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Abstract

A large proportion of heritability for prostate cancer risk remains unknown. Transcriptome­

wide association study combined with validation comparing overall levels will help to identify 

candidate genes potentially playing a role in prostate cancer development. Using data from the 

Genotype-Tissue Expression Project, we built genetic models to predict normal prostate tissue 

gene expression using the statistical framework PrediXcan, a modified version of the unified test 

for molecular signatures, and Joint-Tissue Imputation. We applied these prediction models to the 

genetic data of 79,194 prostate cancer cases and 61,112 controls to investigate the associations 

of genetically determined gene expression with prostate cancer risk. Focusing on associated 

genes, we compared their expression in prostate tumor versus normal prostate tissue, compared 

methylation of CpG sites located at these loci in prostate tumor versus normal tissue, and assessed 

the correlations between the differentiated genes’ expression and the methylation of corresponding 

CpG sites, by analyzing The Cancer Genome Atlas (TCGA) data. We identified 573 genes 

showing an association with prostate cancer risk at a false discovery rate (FDR) ≤ 0.05, including 

451 novel genes and 122 previously reported genes. Of the 573 genes, 152 showed differential 

expression in prostate tumor versus normal tissue samples. At loci of 57 genes, 151 CpG sites 

showed differential methylation in prostate tumor versus normal tissue samples. Of these, 20 CpG 

sites were correlated with expression of 11 corresponding genes. In this TWAS, we identified 

novel candidate susceptibility genes for prostate cancer risk, providing new insights into prostate 

cancer genetics and biology.
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Introduction

Prostate cancer remains the most frequently diagnosed malignancy in men (1). It is critical 

to better elucidate its etiology which is currently poorly understood. Age, ethnicity, and 

family history are the few established risk factors for prostate cancer (2, 3). It has been 

estimated that the heritability of prostate cancer is approximately 58% (4). To date, 

genome-wide association studies (GWAS) have identified over 200 genetic loci harboring 

risk variants of prostate cancer, but overall, these variants explain less than half of the 

familial risk (5, 6). Studies leveraging expression quantitative trait loci (eQTL) analyses 

have implicated that specific GWAS-identified risk variants could regulate the expression 

of target genes which might play important roles in prostate carcinogenesis (7-9). However, 

the target genes responsible for a majority of GWAS-identified association signals remain 

unknown.

Transcriptome-wide association study (TWAS) is a design to uncover disease susceptibility 

genes by imputing gene expression levels into GWAS datasets, which can significantly 

improve the power to identify gene-disease associations (10, 11). This design has been 

proven to be useful for identifying multiple new candidate susceptibility genes across human 
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malignancies (12-18). For prostate cancer, three TWAS studies have been published, in 

which significant associations for 316 genes have been identified (12,15,18). Mancuso et 

al. assessed genetically predicted expression in 45 tissue types beyond the prostate (15). 

Focusing on prostate, the authors evaluated normal prostate tissue (the Genotype-Tissue 

Expression dataset (GTEx), n=87), prostate tumor tissue, and tumor adjacent normal 

prostate tissue (The Cancer Genome Atlas (TCGA)). Emami et al. leveraged prediction 

models built using a large Mayo Clinic dataset comprising genetic data and gene expression 

data of fresh frozen normal prostate tissue obtained from patients with either radical 

prostatectomy or cystoprostatectomy (N=471) (18). Wu et al. developed prostate tissue 

prediction models using gene expression data of normal prostate tissue (GTEx, n=73) (12). 

The authors also built cross-tissue models aiming to increase the statistical power for genes 

with genetic regulatory mechanisms that are shared across different tissues.

It has been well established that tumor growth can influence gene expression in surrounding 

tissues, and thus the expression of some genes could be substantially different in tumor­

adjacent normal tissue compared with that in normal tissue from subjects without cancer. 

Therefore, ideally, to study prostate cancer susceptibility genes, gene expression prediction 

models derived from normal prostate tissue from healthy subjects without cancer should 

be used. Recently, the last version (v8) of the GTEx project has been released (19). 

In this dataset, 221 subjects, primarily of European ancestry, have both genotyping and 

normal prostate tissue transcriptome data available. Leveraging this large reference dataset 

for normal prostate tissue from subjects without cancer, we applied several state-of-the­

art modeling strategies, including the modified UTMOST (unified test for molecular 

signatures) (20), the newly developed Joint-Tissue Imputation (JTI) method (21), as well 

as PrediXcan (10), to develop comprehensive normal prostate tissue gene expression genetic 

prediction models. We conducted a comprehensive prostate cancer TWAS to identify novel 

susceptibility gene candidates for this common malignancy. Focusing on associated genes, 

we further evaluated their expression in prostate tumor and tumor adjacent normal prostate 

tissue samples in The Cancer Genome Atlas (TCGA).

Materials and Methods

Transcriptome and genome data from the GTEx project (version 8)

To develop genetic imputation models for genes expressed in normal prostate tissue, 

we used transcriptome and genome data from postmortem/organ procurement cases 

for the GTEx project (v8). Details of the GTEx v8 dataset have been described 

elsewhere (https://gtexportal.org/home/documentationPage). Detailed information on RNA 

sequencing experiments, whole genome sequencing (WGS) and quality control (QC) of the 

transcriptome and genome data have been described elsewhere (22, 23).

Building normal prostate tissue gene expression prediction models

The PrediXcan, modified UTMOST, and JTI frameworks were used to build three separate 

sets of normal prostate tissue expression genetic prediction models. The detailed information 

for model development has been described elsewhere (21). Briefly, the residuals of the 

normalized gene expression levels (19) were used after regressing out covariates, including 
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sex (not applied to the single-tissue approach PrediXcan), platform, first five principal 

components (PCs), and probabilistic estimation of expression residuals (PEER) factors. 

SNPs within 1 Mb upstream and downstream of the gene body were considered as predictor 

variables in the models. LD-pruning (r2=0.9) was performed before model training to reduce 

the computational burden, and no significant difference in prediction quality from applying 

LD pruning (10).

For PrediXcan model training (24), the elastic net was applied. Five-fold cross validation 

was performed to generate the prediction models and to evaluate their prediction 

performance.

For modified UTMOST (20), the effect sizes were estimated by minimizing the loss 

function with a LASSO penalty for within-tissue effects, and a group-LASSO penalty for 

cross-tissue effects in the joint-tissue prediction model. The group penalty term could share 

the information from feature (SNP) selection across all the tissues. λ1 and λ2 were tuned 

to optimize the problem for the within-tissue and cross-tissue penalization, respectively. 

Five-fold cross-validation was performed for hyperparameter tuning (25). Notably, we 

modified the original script of UTMOST by using uniform hyper-parameters across different 

folds to make the hyper-parameters directly comparable (17, 26). We confirmed that the 

modified UTMOST gave an unbiased estimate of prediction performance using empirical 

datasets (21). Details of the modification can be found at https://github.com/gamazonlab/

MR-JTI/blob/master/README.md. JTI estimates the gene expression profile similarity and 

the regulatory profile similarity (here, generated from the DNase I hypersensitivity sites 

in the promoter region) for each tissue-tissue pair (21). The two similarity measures were 

combined using hyper-parameters, which were tuned using five-fold cross validation. For all 

the prediction models, genes with a good prediction quality from five-fold cross-validation 

(r > 0.1 and P < 0.05 for the correlation between the observed and the predicted expression) 

were defined as imputable genes and were used for downstream analyses.

Associations between genetically determined gene expression in prostate tissue and 
prostate cancer risk

We investigated the associations of genetically determined gene expression in prostate tissue 

with prostate cancer risk using the GWAS summary statistics generated from 79,194 cases 

and 61,112 controls of European ancestry in the PRACTICAL consortium. The detailed 

information of this meta-analysis has been described elsewhere (27). Briefly, a total of 

46,939 cases and 27,910 controls were genotyped using OncoArray including 570,000 

SNPs (http://epi.grants.cancer.gov/oncoarray/). The SNP data were imputed using the 1000 

Genomes Project (1KGP; 2014 June release) data as reference. Data from seven previous 

GWAS or high-density SNP panels imputed to 1KGP, including UK stage 1 and UK stage 

2, BPC3, NCI PEGASUS, iCOGS, CaPS 1, and CaPS 2, were also included. An inverse 

variance fixed-effect approach was used to meta-analyze logistic regression summary 

statistics.

Using S-PrediXcan (28, 29), the associations of genetically determined gene expression 

with prostate cancer risk were estimated based on prediction weights, GWAS summary 

statistics, and a SNP-correlation (LD) matrix (11, 14). For a majority of the tested genes, 
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most of the corresponding predicting SNPs were used for the association analyses (e.g., 

≥80% predicting SNPs used for 99.2% of the tested genes). A Benjamini-Hochberg false 

discovery rate (FDR) of < 0.05 was used to adjust for multiple comparisons.

Comparison of expression of associated genes and DNA methylation levels of CpG sites at 
loci of associated genes in prostate tumor samples versus tumor adjacent normal prostate 
samples in TCGA

To further assess whether TWAS identified associated genes show differential expression 

in prostate tumor versus tumor adjacent normal prostate tissue samples, we compared the 

directly measured expression of these genes in TCGA data. The detailed information for 

the study dataset, data QC, processing, and analyses have been described elsewhere (30). In 

brief, gene expression data of 468 prostatic tumor samples and 51 tumor-adjacent normal 

prostate tissue samples were analyzed (30). For genes showing differential expression in 

tumor versus normal prostate tissue samples with directions of effect consistent with those 

in TWAS, we further evaluated whether there was additional evidence from differential DNA 

methylation levels of CpG sites at the same loci. This will help to prioritize promising 

candidates for future functional analysis based on findings from this work. For this analysis, 

we analyzed data from 469 prostatic tumor tissue samples and 50 histologically normal 

prostatic tissue samples in TCGA, as described elsewhere (31). Focusing on CpG sites 

demonstrating differential methylation in tumor versus normal samples, we further evaluated 

correlations of their methylation with the expression of nearby genes in 34 histologically 

normal prostate tissue samples. Depending on the distribution, either a Pearson or a 

Spearman correlation test was conducted. An FDR corrected significance threshold at <0.05 

was used in each of the validation analyses.

Functional enrichment analyses using Ingenuity Pathway Analysis (IPA)

We performed functional enrichment analysis for the genes identified to be associated with 

prostate cancer risk. Using the IPA software, we estimated top associated diseases and 

bio-functions, canonical pathways, and top-level networks (32).

Results

Prostate tissue gene expression prediction model building

The overall study design is presented in Figure 1. Using PrediXcan, a modified UTMOST, 

and JTI framework, we built three separate sets of prediction models for 11,536 genes 

with a model performance r (correlation between genetically determined gene expression 

and measured expression) > 0.1 and P < 0.05. Detailed information regarding the number 

of prediction models built according to different performance thresholds and gene types is 

shown in Supplementary Table 1.

Associations of predicted gene expression in prostate tissue with prostate cancer risk

By analyzing 24,238 prediction models for 11,536 genes, we identified 573 genes associated 

with prostate cancer risk at P ≤ 2.01×10−3, a false discovery rate (FDR)-corrected 

significance level (Table 1 and Table 2; Supplementary Table 2-5; Figure 2). Of these, 140 
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genes were associated with prostate cancer risk at a Bonferroni-corrected significance level 

(P ≤ 2.06×10−6).

We identified 249 associated genes at least 500kb away from any GWAS identified prostate 

cancer risk variants (9, 33-38) (Supplementary Table 2). Of these, an association between 

lower predicted expression and increased prostate cancer risk was detected for 138 genes, 

and an association between higher predicted expression and increased prostate cancer risk 

was identified for 111 genes. Among them, 37 genes were suggested by all three genetic 

prediction models (PrediXcan, modified UTMOST, and JTI). We also identified 194 novel 

genes at known prostate cancer susceptibility loci (9, 32-37). Among them, 37 genes were 

suggested by all three genetic models (Supplementary Table 3). Furthermore, we observed 

significant associations for 104 genes that had been previously reported as candidate prostate 

cancer susceptibility genes in published TWAS. Reassuringly, for a majority of them (69 

genes), the directions of the associations were consistent in published TWAS vs the current 

study (Supplementary Table 4). For 19 of the genes, both positive and inverse associations 

were reported in previous TWAS (Supplementary Table 5). For the remaining 16 genes, the 

reported associations in previous TWAS had different directions compared with those in the 

current study (Supplementary Table 6). For 15 of these 16 genes, their associations in the 

previous TWAS were based on prediction models of either non-prostate tissues or prostate 

tumor tissue (Supplementary Table 6). We also identified an additional 18 genes that had 

been previously reported as candidate target genes of known prostate cancer risk variants 

identified through functional studies and/or eQTL analyses (Table 1). Overall, we were able 

to identify 451 novel candidate susceptibility genes for prostate cancer and confirmed 122 

genes known to potentially play a role in prostate cancer susceptibility.

Measured expression of associated genes and DNA methylation levels of CpG sites at loci 
of associated genes in prostate tumor samples versus tumor adjacent normal prostate 
tissue samples

Of the 573 associated genes identified in this TWAS, 152 genes showed a differential 

expression in prostate tumor and tumor adjacent normal tissue (FDR<0.05) with directions 

consistent with those identified in TWAS (Supplementary Table 7). At these loci, 2,353 

CpG sites showed differential methylation levels between prostate tumor and tumor adjacent 

normal samples (FDR < 0.05) (Supplementary Table 8). Among them, 151 CpG sites were 

further found to be biologically significant in that the average methylation beta value needed 

to be >0.5 in one of the tested groups (tumor or normal samples) and be <0.5 in the other 

group (Supplementary Table 8). Of those, the methylation of 14 CpG sites was significantly 

correlated with the expression of corresponding genes in normal samples. Finally, after 

aggregating results from the above analyses, we identified 8 genes showing consistent effect 

directions that were supported by these complementary analyses (Table 2).

Pathway enrichment analyses

The results of IPA (32) suggested potential enrichment of cancer-related functions for the 

TWAS identified genes (Supplementary Table 9). The top canonical pathways included 

Antigen Presentation Pathway (P = 1.08 × 10−9), Th1 Pathway (P = 6.36 × 10−5), T Cell 
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Exhaustion Signaling Pathway (P = 8.72 × 10−5), Allograft Rejection Signaling (P = 1.54 × 

10−4), and OX40 Signaling Pathway (P = 1.96 × 10−4).

Discussion

Leveraging the largest available reference dataset of normal prostate tissue transcriptome 

and the state-of-the-art modified UTMOST, JTI, and PrediXcan modeling strategies, 

we performed a comprehensive TWAS to evaluate the relationship between genetically 

determined gene expression levels in prostate tissue and prostate cancer risk throughout 

the human genome. We identified 573 genes with genetically determined expression to be 

associated with prostate cancer risk (FDR ≤ 0.05), including 451 novel genes that have not 

been reported in published TWAS. The present study provides substantial new information 

to improve the understanding of genetics and etiology for prostate cancer.

Previously, we developed a gene-level association analysis approach named PrediXcan 

which applies elastic net to develop gene expression genetic prediction models (39). Owing 

to the fact that approaches such as PrediXcan do not take into account the similarity of 

genetic regulation for genes across different human tissues, analysis becomes challenging 

when the effective number of relevant tissue samples is small (40, 41). To overcome 

this potential limitation in our study, we also leveraged two other modelling strategies, 

modified UTMOST and JTI. UTMOST is a powerful method to jointly analyze data from 

multiple genetically-correlated tissues which has obvious advantages compared with many 

other methods (23). The gene expression imputation accuracy was shown to be improved 

by 38.6% across tissues for the original UTMOST method compared with PrediXcan. 

We further modified the model training approach to obtain a reliable estimate of the 

imputation performance. JTI, a method recently developed by us, borrows information 

from the other tissues in a tissue-dependent manner. i.e., weighing up more relevant tissues 

and weighing down less relevant tissues by integrating high-throughput functional genomic 

data (ENCODE (42) and Roadmap (43)) to improve prediction quality. For highly tissue­

specific genes, JTI automatically reduces to single-tissue PrediXcan by a grid-search based 

hyper-parameter tuning. By evaluating prediction performance in independent datasets, JTI 

demonstrated higher statistical power than PrediXcan and modified UTMOST for many 

genes. Overall, by leveraging these three strategies with complementary strengths, it is 

expected that we could have high statistical power to fully identify gene-prostate cancer 

associations. Reassuringly, for a majority of genes that showed a significant association, 

their associations based on the other tested models (when available) also demonstrated 

consistent directions and nominal significance (P<0.05). The results were shown in 

Supplementary Table 8.

It is reassuring that for previous TWAS identified genes that also showed a significant 

association in the current study, for a large proportion (66%) of them the association 

directions were consistent. Only 15% of those genes showed inconsistent directions of 

associations, of which associations of most such genes in prior studies were based on non­

prostate or prostate tumor but not normal prostate tissue prediction models. This supports the 

validity of the current study, though further studies of these genes are needed to validate the 

direction of association.
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Of the TWAS identified genes, 152 showed differential expression between prostate tumor 

and tumor adjacent normal tissue samples, with consistent directions of effect in the TCGA 

dataset. Meanwhile, 151 CpG sites at loci of such genes showed differential methylation 

levels in prostate tumor versus tumor adjacent normal tissue samples. Of them, 20 CpG sites 

were further correlated with expression of 11 corresponding nearby genes in tumor adjacent 

normal prostate tissue samples. Such additional functional analyses leveraging measured 

gene expression and DNA methylation data provided a list of promising genes for further 

characterization. For several of our identified genes, there is already some evidence from 

published literature supporting their potential roles in human tumorigenesis. For example, 

one of the identified genes, the human A Disintegrin and Metalloproteinase 15 (ADAM15) 

is a multi-domain disintegrin protease (44). Activated ADAM15 was reported as a key 

modulator of cell-cell and cell-matrix interactions, and to be involved in the proteolysis 

of cytokines, growth factors and adhesion molecules (45, 46). Previous research supported 

that the expression of ADAM15 mRNA and its protein levels were increased in prostate 

cancer compared with normal prostate and its protein level was increased significantly 

during metastatic progression (44). There was accumulating evidence supporting that gene 

ADAM15 and its protein might play important roles in prostate cancer biology. Tissue 

microarrays (TMAs) analysis revealed that ADAM15 protein was overexpressed in prostate 

cancer specimens compared with benign prostate tissue specimens and its expression was 

also increased significantly during metastatic progression (45, 47). Abdo J Najy et al. found 

that ADAM15 played an important role in prostate tumor cell interaction with vascular 

endothelium and the metastatic progression of PC-3 prostate cancer cells (33). Our results 

also supported higher mRNA expression of ADAM15 in prostate tumors versus tumor 

adjacent normal tissues. Another gene that we identified was glutathione S-transferase pi 

1, which is an isozyme encoded by the GSTP1 gene (11q13.2) that plays an important 

regulatory role in detoxification, anti-oxidative damage, and the occurrence of cancers (48). 

The over-expression of GSTP1 inhibits the viability and motility of prostate cancer in 
vitro and in vivo through targeting Myelocytomatosis Viral Oncogene Homolog (MYC) 

and inactivating MEK/ERK1/2 pathway (49). Another study found that the deletion of 

GSTP1 might lead to the accumulation of oxidative DNA base damage and promote the 

survival of prostate cancer cells under long-term oxidative stress (50). Zhang L et al. found 

that functional inactivation of GSTP1 could increase the susceptibility to oxidative stress 

and enhance the risk of developing prostate carcinoma (51). Kamińska K et al. observed 

that hypermethylation of GSTP1 could result in down-regulation of its gene expression as 

compared to wild type fibroblasts in prostate cancer cell lines (52). In a systematic review 

and meta-analysis, Zhou et al. observed that GSTP1 promoter methylation was higher in 

prostate cancer patients than in controls (53). Another study found that GSTP1 methylation 

was stable over time in negative prostate biopsies, and could predict missed cancer with high 

specificity (54). Patel, PG et al. developed a three-gene biomarker signature (GAS6/GSTP1/
HAPLN3) to discriminate benign and malignant prostate tissue with low false positive and 

negative rates (below 7%) (55). In the current study, higher expression or hypomethylation 

of GSTP1 tended to be associated with a decreased risk of prostate cancer. Another gene, 

LDAH, has been reported to promote cholesterol ester turnover in macrophages, and have an 

effect on the development of prostate cancer (56). Currall BB et al. validated using both in 
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vitro and in vivo models that loss of LDAH resulted in an increased risk of prostate cancer 

(57).

In this study, we leveraged complementary, state-of-the-art modelling strategies to develop 

comprehensive normal prostate tissue genetic prediction models, which brings increased 

statistical power for detecting gene expression-prostate cancer risk associations. In the 

main TWAS analysis, for the overall tests, we conducted FDR correction to reduce type 1 

error rate. The associations detected by more than one modeling approach may represent 

more credible ones. However, several potential limitations also need to be acknowledged. 

Although in the current design we used one possible design by comparing the genes’ overall 

expression in tumor vs tumor adjacent normal prostate tissue samples, there is a possibility 

that such evidence alone may yield false positive or false negative findings. Similarly, the 

incorporation of methylation comparison was aimed to prioritize promising genes for further 

functional characterization, but such a design may produce false positive or false negative 

findings as well. Thus, further functional studies will be needed to investigate whether 

these genes could play a causal role in prostate tumorigenesis. In addition, our validation 

analysis using TCGA data was based on a comparison between tumor versus tumor-adjacent 

normal tissues. Since the molecular profiles of tumor adjacent normal tissues may have been 

affected by the tumor and were not the same as those of completely normal tissue, future 

studies using completely normal tissues are warranted to further verify our findings.

In conclusion, in this large-scale TWAS of prostate cancer, we identified 573 genes with 

genetically determined expression in prostate tissue to be associated with prostate cancer 

risk, including 451 novel genes. We provided additional evidence from both measured gene 

expression and DNA methylation supporting potential roles of 11 genes. We believe that 

such analyses can help us further understand the associations identified in TWAS. Further 

investigation of these genes will provide new insights into the biology and genetics of 

prostate cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty & Impact Statements

A large proportion of heritability for prostate cancer risk remains unknown. In a 

transcriptome-wide association study (TWAS), the authors identified 573 candidate genes 

for prostate cancer risk, including 451 novel genes and 122 previously reported genes. 

152 of the genes and 151 CpG sites at loci of such 152 genes showed differential 

expression/methylation levels in prostate tumor versus tumor adjacent normal tissue 

samples. These findings provide new insights into prostate cancer genetics and biology.
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Figure 1. 
Study design flow chart.
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Figure 2. 
Manhattan plot of association results obtained from the prostate cancer transcriptome-wide 

association study. The red line represents P = 2.01 × 10−3 (FDR-corrected P value ≤ 0.05). 

Each dot represents the genetically predicted expression of one specific gene by prostate 

tissue prediction models: the x axis represents the genomic position of the corresponding 

gene, and the y axis represents the negative logarithm of the association P value.
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