]. PlnDIII is involved in binding FGF-18, and by 

doing so, Pln can change the mitogenic effect FGF-18 has on chondrocytes in the growth 

plate [103]. It has also been found that the HS chains of Pln modulate complex formation 

between FGF-18, FGFR3, and Pln; without FGF-18 participation, FGFR3 alone is unable to 

directly bind to the HS chains of Pln [48].

Other FGFs, such as FGF-9, are also capable of contributing to chondrogenesis. One 

instance can be seen with the sequential addition of FGF-2, FGF-9, and FGF-18, which 

helps to enhance the cartilage differentiation capabilities of human mesenchymal stem 

cells (MSCs) [104]. Interestingly, chondrocyte Pln bound FGF-1 and -9 appear to be less 

versatile than endothelial cell Pln. When examining BaF-32 cells transfected with FGFR3c, 

endothelial cell-derived Pln supports cell proliferation equally well with FGF-1 and -9, 

while chondrocyte-derived Pln only supports BaF-32 cell proliferation through the FGF-9/

FGFR3c complex [49].

BMP-2—BMP-2 can effectively enhance MSC recruitment to cartilage condensation and 

initiate a BMP-dependent signaling pathway to induce chondrogenesis of mesenchymal 

progenitor cells [105]. As such, exposure to BMP-2 has been well documented to be 

important for articular cartilage development, maintenance, improved MSC chondrogenesis, 

and normal joint formation [106,107].

The interactions between BMP-2 and Pln have been shown to contribute to cartilage 

development. For example, C3H10T1/2 cells enter chondrogenic differentiation when 

plated on intact Pln or independent PlnDI; however, these Pln-stimulated cellular nodules 

fail to express chondrogenic maturation and subsequent terminal differentiation markers 

unless they undergo treatment with BMP-2 [40,108]. Thus, it is possible that BMP-2 

treatment enhances the extracellular-signal-regulated kinase 1/2 (ERK1/2) activity involved 
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in chondrogenesis of C3H102T1/2 cells [109]; alternatively, HS chains of Pln can improve 

the biological activity of BMP-2 [110] and be more conducive to chondrogenesis than 

adipogenesis [108]. BMP-2 binding to PlnDI HS chains is necessary for coordinated 

chondrogenic differentiation [111]. In addition, the close combination of BMP-2 and PlnDI 

also improves osteogenic ability [112]. These functions are thought to stem from PlnDI’s 

ability to act as a repository for BMP-2 storage, thus allowing for its controlled release, 

protecting it from degradation, and enhancing its biological activity [113,114].

CTGF—As a multifunctional secretory ECM protein with four domains, CTGF is highly 

expressed on hypertrophic chondrocytes in growing cartilage [115]. A myriad of studies 

have suggested that CTGF may play an integral role in many biological processes, affecting 

proliferation, angiogenesis, migration, differentiation, cell adhesion, wound healing, and 

cell-specific ECM protein synthesis [116–119]. Notably, despite being a hypertrophic 

chondrocyte gene product, CTGF itself does not stimulate articular chondrocyte hypertrophy 

[120]. In 2003, Nishida et al. found that CTGF co-localizes with Pln from chondrosarcoma 

derived HCS2/8 cells and that recombinant CTGF is able to dramatically promote HSPG2 
gene expression in vitro [28]. As CTGF is produced by hypertrophic chondrocytes in the 

hypertrophic region and Pln is also predominantly localized to the pre-hypertrophic region, 

it is possible that the role that CTGF plays in chondrocyte proliferation and differentiation 

may occur through Pln [28]. Outside of its interactions with Pln, CTGF is also capable 

of regulating chondrocyte proliferation and differentiation via BMP and mitogen-activated 

protein kinase (MAPK) signaling pathways [121].

WARP—Encoded by the VWA1 gene, WARP is a member of the von Willebrand factor A 

domain protein family in the ECM [122]. Though previous research claims that WARP is 

primarily expressed in articular cartilage and the IVD [31], immunohistochemical studies 

have shown that the distribution of WARP varies with cartilage development. During 

mouse embryonic development, WARP distribution in articular cartilage is restricted to the 

chondrogenous layers at embryonic day E15.5 and the PCM in the sixth week [31]. In the 

spine, WARP distribution is restricted to the articular surfaces of the vertebrae and PCM 

in the AF at E18.5 [31]. Besides co-localization with Pln by binding to domain III-2 core 

protein and domain I HS chains in cartilage [31], WARP also co-localizes with COL VI in 

the PCM of the superficial zone of articular chondrocytes [123]. This finding suggests that 

WARP may act as a bridge of communication between Pln and COL VI-labeled PCM in 

regulating human articular cartilage [123].

Outside of its role in cartilage, WARP is also expressed and co-stained with Pln in some 

non-cartilaginous tissues, including the vasculature of the central nervous system and muscle 

tissues, suggesting that WARP may help to maintain the function of a wide variety of 

Pln-containing tissues [124]. However, a study published in 2009 found that the absence 

of WARP does not cause abnormalities or affect BM formation in articular cartilage, IVD, 

or muscle tissue, rather it affects only the structure and function of the peripheral nervous 

system [125]. These studies indicate that WARP plays a specialized role in some BM 

structures, such as vasculature, muscle, and cartilage [126].
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4.3. Roles of the Pln CS chain in chondrogenesis

Despite the fact that Pln is usually substituted with HS chains in vascular tissues [127], 

sometimes it is substituted with a hybrid form of HS and CS chains in chondrocytes and 

smooth muscle cells [128]. Infrequently, epithelial cell and chondrocyte-derived Pln is also 

a hybrid Pln and a unique PG containing HS, CS, and keratan sulfate (KS) chains [48,129]. 

CS sulfation motifs play important roles in the development of the human fetal hip, knee, 

and elbow joints and related connective tissues [20,130,131]. The fetal IVD progenitor 

cells also contain Pln changeably substituted with native 7D4 CS sulfation motif [67]. 

By decorating cell surface PGs on activated stem/progenitor cells, the CS sulfation motifs 

4C3, 7D4, and 3B3[–] can be used to identify these cells in transitional areas of tissue 

development and in repair tissues [20,132]. Through binding, sequestration, or presentation 

of bioactive signaling molecules, such as FGF, CS sulfation motifs participate in modulating 

the signaling gradients in charge of the cellular behaviors, including but not limited to 

differentiation, proliferation, and matrix turnover, which shape the zonal tissue architecture 

existing in mature articular cartilage [130].

5. Signaling pathways of Pln and effect on cartilage development

Pln’s unique localization and binding interactions induce many intricate signaling pathways 

with downstream targets that significantly impact chondrocyte gene expression and the 

surrounding mechanotransduction. (Figure 2) As such, Pln is seen to play an integral 

role in regulating cartilage behavior throughout its genesis and development, including 

but not limited to: prechondrogenic cell behavior, catabolic and anabolic regulation of 

cartilage homeostasis, chondrocyte proliferation and differentiation, and cartilage tissue 

vascularization.

5.1. FGF signaling and mechanotransduction role

Current studies have shown that Pln plays a key role in post-traumatic OA progression. 

The ablation of PlnDI HS could inhibit articular cartilage degradation, decrease synovial 

inflammation, and reduce osteophyte size [46]. In cartilage, Pln not only participates in 

FGF delivery to cell surface receptors, but also sequesters FGFs from the PCM, acting 

as a mechanotransducer during cartilage loading [15,84] or in response to cartilage injury 

[133,134].

Two members of the FGF family, FGF-2 and FGF-18, are important regulators of cartilage 

homeostasis. It has been demonstrated that chondrocyte-derived Pln HS regulates cartilage 

homeostasis by participating in tripartite complex formation with both FGF-18 and FGFR3 

as well as FGF-2 and FGFR1 or FGFR3 [48]. FGF-2 selectively activates FGFR1 to 

upregulate the production of matrix-degrading enzymes and inhibit the synthesis of ECM 

and PGs [135,136]. Thus, in adult human articular chondrocytes, FGF-2 takes on a 

catabolic role [93]. The interactions between FGF-2 and FGFR1 independently activate 

Ras and protein kinase C (PKC), both of which are integrated by Raf-MEK1/2-ERK1/2 and 

thus concertedly drive signaling [93,137]. ERK1/2 activates at least two key downstream 

transcription factors [i.e., Ets-like protein-1 (ELK1) and runt-related transcription factor 2 

(RUNX2)] that upregulate the expression of a series of matrix-degrading enzymes [137]. On 
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the other hand, FGF-18 binds to FGFR3 and then activates downstream MAPK and protein 

kinase B (Akt) signal pathways [93,138]. The MAPK signal pathway can inhibit ELK1 and 

RUNX2 expression which decreases ECM degradation, while the Akt pathway promotes 

ECM formation and chondrocyte differentiation [93]. Hence, the downstream effects of 

FGF-18 ultimately promote anabolic activity in human articular chondrocytes [93].

FGF-2 has been shown to influence Pln-regulated mechanotransduction in cartilage via 
the ERK signaling pathway [84,134,139]. The elastic moduli of the PCM is lower in 

Pln-rich regions than in Pln-absent regions. This lower elastic modulus is thought to arise 

from the Pln HS chain interactions, as the enzymatic removal of HS chains drastically 

enhances PCM’s microscale elastic properties while exhibiting little influence on ECM 

properties [15]. In unloaded cartilage, the Pln HS chain bound FGF-2 is sequestered 

from the cell surface, but upon matrix deformation, HS-bound FGF-2 is presented to its 

corresponding cell surface receptor, thus activating the ERK signaling pathway [84]. Besides 

this mechanism, other pathways have also been documented to contribute to the chondrocyte 

response to loading. For instance, in 2007, loading-induced protein tyrosine phosphorylation 

was found to be FGF dependent [84]; briefly, the authors found that FGF-2 and perlecan 

co-located in the PCM of articular cartilage; ERK activation upon loading was dependent 

on pericellular FGF-2 rather than release of intracellular growth factors. They also found 

that FGFR inhibitor could markedly suppress the increase in the level of protein tyrosine 

phosphorylation upon loading. These findings indicate that FGF-2/Pln is involved in signal 

transduction under stress stimulation.

5.2. BMP signaling

BMP-2 is essential to bone and cartilage formation [140]. The interactions between BMP-2 

and Pln have been shown to contribute to cartilage development [111,113,141] and improve 

osteogenic ability [112]. BMP-mediated developmental processes are known to depend 

on the basic N-terminal domains of dimeric BMP-2 that serve as heparin-binding sites; 

although these sites are not integral to receptor co-activation, they help to regulate its 

biological activity [142]. Jiao et al. demonstrated that HSPG modulates the osteogenic 

activity of BMP-2 by sequestering BMP-2 at the cell surface so that it is unable to bind 

to the BMP receptor [143]. PlnDI can thus serve as a depot for BMP-2 storage, allowing 

it to be released in a controlled manner, protecting it from degradation, and enhancing its 

biological activity [113,114].

Both the canonical Smad-dependent pathway—involving TGF-β/BMP ligands, receptors, 

and Smads—and the non-canonical Smad-independent pathway—involving p38 MAPK—

have been identified in chondrocytes [144,145]. Most BMPs phosphorylate and activate 

R-Smads (Smad1/5/8) to complex with Co-Smad (Smad4); the Smad1/5/8-Smad4 complex 

subsequently translocates into the nucleus to regulate RUNX2 and SRY (sex determining 

region Y)-box 9 (SOX9) target gene expression [146,147]. Interestingly, p38 MAPK is 

also involved in fine-tuning BMP’s impact on chondrocytes and osteoblasts through TGF-

β-activated kinase 1 (TAK1) [148]. In the postnatal chondrocyte, TAK1 deletion exhibits 

severe growth retardation and reduced SOX protein, PG, and COL II expression [149]. 

In contrast, in osteoblasts, TAK1 deletion leads to clavicular hypoplasia and postpones 
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fontanelle fusion, resulting in a phenotype alike to that seen in cleidocranial dysplasia—a 

disorder resulting from RUNX2 deficiency [150].

The roles that BMP signaling plays in chondrogenesis and osteogenesis are regulated by the 

delicate balance between ligands and antagonists—including Chordin, Chordin-like (CHL), 

Fellistatin, gremlin 1 (Grem1), and Noggin [144]—and these BMP antagonist expression 

patterns vary depending on joint location and species [106].

5.3. CTGF signaling

As a multifunctional secretory ECM protein, CTGF is highly expressed by hypertrophic 

chondrocytes in growth cartilage [115]. Not only does CTGF co-localize with Pln from 

HCS2/8 cells, but recombinant CTGF can also promote the in vitro expression of the 

HSPG2 gene dramatically [29]. The LDL receptor is known to directly interact with CTGF 

[151,152]. Recently, it has been shown that PlnDII, which contains repeat sequences highly 

similar to those of the LDL receptor, can also bind CTGF in the PCM of articular cartilage 

[153]. As such, CTGF may be able to promote chondrocyte proliferation and differentiation 

through its interaction with Pln [29].

The interaction between CTGF and Pln triggers various intracellular signaling pathways. 

PKC acts as a central upstream kinase in chondrocyte proliferation, maturation, and 

terminal differentiation through its triggering of MEK, p38 MAPK, and PKB, respectively 

[121]. CTGF also activates the JNK pathway, which triggers chondrocyte proliferation 

and maturation [121]. In promoting chondrocyte terminal differentiation, PKB-mediated 

activation of phosphoinositide 3-kinase (PI3K) is also required [121,154,155].

5.4. FAK-Src signaling

PlnDIV prevents early cell attachment and promotes cell clustering by suppressing focal 

adhesion kinase/steroid receptor co-activator (FAK/Src) activity, with increased mRNA 

levels of chondrogenic markers SOX9, Cadherin 2 (CDH2), type II collagen (COL2A1), 

and aggrecan (ACAN) [37]. These markers are uniquely indicative of different milestones 

in chondrogenic differentiation. For instance, CDH2 is a precartilage condensation marker 

and downstream target of SOX9 [156]. The regulatory role that FAK-Src signaling plays 

in cell adhesion and spreading occurs via the loss of phospho-ERK1/2 [37]. Forkhead box 

protein M1 (FoxM1), a downstream target of ERK, is involved in cell cycle progression and 

is downregulated as a result of PlnDIV-induced clustering, along with increased expression 

of cyclin-dependent kinase inhibitor 1C (CDKN1C) and activating transcription factor 3 

(ATF3) [37]. Overexpression of ATF3 in chondrocytes then results in downregulation of 

cyclin D1 and cyclin A expression [157]. As such, the FAK-Src pathway culminates with 

chondrocyte proliferation suppression [37]. These findings described the mechanism of how 

PlnDIV affects prechondrogenic cell condensation and prevents chondrocyte progression to 

fibrocartilage.

5.5. VEGF signaling

In the early stages of cartilage development, angiogenesis helps to provide nutrients to 

the immature cartilage. As a component of vascular BM, Pln contributes to the process of 
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angiogenesis [158] and wound healing [159]. Furthermore, studies have pointed out that 

VEGF is necessary in cartilage angiogenesis during cartilage development and chondrocyte 

differentiation during endochondral bone formation [160–162]. Thus, regulation of VEGF 

expression is important in maintaining the chondrocyte phenotype. Pln can play promoting 

and/or inhibiting roles during angiogenesis [163–165], and VEGFR1 and VEGFR2 are 

the primary receptors involved in angiogenic activities of VEGF [166]. Early studies have 

shown that full-length Pln and immobilized forms of PlnDI can adjust the VEGF-VEGFR2 

signaling pathway to regulate developmental angiogenesis [167,168]. Muthusamy and 

colleagues later found that the soluble forms of recombinant PlnDI, unbound or bound to 

VEGF165, stimulate angiogenesis by direct interactions with: 1) neuropilin 1, 2) VEGFR2, 

and 3) neuropilin 1 and VEGFR2 co-receptors [164]. It was later proven that cartilage Pln 

is a necessary component in the activation of VEGFR signaling in endothelial cells that 

ultimately leads to vascular invasion into the cartilage [169]. As Pln is a component of 

the surface vessel network, which provides nutrients to the developing joint rudiment, Pln 

regulation is likely beneficial to the activation of angiogenesis in early cartilage development 

[47].

The C-terminal fragment of Pln (PlnDV), called Endorepellin, contains three laminin 

globular domains (LG1/2/3) and is responsible for facilitating the role Pln plays in 

inhibiting angiogenesis [163,165,170]. LG1/2 domains bind to VEGFR2, inhibiting its 

VEGF-mediated activation by blocking Tyr1175 phosphorylation. This inhibition blocks 

endothelial cell migration and VEGF gene transcription, both of which contribute to 

angiostasis [165]. The LG3 domain, on the other hand, directly binds to α2β1 integrin, 

which also contributes to anti-angiogenesis [171]. The mechanism involves the activation 

of Src homology-2 protein phosphatase-1 (SHP-1), which dephosphorylates Tyr1175 of 

VEGFR2 and induces cytoskeletal collapse [171]. Both VEGFR2 and α2β1 integrin are 

required for Endorepellin angiostatic activity and the internalization and degradation of the 

dual receptor is mediated by the caveosome pathway [163,165].

6. Potential applications and challenge

Pln has been shown to be not only responsible for much of the biomechanics that 

characterize its matrices, as well as displaying cell source-dependent functionality that 

affects its ability to facilitate matrix mechanics. This structural variability lends Pln great 

potential for use in biomaterial synthesis. To this end, we explore current literature to 

speculate about the potential involvement of Pln in cartilage regeneration following injury 

and potential applications of Pln in stem cell and biomaterial mediated cartilage engineering.

6.1. Pln may mediate cartilage regeneration following injury

Given its impact on angiogenesis, wound healing, and maintaining cartilage function, Pln 

might be positively associated with cartilage regeneration. A study analyzing fresh bovine 

cartilage specimens found a significant negative correlation between age and HSPG2 mRNA 

expression [87]. Interestingly, in human knee OA cartilage, Pln levels are significantly 

higher in areas close to cartilage defects [172]. Similarly, stimulation of equine cartilage 

with IL-1β has been proven to upregulate Pln expression [173]. Furthermore, a 2015 study 
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found that HSPG breakdown during inflammatory and mechanical injury in serious cases of 

OA leads to the disruption of the ELR+ CXC chemokine signaling pathway, contributing to 

loss of chondrocyte phenotypic stability. This process is due to HSPG’s function in retaining 

C-X-C motif chemokine ligand 6 (CXCL6), a compound that has the capacity to attract 

inflammatory cells when released from the ECM and is linked to inflammatory arthritis 

[174]. Pln’s chondroprotective role is thought to stem from Pln’s ability to modulate FGF 

signaling [84,175].

Much evidence also points to the potential utilization of Pln as a regulator in stem cell 

chondrogenic differentiation. As mentioned above, GAG chains of Pln can interact with 

various ligands to regulate chondrogenesis. Exogenous HS has been proven to enhance 

TGF-β3-induced chondrogenic differentiation of human MSCs by triggering the Smad2/3 

signaling pathway [176]. Furthermore, a series of studies conducted by Sadatsuki and 

colleagues concluded that Pln in the synovial niche is essential for chondrogenesis of 

synovial mesenchymal cells, but not for osteogenesis and cell proliferation [177]. This 

Pln-induced synovial mesenchymal cell chondrogenic differentiation primarily depends on 

the regulation of SOX9 gene expression [178] as well as contributions from the Smad and 

MAPK signaling pathways [179].

Despite the promotion of developing and mature cartilage tissues, Pln also retains permanent 

cartilage by preventing further development, indicative of its role in tissue homeostasis. 

Shu and coworkers found that the use of heparanase in chondrocyte cultures increased cell 

proliferation and GAG production. Furthermore, they found that growth plate maturation, 

GAG deposition, and cell proliferation and maturation significantly enhanced in the Pln 

exon 3 null mouse model IVD, demonstrating the repressive control of the Pln HS chain 

[10]. The function of the Pln HS chain in tissue stabilization was also found in the PCM of 

AF cells and chondrocytes through interaction with COL XI [180] and in the small blood 

vessels of the synovium via interaction with elastin and fibrinlin-1 [181].

6.2. Pln potential applications in scaffold design

Ideal characteristics of a biomaterial that is to be used in cartilage regeneration 

necessitate the material’s biocompatibility, bioactivity, biomimetics, biodegradability, 

and bioresponsiveness [182]. Given Pln’s unique structure, localization, and distinctive 

biological activity displayed by each of the five different domains, some scholars [183] 

believe that it is an ideal candidate for modifying and enhancing the extracellular scaffold, 

directly linking the ECM to the cell surface and initiating cellular signals. Domain I, 

in particular, is recognized to have well-defined functionality in cartilage regeneration. 

Previous research shows that chitosan scaffolds containing PlnDI have the potential to 

induce wound healing [159]. PlnDI-COL II fibril modified polylactic acid scaffolds support 

chondrogenesis of both primary mouse embryonic fibroblasts and C3H10T1/2 cells via the 

binding and retention and release of BMP-2 [141]. Electrospun collagen fibers coated with 

PlnDI are able to bind to FGF-2 at rates that are ten times that of heparin-bovine serum 

albumin collagen fiber; this finding demonstrates a potential application of Pln-enhanced 

materials in constructing tissue engineering scaffolds [184]. Furthermore, combining a 

hyaluronic acid-based hydrogel with PlnDI has proven to make up an effective system for 
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BMP-2 delivery that is able to promote chondrogenic differentiation in vitro [111] and serve 

as an injectable therapeutic agent for OA treatment in vivo [113]. As indicated in Table 2, 

growing evidence suggests that Pln functionality is not limited to use in cartilaginous tissues, 

but rather it has broad application in enhancing biomaterials for cell-based therapies.

7. Conclusions and perspective

As a key component of stem cell niches, Pln is part of a highly complex microenvironment 

that promotes cartilage regeneration [131], which is supported by the presence of Pln in 

repaired human cartilage tissue through cell therapy and natural occurrence in a recent 

report [185]. In this review, we have compiled growing evidence that Pln in the PCM 

of cartilaginous tissues is involved in the regulation of biomechanical properties that 

characterize its various matrices and may thus have unique application in cartilaginous 

tissue regeneration. Although increasing evidence suggests that the PCM may serve 

as a mechanical-biological signal transducer in chondrocytes, the specific role that Pln 

plays in various mechanical-biological signaling pathways is still unclear. Based on the 

features mentioned above, Pln appears to have great potential for improving the cell 

culture environment. However, current efforts to introduce Pln to tissue engineering have 

been limited to the use of Pln-coating in cell culture environments—such applications 

prove to be insufficient given Pln’s potential as a biomaterial. Given that cell-derived 

decellularized ECM—an excellent in vitro 3D culture scaffold model—can rejuvenate 

stem cell proliferation and chondrogenic differentiation [186–188], which has been used 

to define the impact of fibronectin on stem cells’ proliferation and differentiation [189], 

it might provide an excellent in vitro model to delineate the role Pln plays in this matrix 

microenvironment.

Despite various efforts to illuminate Pln’s role in chondrogenesis and cartilage regeneration, 

our understanding of Pln function remains limited. PlnDI is unique to Pln and many studies 

focus on this domain; however, the functions of other domains of Pln lack attention, which 

might be the focus of future investigation. In practical terms, the reproduction of specific 

HS sequence information on recombinant Pln domains is technically problematic especially 

since the specific HS sequences that drive repair are incompletely understood, despite that 

recombinant PlnDI and PlnDV forms containing GAG have been prepared/used successfully 

in a number of tissue repair strategies [111,113,184,190,191].

Besides cartilage regeneration, the role of Pln in cartilage degeneration also deserves 

attention. For instance, a 2013 study using a synovial HSPG2-deficient mouse model found 

synovium-localized Pln to be required in osteophyte formation in OA [192]. Furthermore, 

a 2015 study found that blocked endogenous Pln function improves differentiation of rat 

articular chondrocytes in vitro, suggesting that Pln may promote the dedifferentiation of 

chondrocytes; it should be noted that this result is only seen in environments favoring 

dedifferentiation (i.e., canonical Wnt signaling and low levels of BMP-2 and BMP-4) [193]. 

Because the degenerative contribution of Pln has only been observed in experiments testing 

a pre-existing degenerative microenvironment, it is likely that Pln only serves a passive role 

in cartilage degeneration. Hence, evidence that Pln actively triggers catabolic responses is 

still lacking and deserves further study.
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Figure 1. 
Schematic illustration of the multidomain structure of human Pln. The core protein of Pln 

consists of five domains I–V [194]. Domain I is made up of a sperm, enterokinase and agrin 

(SEA) fold, preceded by three GAG attachment sites. Domain II contains four low-density 

lipoprotein (LDL) receptor motifs and one isolated immunoglobulin-like (Ig) fold. Domain 

III is made up of a combination of laminin epidermal growth factor (EGF) and laminin 

IV type A domains that are connected by disulfide linkages in the laminin EGF domains 

to form an inflexible rod-like structure. In humans, domain IV consists of 21 repeating 

Ig C2-type modules that are sequentially linked together. Domain V comprises four EGF 

motifs, three laminin G, and a fourth variable GAG attachment site.
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Figure 2. 
Signaling pathways of Pln and effect on cartilage development. (A) FGF signaling and 
mechanotransduction role. The role Pln plays in regulating cartilage homeostasis is 

achieved by the formation of the PlnDI-FGF complex. This complex sequesters FGFs from 

receptors on the cell surface and inhibits the downstream signaling pathway [48,93,135–

137]. FGF-2 also plays a mechanotransduction role in cartilage via influencing the ERK 

signaling pathway [15,84,134,139]. (B) BMP signaling. The roles that BMP signaling plays 

in chondrogenesis and osteogenesis are regulated by BMP-2 storage in the PlnDI-BMP 

complex and the delicate balance between ligands and antagonists [143–147,149]. (C) 
CTGF signaling. The interaction between CTGF and PlnDII triggers various intracellular 

signaling pathways and thus regulates the proliferation and maturation of chondrocytes 

[29,121,151,152,154,155]. (D) FAK-Src signaling. PlnDIV prevents early cell attachment 

and promotes cell clustering/condensation by suppressing the FAK/Src signaling pathway, 

but the receptor is unknown [37,156,157]. (E) VEGF signaling. In the early stage of 

cartilage development, PlnDI, unbound or bound to VEGF165, stimulates angiogenesis by 

direct interactions with neuropilin 1 (NRP1), VEGFR2, and NRP1/VEGFR2 co-receptors 

[164]. In the later stage of cartilage development, PlnDV inhibits angiogenesis via dual 

receptor VEGF2 and integrin. The endorepellin-induced dual receptor internalization 

and degradation by the caveosome-mediated pathway is also involved in angiostasis 

[163,165,171].
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Table 1.

The protein domains of perlecan and their functions through interactive ligands.

Domain Interacting partner(s) Potential function References

I (HS)
Activin A, Ang-3, BMP-2, FBN1, FGF-2/18, 
GM-CSF, HGF, VEGF, WARP, PRELP, LN, 
PDGF

Angiogenesis; Cell adhesion/motility; 
Chondrogenesis; GF delivery/activity; ECM 
anchoring/assembly/stabilization

[27,30,31,48,141,195–198]

II CTGF, FBN1, LDL/VLDL, Wnt/Ca2+ BM anchoring and biogenesis of microfibrils [27–30]

III FGF-7/18, PDGF, WARP Angiogenesis; Cartilage structure assembly; ECM 
assembly/stabilization; GF delivery [31–33,199]

IV COL IV, FBLN2, FN, Heparin, LN, NID1/2, 
PDGF Angiogenesis; BM stabilization; GF reservoir [27,200,201]

V α2β1 Integrin, DG, ECM1, FBLN2, FGF-7, 
Heparin, NID1, PGRN, PRELP

Angiogenesis; BM assembly/stabilization; Cell 
adhesion and motility; Proliferation [27,32,195,202,203]

Abbreviation: Ang-3: angiopoietin-3; BM: basement membrane; BMP-2: bone morphogenetic protein-2; DG: dystroglycan; ECM: extracellular 
matrix; ECM1: extracellular matrix protein 1; FBLN2: fibulin-2; FBN1: fibrillin-1; FGF: fibroblast growth factor; FN: fibronectin; GF: growth 
factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; HGF: hepatocyte growth factor; LDL: low-density lipoprotein; LN: laminin; 
NID: nidogen; PDGF: platelet-derived growth factor; PGRN: progranulin; PRELP: proline/arginine-rich end leucine-rich repeat protein; VEGF: 
vascular endothelial growth factor; VLDL: very low-density lipoprotein; WARP: von Willebrand factor A domain related protein

Acta Biomater. Author manuscript; available in PMC 2022 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gao et al. Page 32

Table 2.

Positive effects of perlecan on biomaterials improvement.

Species Cell/tissue 
location Modified biomaterials Result References

Human

MG-63 cell Coating electrospun collagen and gelatin 
fibers with PlnDI Increasing FGF-2 binding [184]

BMSC/MG-63 cell PlnDI-containing COL I scaffold Promoting cell proliferation by enhancing FGF-2 
activity [204]

C4-2B cell Electrospun PCL-based scaffolds with 
PlnDIV

Facilitating cell proliferation, survival, and 
migration [205]

Coronary artery 
endothelial cell

Silk biomaterials functionalized with 
PlnDV

Supporting cell adhesion, spreading, and 
proliferation [206]

Mouse

Cartilage PlnDI immobilized to HA microgel Repairing OA-like damage by controlled release 
of BMP-2 [113]

C3H10T1/2 cell

PlnDI-conjugated, HA-based HGPs
Stimulating chondrogenic specific ECM 
production by binding and sustained release of 
BMP-2

[111]

PlnDI and COL II coated PLA scaffold Promoting cartilage-like tissue in PlnDI/COL II 
coated PLA scaffold [141]

BMSC PlnDI-functionalized electrospun PCL 
scaffolds

Enhancing ALP activity by increasing PCL 
loading capacity of BMP-2 [207]

RGC-5 cell Biological glue made by mixing 
laminin, COL IV, entactin, and Pln Improving retina adhesion rate [208]

Rat

Skin PlnDI-containing chitosan scaffolds Promoting angiogenesis and dermal wound 
healing [159]

Bone
A recombinant PlnDI expressed from 
HEK 293 cells with HS/CS PG tightly 
binding recombinant human BMP-2

Promoting dose-enhancement of BMP-2 on a 
particulate TCP scaffold to generate up to 9 fold 
more bone volume in 6 or more weeks in a rat 
model than the control without PlnDI

[112]

Abbreviation: ALP: alkaline phosphatase; BMP-2: bone morphogenetic protein 2; BMSC: bone marrow stromal cell; C3H10T1/2: a murine 
mesenchymal stem cell line; C4-2B: a cancer cell line; CS: chondroitin sulfate; ECM: extracellular matrix; FGF-2: fibroblast growth factor 
2; HA: hyaluronic acid; HGP: hydrogel particle; HS: heparan sulfate; MG63: an osteoblastic cell line; OA: osteoarthritis; PCL: poly (epsilon­
caprolactone); PLA: polylactic acid; PG: proteoglycan; RGC-5: a retinal ganglion cell line; TCP: tricalcium phosphate
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