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Abstract

Background: Exposure data with repeated measures from occupational studies are frequently 

right-skewed and left-censored. To address right-skewed data, data are generally log-transformed 

and analyses modelling the geometric mean operate under the assumption the data is log-normally 

distributed. However, modeling the mean of exposure may lead to bias and loss of efficiency if 

the transformed data do not follow a known distribution. Additionally, left censoring occurs when 

measurements are below the limit of detection (LOD).

Objective: To present a complete illustration of the entire conditional distribution of an exposure 

outcome by examining different quantiles, rather than modeling the mean.

Methods: We propose an approach combining the quantile regression model, which does not 

require any specified error distributions, with the substitution method for skewed data with 

repeated measurements and non-detects.

Results: In a simulation study and application example, we demonstrate that this method 

performs well, particularly for highly right-skewed data, as parameter estimates are consistent 

and have smaller mean squared error relative to existing approaches.

Significance: The proposed approach provides an alternative insight into the conditional 

distribution of an exposure outcome for repeated measures models.
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INTRODUCTION

The issue of correctly dealing with non-detect or left-censored exposure data is common 

in occupational health. Left censoring occurs when laboratory instruments have a limit of 
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detection (LOD) below which, no measurement is given. Statistical methods have been 

proposed to analyze censored data. The substitution method, that is replacing a value (e.g. 

LOD/2 or LOD/ 2) for values less than the LOD [1, 2], is regularly used by industrial 

hygienists. Unfortunately, the resulting regression parameter estimation can be biased in 

the presence of large proportion of censoring, and there is no unique substitution value 

for varying skewness [2]. Lubin et al. also indicated that this substitution method is not 

advisable unless less than 10% of measurements are below the LOD [3]. More recently, 

the use of a maximum likelihood estimation (MLE) approach has been advocated due to its 

validity and efficiency [4, 5, 6]. Additionally, the MLE method has been shown to perform 

best in terms of producing less biased estimates for the mean and standard deviation [2, 7], 

yet this method under log-normal and Weibull assumptions works poorly for highly skewed 

data [8, 9, 10], even though the data distribution is correctly specified [10].

In addition, occupational health data (e.g. the concentration of an analyte in a biological 

urine or blood sample, or an environmental hand wipe or air sample) are also generally 

right-skewed. Most traditional statistical analyses are performed under the assumption the 

data follow a normal distribution. As a result, the data are transformed using the natural 

logarithm, which then assumes the data follow a log-normal distribution [11]. However, if 

the transformed data do not follow a known distribution, modeling the conditional mean 

of exposure may not be ideal because the estimated mean and standard deviation might 

be sensitive to large values. Even when distributional assumptions are met, the existing 

estimation methods can lead to bias and less precision when the sample size is small. 

Moreover, the geometric mean (GM) (i.e. the exponentiated mean of the log-transformed 

data) might be unstable when the distribution of logged data is asymmetric [5].

Quantile regression is an alternative analytical method that makes no assumptions about 

the underlying distribution. Compared to the parametric mean regression methods, quantile 

regression, first introduced by Koenker and Bassett [12], allows heteroscedasticity in the 

error term, has advantages for skewed data, and is robust to outliers. Additionally, quantile 

regression can provide a complete illustration of the entire conditional distribution of a 

dependent variable [13]. That is, regardless of data skewness, no transformation is needed.

Previous work has shown that quantile regression is a robust method for analyzing non­

normal data that can also be extended to scenarios with repeated measures [14, 15, 16]. 

Recently, Fu et al. extended their approach [17], combining between- and within-weighted 

estimating equations [16], to allow any working correlation structures. In this manuscript, 

we demonstrate that these methods can be extended to handle values below the LOD. First, 

we take different censoring scenarios into consideration for the estimating equations method 

of Fu et al. [17] and use it for exposure data with repeated measures. Second, we propose 

an approach combining this estimating equations method with the substitution method of 

Hornung and Reed [2] by placing the emphasis on fitting marginal quantile regression 

models to skewed and left-censored data with repeated measurements. We carry out a 

simulation study to compare our quantile regression model featuring one imputation method 

(substitution) with the mixed effects model featuring two imputation methods (substitution 

and MLE) under a range of LOD proportions. Finally, we demonstrate the existing and 

proposed approaches in application to pesticide data with repeated exposure measures.
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METHODS

Notation and censored repeated measures model

Suppose we have a clustered study in which n independent subjects have M distinct 

repeated measurements. For example, M pre- and post-shift biological sampling outcomes 

(dependent variable) of study participants collected from n independent industries are used 

to investigate their association with hand wipe samples or breathing zone air samples. 

Sampling outcomes (repeated measures) from the same industry (subject) are typically 

positively correlated, which have to be taken into account when performing data analysis. 

Because no ordering occurs with the participants with the industry, the outcomes should be 

equally correlated. Repeated measures data can also be longitudinal, in which the outcomes 

are always measured for each subject over time. E.g., M biological sampling outcomes 

measured at multiple time points are collected from n independent workers. The correlations 

between two time points are supposed to decrease over time. Ignoring the correlation would 

result in biased standard error estimates of regression parameters, wide confidence intervals 

(CIs), and large p-values (conservative inference) [18]. The higher the correlation incorrectly 

acknowledged, the greater the bias occurred.

Assume that the correlated outcomes with repeated measurements follow a log-normal 

distribution, a censored repeated measurement model is given by

log yij = Xij
Tβ + γi + δij and yij =

missing if yij < LODij,
y ij if yij ≥ LODij,

(1)

where yij, i = 1, … , n, j = 1, … , M, is a response or dependent variable that represents 

the exposure level measured for the ith subject at the jth measurement if no censoring at the 

LOD; the other response, y ij, can be detected at or above the LOD and censored below the 

LOD; Xij = [1, X1ij, … , Xpij]T is a known vector observed at measurement j for subject 

i; β = [β0, β1, … , βp]T is an unknown vector corresponding to the regression parameters. 

γi denotes the random effect for subject i, while δij is the random effect for subject i at 

measurement j. These random effects are mutually independent and normally distributed 

with mean 0 and variances, σγ2 and σδ
2, accounting for between-subject and within-subject 

variabilities, respectively. The covariance structure is assumed to be compound symmetric or 

exchangeable, in which a common correlation parameter is required to be estimated.

After integrating out the given random individual effect, γi, in the likelihood function, L(.), 

the marginal likelihood function [19] for all responses, yij, can be expressed as

M(β, σγ, σδ ∣ yij) = ∫ L(β, σγ, σδ ∣ yij, γi)dγi = ∏i∫ ∏jU(yij ∣ β, γi, σδ)V (γi
∣ σγ)dγi,

(2)
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where U(yij ∣ β, γi, σδ) =
Φ

log LODij − XijT β − γi
σδ

if yij < LODij,

e− log yij − XijT β − γi
2 ∕ 2σδ

2

2πyijσδ
if yij ≥ LODij .

The maximum likelihood (ML) estimators, β, σγ, and σδ, then can be obtained by 

minimizing the negative of the log-likelihood function in Equation (2). Note that the 

likelihood function for n independent subjects with no repeated measurements has been 

proved to be valid, and that its ML estimator holds strong consistency and asymptotic 

normality [4].

Quantile regression model

Assume we conduct a study in which n independent subjects (industries) are measured at 

each of M repeated measurements (sampling data from participants) for ease of illustration. 

Generally, the number of repeated measurements is permitted to vary across subjects. Let 

yi = [yi1, … , yiM]T denote the observed exposure outcome vector for the ith subject, and 

assume that the τth quantile of yij, j = 1, … , M ; i = 1, … , n, for τ ∈ (0,1) is presented as 

Q(yij ∣ Xij, τ) = Xij
Tβτ, where Xij = [1, X1ij, … , Xpij]T is a vector observed at measurement 

j for subject i, and βτ = [β0
τ, β1

τ, …, βp
τ] is an unknown vector in terms of the regression 

coefficients at the τth quantile. Let Sij
τ = τ − I[yij ≤ Xij

Tβτ] and Si
τ = [Si1

τ , …, SiM
τ ]T , where 

I(.) is an indicator function. yij is assumed to be a LODij/2 if yij < LODij [2]. The 

corresponding covariance matrix for Si
τ is given by V i

τ = Ai
1 ∕ 2Ri

τ(α)Ai
1 ∕ 2, where Ai = 

diag[τ(1 − τ), … , τ(1 − τ)] is a diagonal matrix denoting the marginal variances, and Ri
τ(α)

represents a symmetric positive definite correlation matrix with 1 along the diagonal and at 

least one unknown correlation parameter given by α. Additionally, Ri
τ is an identity matrix 

if an independence working model is assumed and utilized for the data without repeated 

measurements.

To find the estimate of the regression parameters, βτ
, we consider the following optimal 

estimating equations [14, 16, 20, 21]

∑i = 1
N Xi

TΛiAi
−1 ∕ 2Ri

τ − 1(α)Ai
−1 ∕ 2Si

τ = 0, (3)

in which Λi = diag[fi1(0), … , fiM(0)] with fij(0) assumed to be a constant can be removed 

[16].

We note that the parameter estimates of the asymptotic covariance matrix are not easily 

obtained due to the inclusion of unknown error distribution the covariances of parameter 

estimates typically rely on. Therefore, an induced smoothing technique [22, 23] with 

efficiency and robustness preserved will be commonly adopted to reduce computational 

burdens resulting from the existing resampling method for unsmoothed estimating equations 

in the marginal quantile regression models [16, 20, 21].
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When less than 25% of the data fall below the LOD, any sample quantiles above the 

25th quantile (first quartile), including 50th quantile (sample median), 75th quantile (third 

quartile), and sample interquartile range, can be reported. 50th and 75th quantiles can still 

be obtained even if less than 50% of the data are censored. Higher quantiles, such as 90th or 

95th, should be presented when potential outliers or influential points are detected.

Simulation study

We compared the regression parameter estimation performances of our proposed approach 

featuring one imputation method (substitution) for right-skewed and left-censored exposure 

data with correlated outcomes to the mixed effects model featuring two imputation methods 

(substitution and MLE) under different levels of proportions below the LOD. Two modeling 

cases are combinations of two right-skewed distributions in the presence of correlation 

among repeated measures from the same subject. All simulations with results presented in 

Tables 1-2 for the proposed methods were conducted using R version 3.6.3 [24].

The settings with two different sample sizes (n = 100 and 500 subjects) represent moderate 

and large sample sizes. Each subject has three repeated measurements per subject (M = 

3). Each setting is evaluated through 1,000 simulations. Moreover, we carry out two cases 

motivated by the literature of parametric and quantile regression models [7, 17, 21, 25]. In 

order to correspond with the censoring proportions detected in the application example, the 

data generated from these scenarios are subjected to four different levels of censoring (10%, 

20%, 30%, and 40% censoring).

To examine the performances of the proposed methods, we utilize the linear model 

generated from log yij = β0 + β1xi + ϵij, i = 1, … , n; j = 1, … , M, where yij is the 

jth measurement for the ith subject, xi is an independent variable following a uniform 

distribution of U (1, 10), and ϵij is a random error [17]. Let ϵij = q + eij and the use of q is to 

guarantee p(ϵij ≤ 0) = τ ∈ {0.25,0.5,0.75}, the quantile level. The true values of β0 = 0 and 

β1 = 1 are corresponded to the marginal intercept and slope, respectively. If yij < LODij, then 

yij are equal to LODij/2 for substitution and quantile methods, and are treated as missing for 

MLE method. yij = yıj if yij ≥ LODij.

Two cases are considered for ei = [ei1, … , ei3]T. Cases 1 and 2 incorporate correlated errors 

for models with repeated measures and assume that the random error follows a multivariate 

normal distribution, MVN (0, R(α)) (case 1) (Table 1) or a multivariate log-chi-squared 

distribution with two d.f., log χ2
2(R(α)) (case 2) (Table 2). Two underlying distributions 

are considered in the simulation settings in order to better understand the pros and cons 

corresponding to the quantile model incorporating substitution approach and the random 

effects model using MLE approach. Inclusion of the chi-squared distributional cases being 

skewed to the right is motivated by an application example that will be later discussed. 

To account for different skewed patterns, we also carry out simulations for models with 

repeated measures assuming that ei follows a more skewed chi-squared distribution with one 

d.f. The results are shown in the Supplementary Material. The three outcome distributions 

constructed here are similarly corresponded to the three pesticide exposures analyzed in the 
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example. Note that, after taking log-transformation, these highly right-skewed data might 

lead to left-skewed distributions, in which means are less than medians.

An exchangeable correlation structure with a correlation parameter of α = 0.3 or 0.7 is 

incorporated into the cases 1 and 2 with repeated measurements. When the substitution and 

MLE methods are carried out for these cases, the random error, ϵij, is replaced with the 

random effects, γi and δij, for subject i and subject i at measurement j, respectively. Here the 

ratio of between-subject variance to between-subject and within-subject variances is given 

by 0.3 or 0.7. This correlation coefficient indicates that the proportion of the total variance 

in the outcome data that is accounted for by the clustering. We note that the given small 

and moderate correlations are close to the estimated correlation parameters in the application 

example.

In order to determine the differences in estimation performances of the three methods, we 

present empirical mean bias and mean squared error (MSE) for each of the non-intercept 

parameters corresponding to either the substitution approach, the MLE approach, or our 

proposed approach. We also provide ratio of MSE from estimate for β1, which we refer to 

as relative efficiency (RE) in Tables 1 and 2. For any given RE, the numerator is the MSE 

resulting from the use of referent substitution approach, and the denominator is the MSE 

for the MLE method or the use of our approach. In comparing with the true mean value 

and calculating the empirical mean bias, MSE, and RE for the proposed method, we present 

estimation results at the 50th quantile (τ = 0.5) for any correlation and censoring.

RESULTS

In case 1 (Table 1), when the exposure data were log-normally distributed, the MLE 

approach gained greater efficiencies than the substitution and quantile approaches for any 

censoring proportions and sample sizes. The quantile method worked well for censoring 

proportions ≥ 20% and high correlation (α = 0.7). MLE indicates an efficiency advantage 

resulting from the asymptotic properties as sample size (n) and censoring proportion 

increases, as can be observed from corresponding biases and MSEs (Table 1).

When the data followed a skewed chi-squared distribution (case 2), our quantile method 

performed best when the correlation is low (α = 0.3), as parameter estimates are consistent 

and have smaller mean squared error relative to the existing approaches. In terms of high 

correlation, the quantile method outperformed the other methods for censoring proportion 

= 40% and n = 100, and censoring ≥ 30% and n = 500, while the substitution method 

had the highest REs when censoring proportions are ≤ 20% (Table 2). In addition, when a 

more skewed chi-squared distribution occurred with the exposure outcome data, the results 

demonstrated that the quantile method worked best overall (Table S1 in the Supplementary 

Material). We note that the proposed quantile approach can further provide regression 

parameter estimation at any quantiles greater than 10th, 20th, 30th, and 40th when censoring 

proportion are 10%, 20%, 30%, and 40%, correspondingly.

Overall, REs corresponding to the log-normal outcome data with repeated measures showed 

that our approach outperformed the existing methods when the skewed data consisted of 
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low correlated repeated measurements and when the exposure outcome followed a more 

skewed distribution, whereas the MLE method was favorable in the settings of log-normally 

distributed outcome data.

EXAMPLE

The National Institute for Occupational Safety and Health carried out a study of children 

and spouses of farmers who were potentially exposed to pesticides through indirect take­

home contamination in Iowa in the spring and summer of 2001 [26]. A total of 25 farm 

households with 66 children and 25 non-farm households with 51 children participated in 

the study (number of independent subject or n is 50). 235 and 182 urine samples were 

measured from children of farm and non-farm households for determination of exposure 

levels of three pesticides, which were chlorpyrifos [3,5,6-trichloro-2-pyridinol (TCP)], 

metolachlor (metolachlor mercapturate), and glyphosate (parent glyphosate). Numbers of 

samples collected from the farm and non-farm households ranged from 3 to 16 and from 3 to 

15, respectively (number of repeated measures or M). The analytic limits of detection (LOD) 

were 3.32, 0.3, and 0.9 μg/l for chlorpyrifos, metolachlor, and glyphosate, respectively. The 

percentages of urine levels reported below the LOD were 0.24%, 39.1%, and 15.8% for the 

three analytes, and were 0.43% and 0%, 37.45% and 41.21%, and 18.72% and 12.09% for 

farm and non-farm households, correspondingly, in each analyte.

The corresponding distributions of these analytes were skewed to the right, as can be 

observed in Table 3 that all means are greater than medians, and had potential outliers 

that could impact the mean (Figure 1), both of which were motivations for the use of 

quantile model. Based on an examination of Quantile-Quantile plot, only the exposure data 

of chlorpyrifos were considered being log-normally distributed. Alternative examination is 

that, if the data are truly log-normal, the median has to be the same as the GM (Table 3). In 

contrast, the distributions of metolachlor and glyphosate exposure data were highly and less 

right-skewed, as the two chi-squared distributions with one and two degrees of freedom used 

in the simulation study (Tables S1 and 2). Both distributions of log-transformed outcomes 

were left-skewed with greater medians relative to means.

We utilize the model suggested in Curwin et al. [26], but employ quantile regression at three 

quantile levels, τ = 0.25, 0.50, and 0.75, given by

log yij = β0 + β1Farmij + β2Ageij + β3Femalei + β4Creatinineij + ϵij,

where yij is the pesticide concentration collected from the jth urine sample of the ith 

household. The variable of interest is an indicator for farm versus non-farm household. 

Three covariates are age in years, an indicator for gender, and creatinine level (mg/dl), which 

is included as an adjustment in the model [27]. Note that only 25th, 50th, and 75th quantiles 

are provided for ease of comparisons.

As in the simulation study, we analyze the data using substitution and MLE methods, and 

quantile regression with an exchangeable correlation structure under three given quantiles. 

Table 4 provides the estimates of regression parameters and corresponding standard errors 
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(SEs), and the 95% confidence intervals (CIs). The factors in Table 4 are equivalent to 

exponent of the estimates. For example, the quantile regression at the 50th quantile produces 

a ratio of the medians of the outcome between farm and non-farm households, whereas 

substitution and MLE methods generate ratios of the mean values.

Figure 2 shows the detailed estimates of regression parameters (solid line) and 95% CIs 

(shaded area) for different quantiles by pesticide type using the quantile approach, compared 

to the estimates (dashed line) and 95% CIs (dotted line) using the MLE approach. The 

estimated correlation parameters used to construct the exchangeable correlation structure 

are 0.58, 0.19, and 0.40 for exposure data of chlorpyrifos, metolachlor, and glyphosate, 

respectively, expressing small to moderate correlation among samples collected from the 

farm and non-farm households.

All approaches yield same directions and similar magnitudes for regression parameter 

estimates. Specifically, children in a farm household has higher exposures to chlorpyrifos 

and metolachlor relative to those in a non-farm household, whereas children from a 

non-farm household are more likely to expose to glyphosate (Table 4). In Figure 2, the 

magnitudes or impacts vary over different quantile levels for chlorpyrifos and glyphosate 

outcomes, but are constant for metolachlor. Note that our proposed approach produces 

smaller SE estimates than the referent approach at most quantiles, thus revealing the 

proposed method’s potential for efficiency improvement. The use of a quantile analysis 

presents a more complete description with respect to interest of variable by examining 

different quantiles for the left-censored and right-skewed pesticide distribution, rather than 

the mean analysis which gives focus on the unique regression parameter estimate.

DISCUSSION

Mean regression analyses for right-skewed exposure outcomes with non-detects or left 

censoring have been widely introduced in occupational and environmental health. However, 

for some real-world data the use of mean regression models may be sensitive to skewness 

and potential outliers could influence the mean more than the median. In such cases, the 

use of quantile analysis for modeling the conditional quantiles of the response variable is 

recommended. Therefore, we first proposed a modified approach for quantile regression to 

utilize detects above the LOD. This regression model assumed that no specified distribution 

for the error is needed. Furthermore, in the presence of within-subject variability, multiple 

exposure measurements per subject are demanded to accurately measure a subject’s 

exposure. As a result, we proposed an approach to model these right-skewed and left­

censored data with repeated measurements, and through a simulation study we presented 

that our method is preferable to the existing approaches under scenarios of outcome data 

without repeated measures and highly right-skewed data.

Although for simplicity we only considered independence and exchangeable working 

correlation structures for marginal quantile regression models in the manuscript, first­

order autoregressive (AR-1) working structure with less parsimonious form is available 

as well. Quantile regression has been regularly studied in longitudinal data [15, 16, 

20,21]. Therefore, incorporating a AR-1 structure to the use of quantile regression is 
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an additional advantage in terms of flexibility because it is preferred over the other 

structures in a longitudinal study and may not be accommodated in the existing left-censored 

repeated measures models [25]. Future study can be extended to use a general stationary 

autocorrelation structure [21] or a Gaussian pseudolikelihood selection technique [17], 

rather a parametric likelihood, to decide the most adequate working correlation structure 

for preventing the specification of any specified working structures.

The simulation study was analyzed via marginal quantile regression models with balanced 

repeated measurements, and univariable results were presented. Nonetheless, the proposed 

approach in this manuscript is applicable to subjects with varying repeated measurements 

and permits multiple categorical or continuous covariates, as can be seen in the application 

example. Future work can be developed to include time-dependent covariates for quantile 

regression model when observations among the same subject are repeatedly measured over 

time or in a longitudinal type [28]. In our simulations and application example, a unique 

censoring proportion and a single LOD/2 were given to apply to all measurements. The 

quantile approach also allows multiple LODs occurred with data in the absence and presence 

of repeated measures because the censoring proportion can always be calculated.

We mentioned that any sample quantiles above the censoring proportion are available. 

In order to obtain the regression parameter estimation at all quantile levels, multiple 

imputation, such as truncated multivariate normal distribution, can be used to impute log­

transformed exposure data below the LOD [3]. When the exposure data are highly skewed, 

truncated multivariate gamma distribution may be an option for the use of imputation 

technique. However, the imputation methods are still restricted by the distributional 

assumption. In our simulation study, the results using LOD/2 produced better performance 

than the use of LOD/ 2. However, when data are not highly skewed, LOD/ 2 would be a 

better replacement for non-detectable values [2].

Our study has some limitations. The simulations were carried out assuming parametric 

distributions, and therefore other departures from log-normality and log-chi-squared 

distributions, i.e., inverse gamma distribution or data skewed to the left, might need to 

be evaluated. Readers are suggested to employ graphical and testing examinations to confirm 

if distributional assumptions are met. We recommend that the use of random effects model 

incorporating MLE method for dependent or outcome variable following a log-normal 

distribution; otherwise, the quantile model, a powerful complement to the mean regression 

model, should be carried out once the assumption of normality is violated. However, if 

sampled data deviates dramatically from its underlying distribution, and therefore no method 

would produce unbiased estimate. In such cases with unknown true underlying distribution, 

quantile regression will be always considered as a safe, i.e., not biased, approach, although 

this conservative method might result in some loss of efficiency, i.e., wide CIs and 

large p-values. Moreover, because of the increasingly complex multilevel or hierarchical 

data generation with respect to multiple levels of outcomes, future work accounting for 

other marginal quantile models is needed. The corresponding R code and functions for 

implementing the proposed approaches in this manuscript can be acquired by contacting the 

author at okv0@cdc.gov.
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CONCLUSIONS

Quantile regression not only is advantageous to skewed exposure outcomes, but requires 

no assumption of parametric distribution for the residuals and no transformation for 

the outcome variable. The method provides an alternative insight into the conditional 

distribution of an exposure outcome above the LOD for independent and repeated measures 

models. Overall, quantile method is recommended for the analysis of left-censored exposure 

outcome when the data are heavily right-skewed or not log-normally distributed, especially 

in the presence of low correlated repeated measurements, based on simulation findings. 

This approach is also advocated when large censorings and high correlation with the log­

normal outcome data. When the underlying distribution is correctly specified, MLE method 

generally performs best. However, in practice, specifying the true underlying distribution 

may not be the case. As a result, quantile regression model can always be considered as an 

appropriate method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of urine concentration levels (μg/l) under different pesticides stratified by 

household. The box indicates the interquartile range (IQR), the horizontal line within each 

box indicates the median, the upper whisker indicates the upper fence 1.5 IQR above the 

75th quantile, the lower whisker indicates the lower fence 1.5 IQR below the 25th quantile, 

and the dots indicate potential outliers.
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Figure 2. 
The panel depicts the proposed quantile regression method (solid lines) with 95% 

confidence intervals (shaded area) by different pesticide type. The dashed horizontal lines 

indicate the estimated coefficients for the mean model with 95% confidence intervals (dotted 

horizontal lines).
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Table 1.

Results for case 1 in which a log-normal distribution was created for the outcome data with three repeated 

measures.

 α = 0.3  α = 0.7

n % Censor LOD/2 MLE Quantile LOD/2 MLE Quantile

100 10 Bias −0.0013 −0.0004 0.0003 −0.0030 0.0007 0.0007

MSE 0.0001 0.0001 0.0002 0.0001 0.0001 0.0003

RE 1.000 1.016 0.659 1.000 1.100 0.513

20 Bias −0.0034 −0.0004 −0.0008 −0.0165 0.0008 −0.0004

MSE 0.0001 0.0001 0.0002 0.0004 0.0001 0.0003

RE 1.000 1.130 0.747 1.000 3.132 1.624

30 Bias −0.0035 −0.0005 −0.0034 −0.0302 0.0009 −0.0028

MSE 0.0002 0.0001 0.0002 0.0011 0.0001 0.0003

RE 1.000 1.362 0.833 1.000 7.931 3.995

40 Bias −0.0051 −0.0005 −0.0067 −0.0578 0.0010 −0.0064

MSE 0.0004 0.0001 0.0003 0.0050 0.0002 0.0003

RE 1.000 3.044 1.526 1.000 33.55 14.85

500 10 Bias −0.0007 0.0002 −0.0012 −0.035 .00003 −0.0009

MSE .00002 .00002 .00004 .00004 .00002 0.0001

RE 1.000 1.019 0.622 1.000 1.594 0.595

20 Bias −0.0028 0.0002 −0.0019 −0.0175 −.00003 −0.0019

MSE .00003 .00002 .00004 0.0003 .00002 0.0001

RE 1.000 1.371 0.842 1.000 13.59 5.578

30 Bias −0.0028 0.0001 −0.0042 −0.0316 .00000 −0.0039

MSE .00004 .00002 0.0001 0.0010 .00003 0.0001

RE 1.000 1.581 0.655 1.000 39.87 14.82

40 Bias −0.0030 0.0001 −0.0071 −0.0543 −.00004 −0.0073

MSE 0.0001 .00002 0.0001 0.0032 .00002 0.0001

RE 1.000 2.958 0.821 1.000 114.3 29.04

a
Bias - empirical bias.

b
MSE - empirical mean squared error.

c
RE - relative efficiency. These are the italicized ratios that, for each setting (n), compare the empirical MSE from the LOD/2 substitution method 

to the MSE from the use of MLE method or quantile regression model.
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Table 2.

Results for case 2 in which a chi-squared distribution with two degrees of freedom was created for the 

outcome data with three repeated measures.

α = 0.3 α = 0.7

n % Censor LOD/2 MLE Quantile LOD/2 MLE Quantile

100 10 Bias 0.0197 0.0210 −0.0008 0.0073 0.0138 0.0006

MSE 0.0006 0.0006 0.0005 0.0003 0.0004 0.0007

RE 1.000 0.921 1.279 1.000 0.741 0.413

20 Bias 0.0186 0.0221 −0.0001 −0.0032 0.0166 0.0003

MSE 0.0006 0.0007 0.0005 0.0003 0.0005 0.0007

RE 1.000 0.823 1.194 1.000 0.588 0.424

30 Bias 0.0192 0.0231 −0.0020 −0.0155 0.0195 −0.0022

MSE 0.0006 0.0007 0.0005 0.0007 0.0006 0.0008

RE 1.000 0.884 1.324 1.000 1.087 0.873

40 Bias 0.0169 0.0236 −0.0057 −0.0477 0.0216 −0.0036

MSE 0.0010 0.0008 0.0006 0.0044 0.0007 0.0008

RE 1.000 1.261 1.679 1.000 6.211 5.668

500 10 Bias 0.0194 0.0207 −0.0010 0.0062 0.0127 −0.0007

MSE 0.0004 0.0005 0.0001 0.0001 0.0002 0.0001

RE 1.000 0.891 4.172 1.000 0.425 0.670

20 Bias 0.0185 0.0219 −0.0017 −0.0045 0.0156 −0.0014

MSE 0.0004 0.0005 0.0001 0.0001 0.0003 0.0001

RE 1.000 0.742 3.859 1.000 0.274 0.609

30 Bias 0.0192 0.0229 −0.0033 −0.0164 0.0185 −0.0031

MSE 0.0004 0.0006 0.0001 0.0004 0.0004 0.0002

RE 1.000 0.748 3.843 1.000 0.913 2.380

40 Bias 0.0188 0.0234 −0.0068 −0.0415 0.0205 −0.0064

MSE 0.0004 0.0006 0.0002 0.0021 0.0005 0.0002

RE 1.000 0.762 2.801 1.000 4.373 10.85

a
Bias - empirical bias.

b
MSE - empirical mean squared error.

c
RE - relative efficiency. These are the italicized ratios that, for each setting (n), compare the empirical MSE from the LOD/2 substitution method 

to the MSE from the use of MLE method or quantile regression model.
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Table 3.

Mean, standard deviation (SD), median, interquartile range (IQR), geometric mean (GM), and geometric 

standard deviation (GSD) for each pesticide by data type.

Pesticide Type % Censoring Mean
(SD)

Median
(IQR)

GM
(GSD)

Chlorpyrifos Original
0.43

a

0
b

18.22
(10.81)

15.80
(11.22–22.72)

15.79
(1.706)

Log-transformed 2.76 2.76

Metolachlor Original
37.45

a

41.21
b

1.274
(6.179)

0.460

(≤ LOD
c
 – 0.99)

0.453
(2.973)

Log-transformed −0.791 −0.777

Glyphosate Original
18.72

a

12.09
b

2.916
(2.477)

2.550
(1.41–3.99)

2.157
(2.322)

Log-transformed 0.769 0.936

a
Censoring proportions for farm household.

b
Censoring proportions for non-farm household.

c
The analytic limits of detection (LOD) were 3.32, 0.3, and 0.9 μg/l for chlorpyrifos, metolachlor, and glyphosate, respectively.
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Table 4.

Parameter estimates, standard error (SE) estimates, 95% confidence intervals (CIs), and factors for covariate of 

interest resulting from analyses of the urine dataset.

Pesticide Method Quantile Estimate SE 95% CI Factor
a

Chlorpyrifos Substitution 0.16 0.10 −0.03 – 0.35 1.18

(0.43
b
) MLE 0.16 0.09 −0.03 – 0.35 1.17

(0
c
) Quantile 25th 0.10 0.09 −0.09 – 0.29 1.10

50th 0.09 0.08 −0.07 – 0.25 1.10

75th 0.14 0.10 −0.06 – 0.33 1.14

Metolachlor Substitution 0.39 0.23 −0.06 – 0.85 1.48

(37.45
b
) MLE 0.43 0.29 −0.14 – 1.01 1.54

(41.21
c
) Quantile

d 50th 0.49 0.36 −0.24 – 1.22 1.63

75th 0.39 0.25 −0.11 – 0.88 1.47

Glyphosate Substitution −0.24 0.16 −0.55 – 0.07 0.79

(18.72
b
) MLE −0.24 0.14 −0.52 – 0.04 0.79

(12.09
c
) Quantile 25th −0.09 0.21 −0.52 – 0.34 0.92

50th −0.05 0.16 −0.37 – 0.28 0.95

75th −0.14 0.13 −0.39 – 0.12 0.87

a
Exponent of the estimate.

b
Censoring proportions for farm household.

c
Censoring proportions for non-farm household.

d
Result of 25th quantile level for metolachlor not presented because the censoring proportions (37.45% and 41.21%) are greater than 25%. Any 

quantile levels larger than or equal to 42th can be calculated (see the Figure 2).
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