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Summary

Mean residual life (MRL) function defines the remaining life expectancy of a subject who has

survived to a time point and is an important alternative to the hazard function for characterizing

the distribution of a time-to-event variable. Existing MRL models primarily focus on studying the

association between risk factors and disease risks using linear model specifications in

multiplicative or additive scale. When risk factors have complex correlation structures, nonlinear

effects, or interactions, the pre-fixed linearity assumption may be insufficient to capture the

relationship. Single-index modeling framework offers flexibility in reducing dimensionality and

modeling nonlinear effects. In this paper, we propose a class of partially linear single-index

generalized MRL models, the regression component of which consists of both a semiparametric

single-index part and a linear regression part. Regression spline technique is employed to

approximate the nonparametric single-index function, and parameters are estimated using an

iterative algorithm. Double-robust estimators are also proposed to protect against the

misspecification of censoring distribution or MRL models. A further contribution of this paper is a

nonparametric test proposed to formally evaluate the linearity of the single-index function.

Asymptotic properties of the estimators are established, and the finite-sample performance is

evaluated through extensive numerical simulations. The proposed models and inference

approaches are demonstrated by a New York University Langone Health (NYULH) COVID-19

dataset.
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1 | INTRODUCTION

The mean residual life (MRL) function defines the remaining life expectancy given a subject

has survived to a specific time point. For a time-to-event variable T with finite expectation,

the MRL at time t is m(t) = E(T − t|T > t), and m(t|X) = E(T − t|T > t, X) as the conditional

MRL function given covariates X. In contrast to the hazard function that characterizes the

instantaneous risk, the remaining life expectancy has appealing interpretations and lessens

communication barriers with patients in practice. Furthermore, the MRL regression model is

a desired complement to Cox proportional hazards (PH) model as it directly characterizes

the covariate effects on the remaining survival time.

Although the one-to-one correspondence exists among the MRL function and the hazard

function, there is no straightforward relationship between the covariate effects on the MRL

model and the ones on the hazard model. Under the special case of survival distribution

belonging to the Hall-Wellner family, Oakes and Dasu1 showed the existence of a model that

satisfies both the proportional MRL and the PH assumptions. Under general settings or with

model specifications beyond two-sample comparison, a constant hazard ratio does not

translate to a constant effect on the MRL or any monotonic transformation of the MRL; vice

versa, neither a constant effect elongating the MRL additively or proportionally translates to

any simple effect on the hazard function. Therefore, the choice between modeling the hazard

or the MRL depends on the interest of scientific investigation.

During the coronavirus disease 2019 (COVID-19) pandemic, after a COVID-19 patient is

hospitalized, it is of importance to estimate the remaining time to recovery (length of

hospital stay) given that the patient has been hospitalized for t days, for which modeling the

MRL directly addresses the question. This quantity is of interest not only for individual

patients to comprehend their likelihood and speed of recovery but also for hospital

management to make arrangements and adjustments to the needs of hospital beds, clinical

staff, and many other clinical resources.2,3 Furthermore, to evaluate COVID-19 disease

severity and progression in hospitalized patients, many biomarkers have been studied and

found to play important roles in understanding the disease mechanisms and guide treatment

strategies.4 Petrilli et al5 conducted a prospective cohort study in confirmed COVID-19

patients hospitalized in four acute care hospitals of the New York University Langone Health

(NYULH) and showed that biomarkers of D-dimer, ferritin, and C-reactive protein (CRP) at

admission were positively associated with the risk of developing critical illness that was

defined as a composite endpoint of intensive care unit (ICU) admission, mechanical

ventilation, and mortality. Although many researches have investigated the association of

each biomarker with the COVID-19 progression,6 their relative importance and joint effects

remain unclear. Motivated by our application to study the time to recovery of COVID-19

hospitalized patients, we are interested in and thus focus on modeling the MRL function in

this paper. Specifically, we aim to evaluate the relative importance and overall effects of

multiple biomarkers on the time to recovery, allowing potential interactions and nonlinear

effects and adjusting for additional covariates.

Sun and Zhang7 proposed a class of generalized MRL (GMRL) models,

Jin and Liu Page 2

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



m(t ∣ Z) = g m0(t) + βTZ , (1)

which allows a flexible pre-specified link function g(·) and includes multiplicative MRL

models1,8,9 and additive MRL models10,11 as special cases. When β = 0, g{m0(t)} denotes

the baseline MRL function. Most of the existing MRL models, however, depend on the

linearity assumption of the covariate effects on the MRL function. To assess nonlinear

covariate effects, Yang and Zhou12 proposed a class of semiparametric varying-coefficient

MRL models that allow coefficients to vary with the level of a given variable. When this

specific variable is time, the model returns to the semiparametric time-varying coefficients

MRL model as a special case.13 However, when the primary interest is to explore the joint

effects rather than individual covariate effect, such as the multiple biomarkers in the

NYULH COVID-19 study, the linear specification of additive linear effects as in Model (1)

may be insufficient. There is a growing need to develop new methodologies that can

naturally accommodate flexible forms of nonlinear effects of the covariates and delineate

their contributions to the joint effects. Further, flexible MRL models that could handle high-

dimensional data are greatly desired.

The single-index technique14,15,16 provides an effective solution to reduce dimensionality

and offers flexibility in capturing the nonlinear joint effects of multiple covariates. The

relative scale and direction of the single-index coefficients reflect the contribution of each

covariate to the overall effects. In the context of time-to-event data analysis, the single-index

modeling technique has been incorporated into the Cox PH model,17,18 and further extended

to the partially linear single-index (PLSI) PH model by allowing both linear and nonlinear

components.19,20 To the best of our knowledge, there has been no research that offers both

the flexibility in modeling covariates’ effects from the PLSI construct and straightforward

interpretation from the MRL models. Therefore, we propose a class of PLSI generalized

MRL (PLSI GMRL) models in this paper and develop estimating equations using the inverse

probability of censoring weighting (IPCW) technique to account for censoring. Furthermore,

we propose an extension to double-robust estimators to protect against potential model

misspecifications. In addition, this paper makes an important contribution by providing a

nonparametric testing procedure to evaluate the linearity of the single-index function. Failing

to reject this null hypothesis suggests the linear effects of all covariates in the model, and

thus we can return to the estimation procedures and inference from the generalized MRL

models.7

The rest of this article is organized as follows. In Section 2, we present the proposed model

and details of interpretation, estimation, inference, as well as double-robust extensions. Our

proposed test statistic for the linearity of the single-index function and its nonparametric

testing procedure are also presented. Moreover, we provide an extension to the restricted

MRL models when it is of interest to restrict the remaining life expectancy within a time

range. Section 3 presents extensive numerical simulations. In Section 4, we demonstrate our

method via the application to the NYULH COVID-19 de-identified electronic health record

(EHR) data. A model diagnosis method is also presented. Discussion and concluding

remarks are included in Section 5. Regularity conditions, additional simulation and data

application results, and technical proofs are provided in Supporting Information online.
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2 | METHODS

2.1 | Notation

Let Y and C be the survival time and censoring time, respectively. Then T = min(Y, C)

denotes the observed time subject to censoring, and δ = I(Y ≤ C) is the censoring indicator.

Assume the support of C is longer than that of the survival time T to ensure an estimable

MRL function. Covariates are classified into two groups a priori: X represents the pre-

specified covariates to be modeled in linear form and Z represents the covariates to be

included in the single-index function. We have i.i.d. copies of {Ti, δi, Xi, Zi, i = 1, …, n} and

assume Y and C are conditionally independent given covariates X and Z.

The proposed PLSI GMRL model is specified as

m(t ∣ X, Z) = g m0(t) + αTX + ψ βTZ , (2)

where g(·) and m0(t) are similarly defined as in Model (1), α is a q-dimensional vector of

coefficients characterizing the effects of X in the linear component, ψ(·) is an unknown

single-index function that represents the joint effects of covariates Z, and β’s are the

corresponding p-dimensional single-index coefficients representing the relative importance

and direction of Z. When ψ(·) is monotone, the effects of Z can be interpreted qualitatively

using the sign of its coefficient β. Specifically, if ψ(·) is monotone increasing, a positive β
suggests an increased mean residual time at a larger value of the covariate, and vice versa for

a negative sign. The relative importance of each covariate in ψ(·) on the MRL function can

be evaluated by examining the magnitude of |β|.

Note that the absolute direction and scale of β are not identifiable since any scale and/or

constant shift can be absorbed by ψ(·), so the identifiability constraint is assumed by

constraining the Euclidean norm ∥β∥ = 1 with the first component to be positive. In addition,

we impose the sum-to-zero constraint21 as ∑i = 1
n ψ βTZi = 0 for the identifiability of ψ(·)

because the constant shift can be absorbed by m0(t). One can also let ψ(0) = 0 instead. Both

constraints on ψ(·) solve the issue of identifiability, but the latter one will have the ψ( ⋅ ) and

its corresponding 95% confidence intervals always pass through the origin (0, 0) with

centered single-index covariates, preventing any statistical inference at point 0. To ensure the

MRL function is properly defined, g(·) needs to be strictly increasing, twice continuously

differentiable, and m(t|X, Z) = g{m0(t) + αTX + ψ(βTZ)} is a proper MRL function for all

possible values of X and Z.

Similar to Huang and Liu18 and Sun et al,19 we use spline basis functions to approximate the

derivative of the unknown single-index function ψ(·),

ψ ′(u) = ∑
j = 1

k
γ jB j(u) = γTB(u),

where Bj(u),j = 1, …, k, are the B-spline basis functions, k denotes the degrees of freedom,

B(u) = {B1(u), …, Bk(u)}T, and γ = {γ1, …, γk}T. We choose B-splines because of their
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numerical stability,18,20 but other basis functions, such as truncated power basis and P-

splines, can also be adopted. The choice of approximating ψ′(·) rather than ψ(·) itself is due

to two considerations: first, ψ′(·) is more frequently referred to in subsequent computation

and inference steps; second, one usually can achieve better numerical stability with

computing integration than differentiation. Consequently, we have

ψ(u) = ∑ j = 1
k γ jB j(u) = γTB(u), where B j(u) = ∫ min(0, u)

max(0, u)B j(s)d s, j = 1, …, k, are the integrals of

the B-spline basis functions and B(u) = B1(u), …, Bk(u) T. Hence, Model (2) can be rewritten

as

m(t ∣ X, Z) = g m0(t) + αTX + γTB βTZ . (3)

Throughout the article, we use quadratic B-splines in the basis expansion of ψ′(·), and ψ(·)

is a cubic spline.

2.2 | Estimation equations

For the simplicity of notation, we define V = (X, ZT)T, θ = (αT, βT, γT)T, and

ϕ(V; θ) = αTX + γTB βTZ . We employ the technique of the inverse probability of censoring

weighting (IPCW) to handle censoring in our proposed estimation and inference procedures.

We first assume that C is independent of covariates V. Let G(t) be the survival function of C,

and construct a stochastic process as

Mi t; θ, m0( ⋅ ) =
δiI Ti > t

G Ti
Ti − t − g m0(t) + αTXi + γTB βTZi ,     i = 1, …, n,

which is a mean-zero process at the true values of θ and m0(·). Given a pre-specified g(·) and

fixed coefficients θ, m0(t) and can be estimated at each fixed t ∈ {t : 0 ≤ t ≤ τ} by solving

the following estimating equation,

∑
i = 1

n δiI T i > t

G T i
T i − t − g m0(t) + αTXi + γTB βTZi = 0, (4)

where G(t) is the Kaplan-Meier estimator of G(t). Here we assume 0 < τ = inf{t : Pr(T ≥ t) =
0} < ∞ on τ to circumvent the technical difficulty on the tail behavior of limiting

distribution. For a theoretical investigation, we can adopt Ying’s approach22 on asymptotic

properties beyond τ to our method. Given m0(t; θ), we then propose estimating equations for

θ as follows:
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U(θ) = Uα
T(θ), Uγ

T(θ), Uβ
T(θ) T

= ∑
i = 1

n ∫
0

τ δiI T i > t ϕ′ V i; θ

G T i
T i − t − g m0(t; θ) + αTXi + γTB βTZi dH(t)

= 0,

(5)

where ϕ′(V; θ) = ∂ϕ(V; θ)
∂α , ∂ϕ(V; θ)

∂y , ∂ϕ(V; θ)
∂β

T
= XT, B βTZ

T, γTB βTZ ZT T
 and

H(t) = ∑i = 1
n δi T i ≤ t  is an increasing weight function on [0, τ]. Note that other forms of

H(t) can be easily adopted as long as the function is increasing and converges almost surely

to a deterministic bounded function. We denote the final estimators of θ as θ = αT, γT, βT T

and m0(t) ≔ m0(t; θ ).

2.3 | Implementation

In practice, instead of directly calculating the complex Jacobian matrix J(θ) = ∂U(θ)/∂θ, we

consider an iterative procedure to estimate (αT, γT)T and β based on their corresponding

estimating equations Uα(θ),Uγ(θ), and Uβ(θ), each of which is numerically more stable and

simpler. The Jacobian matrix of each equation can be easily derived by taking the derivative

with respect to the parameters of interest. The Newton-Raphson method is used to solve for

these parameters iteratively, and the algorithm is depicted as follows.

• Step 1: Assign initial value of βini. The initial value can be obtained from

standard MRL models using R package “GMRL” with a pre-specified g(·) link

function (e.g. multiplicative MRL model or additive MRL model) by assuming

linear coefficients for all covariates.

• Step 2: Given βini and a fixed degrees of freedom k, the covariates consist of Xi

and B βini 
T Zi . We then estimate α and γ simultaneously using “GMRL” package

and denote the estimators by αini and γini.

• Step 3: Given αini, γini and βini, update m0 t; αini, γini, βini  using Equation (4).

Then, we fix αini and γini and update βini based on Uβ in Equation (5). Ensure

∥βini∥ = 1 with the first component to be positive.

• Step 4: Repeat step 2–3 until the convergence criterion is met.

Given a fixed degrees of freedom k, we recommend that knots be placed at equally spaced

sample quantiles of the single index βTZ, and obtain the corresponding estimator θ (k) from

equation U θ(k) = 0. Similar to the idea of Ma and Wei,23 we select the optimal k through

minimizing the quadratic score function with a penalty term on the degrees of freedom as U
(θ(k))TU(θ(k)) + log(n)(k + d + p + q − 2), where q and p denote, respectively, the number

of covariates in linear form and inside of the single index, and d is the degree of the spline

functions.
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2.4 | Inference

To satisfy the constraints ∥β∥ = 1 and β1 > 0, we reparameterize β = β(σ) = {(1 − ∥σ∥2)1/2,
σ1, …, σp−1}T with σ = (σ1, …, σp−1)T. The solution to Equation (5) can be denoted as

θσ = αT, γT, σT T
 and m0σ(t) ≔ m0 t; θσ . Note that the parametrizaiton of θσ is purely used to

develop asymptotic theory of θ  below. Next, we define additional notations:

Ni
c(t) = I T i ≤ t, δi = 0 , π(t) = n−1∑i = 1

n I T i ≥ t , Λc(t) = n−1∑i = 1
n ∫ 0

t dNi
c(u)/π(u),

Mi
c(t) = Ni

c(t) − ∫ 0
t I T i ≥ u dΛc(u),

Mi(t) =
δiI Ti > t

G Ti
Ti − t − g m0(t) + ϕ Vi; θσ ,

Q(t) = n−1 ∑
i = 1

n
I Ti ≥ t ∫0

τ
Mi(u) ϕ′ Vi; θσ − V u; θσ dH(u),

V t; θσ =
∑i = 1

n δiG Ti
−1I Ti > t g′ m0 t; θσ + ϕ Vi; θσ ϕ′ Vi; θσ

∑i = 1
n δiG Ti

−1I Ti > t g′ m0 t; θσ + ϕ Vi; θσ
, where g′(x) = dg(x)/dx.

Theorem 1. Under the regularity conditions (C1) to (C4) stated in Web Appendix C, we

have

i. The estimators θ  and m0(t) exist and are consistent.

ii. n θ − θ* N 0, A−1 Σθ*
A−1 T

 in distribution. The variance matrix

components A and Σθ*
 can be consistently estimated by A and Σ

θ
. Specifically,

A = n−1 ∑
i = 1

n ∫0
τ δiI Ti > t

G Ti
g′ m0(t) + ϕ Vi; θ ϕ′ Vi; θ − V(t; θ ) ϕ′ Vi; θ T −

∂ϕ′ Vi; θ

∂θT

Ti − t − g m0(t) + ϕ Vi; θ dH(t),
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Σ
θ

=

β2
β1

, …,
β p
β1

, 01 × k, 01 × q

I p − 1 + k + q

Σ
θσ

β2
β1

, …,
β p
β1

, 01 × k, 01 × q

I p − 1 + k + q

T

,

where Σ
θσ

= n−1∫ i = 1
n ξ i

⊗ 2,

ξ i = ∫ 0
τ Mi(t) ϕ′ V i; θσ − V t; θσ dH(t) + ∫ 0

τ Q(t)
π(t) dMi

c(t), υ⊗2 denotes υT for a

column vector υ, Ip−1+k+q is an identity matrix of (p − 1 + k + q) dimension, 01×k

and 01×q are zero vectors.

Because Σ
θ
 is analytically intractable to compute directly, we adopt a bootstrap resampling

approach24 to compute the empirical standard errors (SE) of the estimators. For a fixed

single index u, the 95% confidence interval for ψ(u) is given by ψ(u) ± 1.96 var(ψ(u)) 1/2,

where ψ(u) = γTB(u) and var(ψ(u)) = B(u)Tvar(γ )B(u), or can be obtained as 2.5% and 97.5%

sample quantiles of the estimated single-index function based on bootstrap samples.

2.5 | Double-robust estimators

Our proposed Equation (5) uses the IPCW method and requires the modeling of censoring

distribution. When censoring time is independent with covariates, the nonparametric

Kaplan-Meier (KM) estimator performs well. We can easily extend to handle the covariate-

dependent censoring by incorporating covariates into estimating censoring distribution, for

example, using a Cox PH model. It is well known that a mis-specified censoring model may

lead to biased estimators, and thus we further propose a double-robust extension, which

would remain consistent when either the model for censoring distribution G(t|V) or a

working model for the complete data distribution F(t|V) is correctly specified.

Define QF(θ; t, V) ≔ 1
F(t ∣ V)∫ t

τD(θ; u, V)dF(u ∣ V) and

YF, G(θ; T , δ, V)    ≔   δD(θ; T , V)
G(X) − ∫ 0

τ QF(θ; t, V)dMc(t)
G(t) , where

D(θ; T , V) = ∫ 0
τ I(T > t)ϕ′(V; θ) T − t − g m0(t; θ) + αTX + γTB βTZ dH(t) and F(t|V) is the

survival function of T given V. As shown in Rubin and van der Laan,25 YF,G(θ; T, δ, V) has

double robustness property that E[YF,G(θ; T, δ, V)|V] = 0 when either F or G is correctly

specified. Thus, we have the estimating equations for double-robust estimators as
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UDR(θ) = ∑
i = 1

n δiDi θ; Ti, Vi
G Ti

− ∫0
τ
QF θ; t, Vi

dMi
c(t)

G(t)
,

where F(t ∣ V) is an estimator for F(t|V) and can be estimated using the proposed PLSI

GMRL Model (3), e.g.,

F(t ∣ V) = m(0 ∣ V)
m(t ∣ V)  exp  −∫0

t du
m(u ∣ V) .

Note that θ  and m0(t) for F(t ∣ V) should not depend on the censoring distribution assumption,

and thus we consider obtaining the estimates from the quasi-partial score (QPS) approach

proposed by Chen and Cheng.10,26 The double-robust (DR) estimators denoted as θDR

would be consistent if either the PLSI GMRL Model (3) or the censoring mechanism

assumption is correct. We follow the similar iterative estimation procedures introduced in

Section 2.3.

Remark: The estimating equations for the QPS approach for GMRL models are constructed

based on zero-mean martingales.10,26 An advantage of the QPS approach is that it does not

require any specification of the censoring distribution. In fact, the QPS approach can also be

considered for the estimation and inference of the PLSI GMRL models. After approximating

the single-index component using finite-dimensional B-splines, the implementation are

straightforward following procedures from Chen and Cheng.26 However, when the censoring

distribution is well modeled or random, the QPS method is often less efficient than the

IPCW method.7,27 In our simulation studies shown below, we also compared with the QPS

estimators and demonstrated that the proposed DR estimators were more efficient compared

to the QPS estimators.

2.6 | Testing linearity of single-index function

If the single-index function can be reasonably assumed to be linear for a practical

application, the generalized MRL models7 would suffice to fit the data. We propose a

nonparametric resampling approach28 to test the linearity of the single-index function ψ(u)

by examining whether its derivative is a constant, e.g., H0 : ψ′(u) = c for a non-zero constant

c. Based on the estimation steps described above, ψ′(u) is estimated by γTB(u). If there is a

pre-specified c of interest, e.g., c = 1 for an identity function, we can directly test the

hypothesis ψ′(u) = c. For an unknown c, we estimate its value by 1
b − a ∫ a

bγTB(u)du, where a

and b denote the range of interest. Thus, given a n‐consistent estimator c, we have

n γTB(u) − c 𝒢 − 𝒢c, where 𝒢c is the weak limit of n(c − c). We consider the

Kolmogorov and Cramer-von Mises-type test statistics as T1n = n supu  γTB(u) − c  and

T2n = n∫ γTB(u) − c du, respectively. Take T1n as an example, we propose the

nonparametric testing procedure as follows. For each resampling step b = 1, …, B:

Jin and Liu Page 9

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Obtain the resampled data T i
b, δi

b, Xi
b, Zi

b , i = 1, …, n

2. Estimate ψ′(u) as γTB(u) based on the b-th set of resampled data

3. Compute the statistic of test of interest T1n
b = maxu n γTB(u) − γTB(u)

We reject the null hypothesis if T1n is larger than T1 − α
B , which is the empirical (1 − α)-

quantile of the simulated sample T1n
1 , …, T1n

B , and α ∈ (0, 1) is the pre-specified nominal

size.

2.7 | Restricted MRL

Sometimes, the scientific interest in the remaining life expectancy is restricted within a finite

interval. For example, in the COVID-19 application, the recovery time varied due to

patients’ characteristics and disease severity, but patients who stayed in hospital longer than

30 days or even 60 days could have a very different disease course from the acute patients.

Therefore, we consider a 30-day restricted MRL in the data application. The restricted MRL

function for a pre-specified time τ > 0 is mτ(t) = E(Tτ − t|Tτ > 0), where 0 < t < τ, Tτ =

min(T, τ), and mτ(τ) = 0. Regression models for restricted MRL have been studied under the

right-censored as well as the left-truncated data.29,30,31 To incorporate the restricted MRL

into our proposed PLSI GMRL model framework, we consider Equation (5) by replacing Ti

with min(Ti, τ) and can follow similar estimating procedures.

3 | SIMULATION STUDIES

3.1 | Independent censoring

We conducted extensive simulations to evaluate the finite-sample performance of our

proposed models and estimation procedures. We considered both multiplicative and additive

MRL model settings, corresponding to g(t) = exp(t) and g(t) = t, respectively. The true

single-index function ψ(·) was set to be linear, sine curve, and quadratic functions as

follows:

S1. Linear: g{m0(t) + αTX + βTZ};

S2. Sine curve: g{m0(t) + αTX + sin(5βTZ)/2};

S3. Quadratic: g{m0(t) + αTX + 2(βTZ)2}.

The baseline MRL function was set to be m0(t) = g−1{(D1t + D2)I(D1t + D2 ≥ 0)}, where D1

> −1 and D2 > 0, and from the Hall-Wellner family. We set D1 = −0.5 and D2 = 0.5. True

parameters were set as α* = (0.1, −0.1)T and β* = (0.5, 0.5, −0.5, −0.5)T. When g(t) = exp(t),
covariates X = (X1, X2)T ~ U[0, 0.5] and Z = (Z1, Z2, Z3, Z4)T ~ U[0, 0.6] independently for

all settings. When g(t) = t, the single-index covariates Z ~ U[0, 1] for all settings. To ensure

a properly defined MRL function, we set linear covariates X ~ U[0.55, 0.9] in linear case, X
~ U[1, 1.4] in sine curve case, and X ~ U[0, 1] in quadratic case. Also, an independent

censoring time C ~ exp(λ), which controlled a fixed censoring rate 10% or 20%.

Throughout the simulations, we set the sample size to be 2000 or 4000. Under each
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simulation setting, 500 datasets were generated, and 500 bootstraps were conducted to

obtain the empirical SEs of the estimators.

We used two equally spaced knots in our simulations and found that the model performance

was not sensitive to the number of knots in a reasonable range (e.g., one to five knots) under

our settings. The angle between the true parameter β* and its estimator β, which was defined

as ω β*, β = arccos 
β*, β

β* ⋅ β
 with ⟨a, b⟩ denoting the inner product of two vectors a and b,

was reported to evaluate the estimated single-index coefficients. A large value of ω indicated

a large bias in the estimator β.

Table 1 presents the simulation results under independent censoring with a 10% censoring

rate. To better compare the single-index coefficients from the PLSI GMRL model with the

GMRL model,7 we normalized estimators β under the GMRL model with β = 1 and β1 >

0. In the case of a linear single-index function (S1), both models performed reasonably well.

The biases of α were small, SDs of the estimates were close to the empirical SEs, and the

coverage probabilities (CPs) of the 95% confidence intervals (CIs) were close to the nominal

level. For a fixed censoring rate, both ω β*, β  and SDs of the estimates decreased with

increasing sample sizes. Compared with estimators from the multiplicative MRL model, the

efficient loss of β from the PLSI GMRL model was small (Table A.1).

When g(t) = exp(t) and under the nonlinear single-index scenarios (S2-S3), the proposed

PLSI GMRL model outperformed the multiplicative MRL model in terms of efficiency and

bias. When the true ψ(·) was a sine curve (S2), we observed low biases from both models

because the single index function still satisfied a monotone linear trend over the majority of

the data. However, the estimators under the PLSI GMRL model were more efficient

compared to those under the multiplicative MRL model (Table A.1). When the true ψ(·) was

quadratic (S3), we observed large biases from the multiplicative MRL model as expected,

and the performance of the PLSI GMRL model remained well. When g(t) = t, the proposed

PLSI GMRL model clearly outperformed the additive MRL model when the true ψ(·) was

nonlinear (S2 and S3) in terms of biases, coverage probabilities, and efficiency. The

estimated single-index coefficients were summarized in Table A.2.

Figure 1 visualizes the mean of the estimated single-index function ψ( ⋅ ) and 95% CIs using

the 2.5% and 97.5% sample quantiles of the estimated single-index function from 500

simulations. The estimated single-index functions approximated the true functions very well

for both g(t) = exp(t) and g(t) = t. Simulation results with 20% censored data were also

provided in Table A.3. Additional simulations were conducted under other baseline MRL

functions, for instance, D1 = −1/3 and D2 = 1, mimicking an exponential distribution

resulting from the right skewness for survival time when all covariates equal 0. The results

were summarized in Table A.4.
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3.2 | Covariate-dependent censoring

In the case of covariate-dependent censoring, we evaluated the robustness of DR estimator

θDR and compared its performance to regular IPCW estimator θ IPCW and QPS estimator

θQPS when g(t) = exp(t). Censoring time was generated from a Cox model λ(t|V) =

λ0(t)exp(aTX + bTZ), where a and b were vectors with each element equal to 2 and λ0(t) =
1. All other settings remained the same as in previous simulations. Specifically, two IPCW

estimators were considered here: θ IPCW1
 with a mis-specified censoring model using

Kaplan-Meier (KM) estimate and θ IPCW2
 with a correctly specified censoring distribution

using a Cox PH model. For DR estimator θDR, we used KM estimator G(t) to approximate

censoring distribution and assumed a PLSI GMRL model as the working model for F(t ∣ V).
As shown in Table 2, due to the mis-specified censoring distribution, θ IPCW1

 showed large

biases in α and β, while IPCW2 estimator θ IPCW2
 performed well since the censoring

distribution was correctly specified. The DR estimator θDR successfully remained robust to

the misspecification, having lower biased α with nominal CPs, smaller angle between β and

β*, and smaller SDs comparing to IPCW1. Although DR estimator required a slightly longer

computation time due to modeling both censoring distribution and complete data

distribution, it maintained relatively high efficiency compared with IPCW2 when censoring

distribution was correctly specified. Moreover, DR estimators were more efficient in all

scenarios comparing to QPS estimators.

3.3 | Type-I error and power of the proposed test

In addition, we conducted simulations to investigate the empirical performance of our

proposed nonparametric test. Assuming g(t) = exp(t) and under the null hypothesis that ψ(·)

is linear (S1), we examined the type-I error rate when censoring rate was 10% and 20% with

a sample size N = 500,1000, and 2000. To evaluate the power of the proposed test, we chose

the nonlinear single-index function as a sine curve (S2). We used the Kolmogorov test

statistic T1n throughout the simulations, and the critical values were determined by 1000

resamplings. As shown in Table 3, we observed that the empirical type-I error rate was

slightly conservative, but it approached the nominal level with increasing sample size. The

power showed that the test performed well to reject the null hypothesis when the true single-

index function was nonlinear, and its power increased with the sample size. Overall, the

proposed nonparametric test can be a useful tool in the single-index modeling framework to

assess the linearity of the single-index function.

4 | APPLICATION

4.1 | Time-to-recovery in Hospitalized COVID-19 Patients using NYULH EHR Data

We demonstrate the proposed models and estimation procedures through the NYULH

COVID-19 EHR data. The database contained de-identified patient information regarding

basic demographics, social history, medical history, medication use, lab results, and hospital

encounter records since January 1st, 2020. Our analysis used data up to July 14th, 2020.
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Lab-confirmed COVID-19 patients who have been hospitalized within three days since

diagnosis were included. Our primary interest focused on the time to recovery within 30

days since hospitalization. For patients discharged to home, acute rehabilitation facilities,

and other skilled nursing facilities, the time to recovery was defined as the days from

hospital admission to discharge. Similar to the Remdesivir trial for COVID-19,32 time to

recovery for patients who died in hospital or discharged to hospice was set as infinity. Time

to recovery for the patients who died or were hospitalized longer than 30 days were censored

at 30-day. Patients who were transferred to other intermediate care facilities, discharged to

long-term care hospitals, or left against medical advice were treated as censored. We

considered similar covariates as in Petrilli et al5 and set age, sex, race, BMI, temperature,

blood oxygen (SpO2), and medical history be linear covariates. The biomarkers of

procalcitonin, CRP, troponin, D-dimer, and ferritin at hospital admission were included in

the single-index component, and each biomarker has been log-transformed due to skewness

and standardized with a mean of 0 and a standard deviation of 1. Correlations of these

biomarkers are shown in Figure B.1. A total of 2599 patients were included in the analysis

and the censoring rate was 28.4%, where over 96% of the censoring was the administrative

censoring at 30-day due to patient expiration.

In this application, since majority of the censoring was due to the administrative censoring at

30-day, we directly used the KM estimator for censoring distribution estimation. In general

practice, we recommend modeling the censoring mechanism first using a Cox PH model and

then reduced to the nonparametric KM estimator assuming the independent censoring

distribution if appropriate. The pre-specified link function g(·) provides flexibility in

assessing covariate effects on the different scales of the MRL function. For illustration, we

considered the candidates as either g(t) = exp(t) or g(t) = t. To assess which model fits the

data better, we introduce a procedure based on the standardized score process for model

diagnosis (see the remark section below). Given estimated parameters θ , the standardized

score process over time domain t can be obtained by Us(θ ; t) = J−1/2(θ )U(θ ; t), where J(θ ) is

the Jacobian matrix of U(θ ). In the application, we graphically assessed the model fitting by

visualizing Us(θ ; t)  in Figure B.2, and observed that the estimated value of the model with

g(t) = exp(t) was much smaller than that of g(t) = t, indicating that g(t) = exp(t) fitted the

data better. Moreover, we considered S = supt Us(θ ; t)  as a numerical measure for overall fit

of the model, which yielded values 445.7 and 692.8 for PLSI GMRL under g(t) = exp(t) and

g(t) = t, respectively, and we thus considered g(t) = exp(t) in subsequent analysis and

discussion.

The empirical SEs of the estimators were obtained by 1000 bootstrapping. In addition, we

assessed the linearity of the single-index function using the proposed nonparametric test and

observed a p-value less than 0.001, indicating the necessity of the PLSI GMRL model to

account for possible nonlinear effects. The number of knots was determined by the criteria

introduced in Section 2.3, and the estimators were stable with respect to the number of knots

between 2 to 7. To compare with the GMRL model,7 we standardized the estimated

coefficients of biomarkers with a Euclidean norm equal to one and the first component to be

positive.
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Table 4 summarizes the estimated coefficients and Figure 2 visualizes the estimated single-

index function. Due to the data sparsity at the tails, lower and upper 1% data were excluded

from the plot. The monotone increasing trend of ψ( ⋅ ) indicated that the expected remaining

recovery time increases with the single-index value. We observed that the increasing trend

flattened at the right tail, which indicated that once patients at a severe status indicated by a

high level of the combination of biomarkers, one-unit change in single-index value will not

change much of the MRL anymore. While for patients with less severe status, one-unit

change in single-index value could significantly impact the expected remaining recovery

time within the next 30 days. These observations agreed with the testing result on the

linearity of the single-index function. The PLSI GMRL model indicated that biomarker

levels of procalcitonin, troponin, and D-dimer had significant prolonging effects on the

remaining time to recovery but not with ferritin or CRP. In addition, the estimated effect for

each biomarker separately was also provided while keeping all other biomarkers at median

values (Figure 2 (B) to (F)).

The interpretation of covariates in linear form under the PLSI GMRL model is

straightforward. We observed that higher age, male, history of cardiac disease or malignancy

had significant lengthening effects on the expected remaining recovery time, while a higher

level of SpO2 had a significant shortening effect on the expected remaining recovery time.

Keeping all other covariates fixed, the expected remaining recovery time within the next 30

days was increased by 11% for COVID-19 patients with a history of malignancy. Moreover,

the estimated MRL model can enable us to predict the expected recovery time of a

COVID-19 patient within 30 days since hospitalization based on baseline information at

admission. As illustrated in Figure B.3, two patients were considered with different profiles

and all log-transformed biomarkers in the single-index component were kept at median

values except for procalcitonin. Patient A represented a 35-year-old COVID-19 confirmed

Caucasian female without any smoking history or disease history, having 25 kg/m2 BMI,

90% SpO2, and 38.5 Celsius temperature at admission. Patient B had a similar profile but

with a history of cardiac disease, diabetes, and malignancy. The two curves show that

expected recovery time increased with a higher procalcitonin level for both patients, and

patient B had a longer expected recovery time than patient A due to underlying disease

history.

Remark: We further conducted simulations to evaluate the empirical performance of the

numerical measures for model diagnosis. Let the sample size be N = 5000, censoring rate be

10%, true parameters maintain the same values in Section 3. The number of knots was set to

be the same for comparison purpose. Specifically, when the true model was PLSI GMRL

with g(t) = exp(t), the proportion of numerical measure S = supt Us(θ ; t)  indicating the

correct model was 99.8%, 99.8%, and 81.2% for linear, sine curve, and quadratic single-

index function, respectively. When the true model is PLSI GMRL with g(t) = t, the

proportion of numerical measure S = supt Us(θ ; t)  indicating the correct model was 97.8%,

100.0%, and 89.1% for linear, sine curve, and quadratic single-index function, respectively.

The empirical performance was dependent on sample size, censoring rate, and effect size.
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5 | DISCUSSION

This paper studied inference procedures for the PLSI GMRL models that allow both linear

and nonlinear covariate effects. This approach reduces dimensionality and provides an

estimated single-index function for summarizing the joint effects of multiple covariates. We

studied the asymptotic properties of the estimators under the assumption of fixed knots due

to their practicality. Furthermore, the proposed nonparametric test can be used to determine

whether a nonlinear single-index function is required and is a new contribution to the single-

index modeling literature. When the null hypothesis of a linear single-index function is not

rejected, we can gain efficiency and straightforward interpretation by assuming a parametric

form for all covariates. The proposed models incorporating single-index techniques expand

the analytical toolbox to analyze the MRL for time-to-event variables, especially when

multiple correlated covariates exist. Indeed, not only in survival models, the single-index

technique as a powerful tool is widely considered when modeling other types of outcomes as

well.16,33,34,35 With the advantage of straightforward interpretation, MRL models that

directly represent an event’s residual time can be useful in many areas. Particularly during

an outbreak of infectious diseases, a validated MRL model on length of hospitalization can

help arrange clinical resources and facilitates planning.

Practically, MRL modeling is worthy of consideration in survival analysis under low

censoring scenarios, of which the impact of a misspecified censoring model is often limited

using the IPCW technique. As an alternative, the quasi-partial score (QPS) approach26,9 can

also be considered for PLSI GMRL estimation and avoid modeling of censoring mechanism.

In the research of GMRL modeling under subcohort sampling designs, Jin et al27 compared

the performance of IPCW and QPS estimators under various censoring rates using full-

cohort data. Both approaches were consistent under low censoring settings (10% or 30%

censoring rate), and IPCW estimators were more efficient than QPS estimators. While for

high censoring settings (80% censoring rate), GMRL models can be estimable with long-

term follow-ups, and QPS estimators outperformed IPCW estimators in terms of bias and

efficiency. To ensure consistency, we further studied the IPCW double-robust estimator,

which requires either the model for censoring distribution or the model for complete data

distribution being correctly specified. Through numerical investigations, we observed that

the double-robust estimators alleviate the impact of a violation of independent censoring or a

mis-specified model for covariate-dependent censoring mechanism. In addition to sample

size and censoring rate, the performance of the proposed models and inference procedures

would also depend on effect sizes of the covariates and signal strength of the single-index

function. For a smaller sample with a moderate censoring rate (30% to 50%), the proposed

method works well when the signal strength of the single-index function is relatively large.

The proposed PLSI GMRL models could also be extended to handle time-dependent

covariates or time-varying coefficients, which would allow modeling repeated biomarkers

and offer additional flexibility and accuracy. Moreover, the current selection of variables into

the single-index function is based on the research of interest and set a prior. A formal

procedure that could guide the selection of covariates into the single-index component could

be a future research topic and helpful for researchers to better understand the covariate

effects. For example, the approach to identifying linear versus nonlinear components by

Jin and Liu Page 15

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang et al36 could be used first to delineate the covariate structure and separate out the

nonlinear components to be included into the single-index function. In addition, when the

included number of single-index variables is large, combining the PLSL GMRL models with

penalties on the single-index coefficients can be further explored. It is often of interest to

identify those variables contributing most to the joint effects. In this case, the PLSI GMRL

model with penalization can help identify these variables and simplify the modeling and

interpretation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

The authors would like to thank the Editor, the Associated Editor, and two reviewers for their constructive and
insightful suggestions that greatly improved the paper. Research reported in this manuscript was partially supported
by the NIEHS of the National Institutes of Health under award number R01ES032808.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from New York University

Langone Health. Restrictions apply to the availability of these data.

References

1. Oakes D, Dasu T. A note on residual life. Biometrika 1990; 77(2): 409–410.

2. Emanuel EJ, Persad G, Upshur R, et al. Fair Allocation of Scarce Medical Resources in the Time of
Covid-19. New England Journal of Medicine 2020; 382(21): 2049–2055.

3. White DB, Lo B. A Framework for Rationing Ventilators and Critical Care Beds During the
COVID-19 Pandemic. JAMA 2020; 323(18): 1773–1774. [PubMed: 32219367]

4. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19
disease progression. Critical Reviews in Clinical Laboratory Sciences 2020: 1–11.

5. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness
among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study.
BMJ 2020; 369.

6. Ayanian S, Reyes J, Lynn L, Teufel K. The association between biomarkers and clinical outcomes in
novel coronavirus pneumonia in a US cohort. Biomarkers in Medicine 2020; 14(12): 1091–1097.
[PubMed: 32677844]

7. Sun L, Zhang Z. A Class of Transformed Mean Residual Life Models With Censored Survival Data.
J Am Stat Assoc 2009; 104(486): 803–815. [PubMed: 20161093]

8. Maguluri G, Zhang CH. Estimation in the Mean Residual Life Regression Model. Journal of the
Royal Statistical Society: Series B (Methodological) 1994: 14.

9. Chen YQ, Jewell NP, Lei X, Cheng SC. Semiparametric Estimation of Proportional Mean Residual
Life Model in Presence of Censoring. Biometrics 2005; 61(1): 170–178. [PubMed: 15737090]

10. Chen YQ, Cheng S. Linear Life Expectancy Regression with Censored Data. Biometrika 2006;
93(2): 303–313.

11. Chen YQ. Additive Expectancy Regression. Journal of the American Statistical Association 2007;
102(477): 153–166.

12. Yang G, Zhou Y. Semiparametric varying-coefficient study of mean residual life models. Journal of
Multivariate Analysis 2014; 128: 226–238.

13. Sun L, Song X, Zhang Z. Mean residual life models with time-dependent coefficients under right
censoring. Biometrika 2012; 99(1): 185–197.

Jin and Liu Page 16

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Stoker TM. Consistent Estimation of Scaled Coefficients. Econometrica 1986; 54(6): 1461–1481.

15. Hardle W, Stoker TM. Investigating Smooth Multiple Regression by the Method of Average
Derivatives. Journal of the American Statistical Association 1989; 84(408): 986–995.

16. Ichimura H. Semiparametric least squares (SLS) and weighted SLS estimation of single-index
models. Journal of Econometrics 1993; 58(1): 71–120.

17. Wang W. PROPORTIONAL HAZARDS REGRESSION MODELS WITH UNKNOWN LINK
FUNCTION AND TIME-DEPENDENT COVARIATES. Statistica Sinica 2004; 14(3): 885–905.

18. Huang JZ, Liu L. Polynomial Spline Estimation and Inference of Proportional Hazards Regression
Models with Flexible Relative Risk Form. Biometrics 2006; 62(3): 793–802. [PubMed: 16984322]

19. Sun J, Kopciuk KA, Lu X. Polynomial spline estimation of partially linear single-index
proportional hazards regression models. Computational Statistics & Data Analysis 2008; 53(1):
176–188.

20. Shang S, Liu M, Zeleniuch-Jacquotte A, et al. Partially Linear Single Index Cox Regression Model
in Nested Case-Control Studies. Comput Stat Data Anal 2013; 67: 199–212. [PubMed: 26806991]

21. Wood SN. Generalized additive models: An introduction with R. 2006.

22. Ying Z. A Large Sample Study of Rank Estimation for Censored Regression Data. The Annals of
Statistics 1993; 21(1).

23. Ma Y, Wei Y. Analysis on censored quantile residual life model via spline smoothing. STAT
SINICA 2012; 22(1).

24. Efron B. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 1979; 7(1):
1–26.

25. Rubin D, Laan v. dMJ. A doubly robust censoring unbiased transformation. Int J Biostat 2007;
3(1): Article 4.

26. Chen YQ, Cheng S. Semiparametric regression analysis of mean residual life with censored
survival data. Biometrika 2005; 92(1): 19–29.

27. Jin P, Zeleniuch-Jacquotte A, Liu M. Generalized mean residual life models for case-cohort and
nested case-control studies. Lifetime Data Anal 2020.

28. Galvao AF, Wang L. Uniformly Semiparametric Efficient Estimation of Treatment Effects With a
Continuous Treatment. Journal of the American Statistical Association 2015; 110(512): 1528–
1542.

29. Mansourvar Z, Martinussen T, Scheike TH. Semiparametric regression for restricted mean residual
life under right censoring. Journal of Applied Statistics 2015; 42(12): 2597–2613.

30. Mansourvar Z, Martinussen T, Scheike TH. An Additive-Multiplicative Restricted Mean Residual
Life Model. Scandinavian Journal of Statistics 2016; 43(2): 487–504.

31. Cortese G, Holmboe SA, Scheike TH. Regression models for the restricted residual mean life for
right-censored and left-truncated data. Statistics in Medicine 2017; 36(11): 1803–1822. [PubMed:
28106926]

32. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 —
Preliminary Report. New England Journal of Medicine 2020; 0(0).

33. Chaudhuri P. Global nonparametric estimation of conditional quantile functions and their
derivatives. Journal of Multivariate Analysis 1991; 39(2): 246–269.

34. Carroll RJ, Fan J, Gijbels I, Wand MP. Generalized Partially Linear Single-Index Models. Journal
of the American Statistical Association 1997; 92(438): 477–489.

35. Wang Y, Wu Y, Jacobson MH, et al. A family of partial-linear single-index models for analyzing
complex environmental exposures with continuous, categorical, time-to-event, and longitudinal
health outcomes. Environmental Health 2020;19(1): 96. [PubMed: 32912175]

36. Zhang HH, Cheng G, Liu Y. Linear or Nonlinear? Automatic Structure Discovery for Partially
Linear Models. Journal of the American Statistical Association 2011; 106(495): 1099–1112.
[PubMed: 22121305]

Jin and Liu Page 17

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1.
The mean of estimated single-index function with 95% confidence intervals when (A) g(t) =
exp(t) and (B) g(t) = t with sample size 4000 and censoring rate 10%: (S1) linear single-

index function; (S2) sine curve single-index function; (S3) quadratic single-index function.

Jin and Liu Page 18

Stat Med. Author manuscript; available in PMC 2022 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2.
Estimated single-index function with 95% confidence intervals when g(t) = exp(t). All

biomarkers were log-transformed and standardized. (A) Estimated single-index function; (B)

Procalcitonin with other biomarkers fixed at median values; (C) Troponin with other

biomarkers fixed at median values; (D) D-dimer with other biomarkers fixed at median

values; (E) Ferritin with other biomarkers fixed at median values; (F) CRP with other

biomarkers fixed at median values.
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TABLE 1

Simulation results with independent censoring.

α1 α2 ω(β*, β)

N Bias SD SE CP Bias SD SE CP Mean SD

g(t) = exp(t)

S1. Linear case

GMRL 2000 0.001 0.082 0.088 95.8 0.006 0.086 0.088 95.0 6.90 3.07

PLSI GMRL 2000 0.001 0.082 0.088 96.0 0.006 0.086 0.089 95.2 7.41 3.38

GMRL 4000 0.001 0.063 0.062 94.2 0.001 0.062 0.062 95.6 4.74 1.93

PLSI GMRL 4000 0.001 0.063 0.062 94.4 0.001 0.062 0.062 96.0 4.87 1.96

S2. Sine curve case

GMRL 2000 −0.001 0.084 0.080 93.4 0.003 0.078 0.081 96.4 3.63 1.53

PLSI GMRL 2000 0.003 0.083 0.079 93.2 0.003 0.076 0.079 93.2 3.21 1.30

GMRL 4000 0.003 0.056 0.056 94.8 −0.005 0.058 0.057 94.4 2.60 1.12

PLSI GMRL 4000 0.003 0.055 0.055 95.4 −0.005 0.057 0.056 93.8 2.31 0.98

S3. Quadratic case

GMRL 2000 −0.005 0.088 0.087 95.8 −0.005 0.087 0.087 95.0 75.67 31.17

PLSI GMRL 2000 −0.004 0.088 0.086 95.2 −0.008 0.087 0.086 94.8 11.43 5.20

GMRL 4000 −0.001 0.062 0.061 93.2 −0.004 0.063 0.061 94.6 72.02 30.85

PLSI GMRL 4000 0.001 0.061 0.060 94.2 −0.005 0.062 0.061 93.6 8.01 3.58

g(t) = t

S1. Linear case

GMRL 2000 0.002 0.107 0.103 93.3 −0.010 0.108 0.103 94.1 9.77 4.15

PLSI GMRL 2000 0.002 0.107 0.103 92.7 −0.011 0.108 0.103 93.7 10.76 4.99

GMRL 4000 −0.002 0.076 0.074 94.2 0.003 0.074 0.074 94.8 6.82 2.94

PLSI GMRL 4000 −0.002 0.076 0.074 94.2 0.002 0.074 0.074 94.6 7.14 3.21

S2. Sine curve case

GMRL 2000 0.001 0.259 0.242 93.4 0.016 0.257 0.241 92.8 6.64 2.76

PLSI GMRL 2000 0.001 0.258 0.241 93.8 0.016 0.255 0.239 93.4 6.45 3.05

GMRL 4000 0.001 0.174 0.176 95.2 0.001 0.174 0.176 94.8 4.57 1.90

PLSI GMRL 4000 −0.001 0.174 0.175 95.4 0.002 0.173 0.175 94.6 4.15 1.80

S3. Quadratic case

GMRL 2000 −0.006 0.053 0.052 93.8 0.001 0.054 0.052 94.2 66.37 35.71

PLSI GMRL 2000 −0.002 0.050 0.050 94.0 0.002 0.052 0.050 94.4 9.35 4.83

GMRL 4000 −0.003 0.039 0.037 93.0 −0.002 0.038 0.037 94.0 65.54 34.92

PLSI GMRL 4000 0.001 0.037 0.035 92.8 0.001 0.037 0.035 93.8 6.19 3.00

GMRL: generalized mean residual life model; PLSI GMRL: partially linear single-index generalized mean residual life model; SD: sample

standard deviation; SE: mean of estimated standard error; CP: empirical coverage probability of 95% confidence interval; ω β*, β  was calculated

by arccos β*, β / β ⋅ β* ; Censoring rate was 10%.
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TABLE 2

Simulation results under g(t) = exp(t) with covariate-dependent censoring.

α1 α2 ω(β*, β)

N Bias SD SE CP Bias SD SE CP Mean SD

S1. Linear case

IPCW1 2000 −0.096 0.099 0.097 85.8 −0.090 0.092 0.098 84.6 13.53 4.90

IPCW2 2000 0.003 0.090 0.089 93.8 −0.004 0.093 0.089 94.0 7.19 3.22

DR 2000 0.004 0.091 0.091 93.7 0.006 0.090 0.091 94.6 7.36 3.26

QPS 2000 0.004 0.102 0.091 93.8 0.004 0.093 0.091 94.7 7.94 3.56

IPCW1 4000 −0.096 0.073 0.072 72.8 −0.095 0.072 0.073 69.2 12.44 3.45

IPCW2 4000 0.002 0.064 0.063 95.6 0.001 0.065 0.062 93.6 4.78 2.08

DR 4000 0.003 0.066 0.066 95.4 0.004 0.067 0.066 94.1 4.96 2.14

QPS 4000 0.002 0.073 0.074 94.4 0.001 0.070 0.072 96.3 5.38 2.30

S2. Sine curve case

IPCW1 2000 −0.085 0.085 0.087 83.8 −0.081 0.090 0.087 83.4 5.88 2.01

IPCW2 2000 −0.006 0.076 0.079 95.6 −0.002 0.078 0.079 95.4 3.42 1.37

DR 2000 −0.002 0.082 0.083 93.5 0.004 0.083 0.083 94.3 3.37 1.44

QPS 2000 −0.009 0.096 0.099 95.2 −0.001 0.096 0.099 96.2 3.82 1.67

IPCW1 4000 −0.081 0.065 0.067 74.2 −0.081 0.066 0.068 75.3 5.50 1.56

IPCW2 4000 0.001 0.056 0.056 95.8 0.001 0.057 0.056 94.2 2.29 0.97

DR 4000 0.002 0.062 0.062 94.7 0.002 0.062 0.063 93.8 2.31 0.98

QPS 4000 0.003 0.072 0.072 95.6 −0.001 0.069 0.070 94.8 2.54 1.12

S3. Quadratic case

IPCW1 2000 −0.087 0.100 0.097 87.2 −0.082 0.093 0.095 88.3 12.02 5.89

IPCW2 2000 −0.005 0.083 0.087 95.8 0.001 0.087 0.087 94.2 11.62 5.23

DR 2000 0.002 0.090 0.091 96.4 0.004 0.089 0.089 94.7 11.54 5.63

QPS 2000 −0.002 0.096 0.095 93.7 0.002 0.091 0.092 95.6 13.07 7.07

IPCW1 4000 −0.082 0.069 0.069 75.3 −0.081 0.070 0.071 76.2 8.92 3.85

IPCW2 4000 0.004 0.062 0.061 93.4 −0.002 0.062 0.061 94.0 8.13 3.62

DR 4000 0.004 0.064 0.064 94.3 0.005 0.064 0.065 95.5 8.40 3.72

QPS 4000 0.001 0.070 0.070 95.7 0.001 0.067 0.070 94.6 9.21 4.30

SD: sample standard deviation; SE: mean of estimated standard error; CP: empirical coverage probability of 95% confidence interval; IPCW1:

inverse-probability-of-censoring weighting estimator with a mis-specified censoring distribution; IPCW2: inverse-probability-of-censoring

weighting estimator with a correctly specified censoring distribution; DR: double-robust estimator; QPS: quasi-partial score estimator; ω β*, β

was calculated by arccos β*, β / β ⋅ β* ; Censoring rate was 10%.
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TABLE 3

Simulation results of the nonparametric test for single-index function.

Linear case Since curve case

N Censoring rate Type-I error Power

500 10% 0.026 0.194

20% 0.032 0.182

1000 10% 0.029 0.530

20% 0.036 0.422

2000 10% 0.043 0.892

20% 0.040 0.800

Type-I error rate at 0.05 level.
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TABLE 4

Model results for NYULH COVID-19 data application.

PLSI GMRL
†

GMRL
†

Estimate 95% CI** Estimate 95% CI**

Baseline information (exponential of coefficient)

Age 1.12* 1.09 1.15 1.12* 1.09 1.15

Sex: Male 1.06* 1.01 1.12 1.05* 1.01 1.12

Race: White 1.02 0.97 1.07 1.02 0.97 1.07

logBMI 1.06 0.94 1.20 1.06 0.94 1.20

SpO2 0.91* 0.89 0.94 0.91* 0.89 0.94

Temperature 0.98 0.96 1.01 0.99 0.96 1.01

Smoking: current/former 1.00 0.94 1.06 1.00 0.95 1.06

History of cardiac disease 1.06* 1.02 1.12 1.06* 1.01 1.11

History of pulmonary disease 1.02 0.94 1.09 1.02 0.94 1.09

History of diabetes 1.03 0.98 1.08 1.04 0.98 1.08

History of malignancy 1.11* 1.02 1.21 1.11* 1.01 1.21

Single-index component (coefficient)

Procalcitonin
‡ 0.91* 0.43 0.98 0.75* 0.51 0.89

Troponin
‡ 0.27* 0.05 0.86 0.34* 0.11 0.56

D-dimer
‡ 0.32* 0.01 0.57 0.40* 0.16 0.60

Ferritin
‡ −0.01 −0.37 0.13 −0.02 −0.29 0.16

CRP
‡ 0.06 −0.16 0.39 0.40* 0.02 0.67

*
Estimated coefficient with p-value less than 0.05.

**
95% confidence intervals were estimated by 1000 simulations.

†
Pre-specified link function g(t) = exp(t) for both generalizedmean residual life model (GMRL) and partially linear single-index generalized mean

residual life model (PLSI GMRL).

‡
Biomarkers in single-index component were log-transformed and standardized.
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