Skip to main content
. 2021 Sep 22;8(22):2102540. doi: 10.1002/advs.202102540

Table 5.

Environmental applications of the emulsion‐templated porous materials

Material Target Performance Advantages Ref.
CS‐ PAA hydrogel

Removal of:

Cu2+

Pb2+

Adsorption capacity:

302 mg g−1

613 mg g−1

Easily regenerated for five cycles [212]
CMC‐MMT‐PAM

Removal of:

Pb2+ removal

Cd2+ removal

Adsorption capacity:

456 mg g−1

278 mg g−1

Five adsorption–desorption cycles without any significant loss of uptake capacities [272]
Fe3O4 NPs‐P(St‐co‐DVB)

Removal of:

Pb2+

Cd2+

Adsorption capacity:

257 m2 g−1

129 m2 g−1

Easily separated and recycled by a magnet [197]
Magnetic HPC‐PAA beads

Removal of:

Cd2+

Cu2+

Adsorption capacity:

300 mg g−1

243 mg g−1

Easy separation with a magnet, similar capacities for five cycles [194]
PAA−Fe3O4 NC beads

Removal of:

Crystal violet (CV)

Pb2+ removal

Adsorption capacity:

80 mg g−1

291 mg g−1

Easily handled

No leaching of iron

[103]
Organo‐silica foam

Removal of:

Sunset yellow

MB

Cu2+

Adsorption capacity:

1.21 g g−1

280 mg g−1

226 mg g−1

Materials containing amino, epoxy, and carboxyl groups [172]
Amino‐organosilica monolith Cr4+ removal Removing efficiency: 92.8% Working capacity: 4.24 kg g−1 [275]
FeOOH NP hydrogels As5+ Removal efficiency: 50% Easily recovered [198]
Al2O3‐PAA‐PEI

Cr(VI)

CR

141 mg g−1

37 mg g−1

No chance of secondary contamination [201]
Ag NPs‐PVI beads

Adsorption of:

As3+

Eriochrome black T

Adsorption capacity:

333.36 mg g−1

81.14 mg g−1

Multifunctional for removing inorganic, organic and biological contaminants

Easily handled

[102]
Inactivation of S. aureus Bactericidal efficiency: ≈96%
Inactivation of E. coli Bactericidal efficiency: ≈100%
Amine‐modified PEGMA

Removal of:

Ag+

Cu2+

Cr3+

Adsorption capacity:

9.05 mmol g−1

4.31 mmol g−1

2.92 mmol g−1

[156]
Polyelectrolyte‐based polyHIPEs Ag+ ion exchange Exchange capacity: 3.53 mmol g−1 [146]
GMA‐based microspheres Adsorption of Li+ Adsorption capacity: 38.13 mg g−1

Selective removal

Recycled five times

[277]
Ag‐modified PS sulfonate Removal of Li+

Adsorption capacity: 59.85 mg g−1 at 15 °C

35.06 mg g−1 at 25 °C

27.09 mg g−1 at 35 °C

Adsorption efficiency: 80.71% after being recycled seven times [204]
Amidoxime‐modified hollow MF resin microspheres UO2 2+ removal Adsorption capacity: 553.3 mg g−1 Higher selectivity in the presence of other ions [165]
P4VP grafted P(St‐co‐DVB) Pu separation Ion exchange column with convective mass transfer property [115]
CMC‐PAM/MMT

Removal of:

Rb+

Cs+

Adsorption capacity:

178 mg g−1

266 mg g−1

[219]
Yeast‐PAA

Removal of:

Rb+

Cs+

Sr2+

Adsorption capacity:

180 mg g−1

230 mg g−1

167 mg g−1

Materials recycled five times with good performance [155]
CS‐g‐PAM MB removal Adsorption capacity: 454 mg g−1 [139]
UiO‐66‐PAM MB removal Adsorption capacity: 50 mg g−1 [142]
PDMAEMA and HEMA polymers

Adsorption of:

MB

methyl orange (MO)

Adsorption capacity:

6.5 mg g−1

1.6 mg g−1

[157]
Polyampholytes

Removal of:

MB

Erythrosine

Adsorption capacity:

88 mg g−1

57 mg g−1

[147]
Porous PAM microspheres

Removal of:

MB

methyl violet (MV)

Adsorption capacity:

669 mg g−1

750 mg g−1

Prepared by O/W/O emulsion templating [169]
TiO2/P(AM‐co‐AMPS) monoliths

Removal of:

MB

TC

Adsorption capacity:

1.66 g g−1

1.13 g g−1

[134]
Molecularly imprinted polymers hollow microspheres Removal of λ‐cyhalothrin Adsorption capacity: 24.79 mg g−1 Material can be recycled seven times with 8.11% loss of affinity [167]
P(St‐co‐NPA) beads Removal of atrazine Removal efficiency: 98% [117]
Graphene and silicon‐doped porous carbon Removal of trifluralin Removal efficiency: up to 100% Used as a column for solid phase extraction to detect trifluralin in soil samples [256]
Fe3O4@HKUST‐1‐embedded P(EHA‐DVB‐MMA) [poly(2‐ethylhexyl acrylate‐divinylbenzene‐methyl methacrylate)] Sorptive extraction of TC

Limit of detection: 1.9–4.6 and 5.5–13.9 ng mL−1 for milk and egg samples of chicken

Limit of quantification: 1.8–3.7 and 5.3–13.0 ng g−1 for muscle and kidney samples of chicken

[215]
Modified Fe3O4 NPs‐CS‐PAMPS porous adsorbents

Removal of:

TC

Chlorotetracycline (CTC)

Adsorption capacity:

806.60 mg g−1

876.60 mg g−1

Material recycled five times [193]
rGO‐polyHIPE hybrids Adsorption of polyaromatic hydrocarbons (PAHs) Adsorption capacity: 47.5 mg g−1 Reused for ten consecutive cycles [254]
poly(4‐vinylbenzyl chloride) (PVBC) monolithic columns Removal of benzoyl chloride Removal efficiency: 98% [116]
P(St‐EGDMA)

Adsorption of:

Toluene

Benzene

Adsorption capacity:

0.777 g g−1

0.907 g g−1

Material can be reused ten times [120]
P(St‐co‐VBC‐co‐DVB) monoliths Absorption of chemical warfare agents Mass increase 40–55 times that of dry polymer [113]
P(St‐co‐DVB) aerogels Adsorption of organic liquids and oil Adsorption capacities: 13–29 g g−1 Material stable and reusable [110]
P(St‐co‐DVB)

Adsorption of:

n‐hexane

Mineral ether

Kerosene

Benzene

THF

DCM

Salad

Gasoline

Machine oil

Adsorption capacity:

4.45 g g−1

5.02 g g−1

6.19 g g−1

18.71 g g−1

15.23 g g−1

20.21 g g−1

2.75 g g−1

16.49 g g−1

2.51 g g−1

Materials recycled ten times [109]
Silica‐P(tBMA‐DVB) composites

Adsorption of:

n‐hexane

Benzene

DCM

THF

Ethanol

Methanol

Acetone

Kerosene oil

Used‐transformer oil

Adsorption capacity:

3.86 g g−1

15.37 g g−1

17.33 g g−1

13.42 g g−1

5.61 g g−1

4.52 g g−1

3.43 g g−1

8.17 g g−1

4.98 g g−1

Materials recycled at least 13 times [181]
PPI‐SPS‐b‐PE‐r‐Bt‐b‐PS xerogels

Adsorption of:

Hexane

Toluene

Xylene

DCE

Chloroform

Vegetable oil

Gasoline

Diesel

Engine oil

Crude oil

Adsorption capacity:

19.8 g g−1

22.3 g g−1

24.9 g g−1

22.6 g g−1

32.2 g g−1

24.2 g g−1

21.2 g g−1

23.8 g g−1

31.5 g g−1

15.1 g g−1

Materials recycled at least 40 times [126]
SPS‐b‐PE‐r‐Bt‐b‐PS and PAMAM dendrimers‐based sponges

Removal of:

n‐hexane

Chloroform

Crude oil

Adsorption capacity:

25.4 g g−1

25.8 g g−1

14.4 g g−1

Material recycled 30 times with ≈15% loss of performance

Oil/water separation

[125]
Fluorinated P(PEM‐St‐DVB) material Remove of DCM Removal efficiency: 95% Materials reused for ten cycles [122]
PDMS‐infused PS‐based slippery membrane systems Liquid (oil and water) and solid‐ contaminant repelling Materials showing self‐repairing and regeneration properties [171]
PU monoliths Oil spill reclamation Recovery rate: ≈85% Materials recycled 20 times [128]
Cellulose‐based PU

Adsorption of:

DMSO

Non‐polar solvent

Adsorption capacity:

22 cm3 g−1

9.5 cm3 g−1

Void filling, no expansion [129]
PU with reactive block copolymer

Adsorption of:

Chloroform

DCE

Adsorption capacity:

36 g g−1

27.3 g g−1

2 min half equilibrium time [130]
Silica−polyHIPE composite networks Sorption/desorption of crude oil Sorption/desorption capacity: ≈16 g g−1 Material reused for 25 cycles [190]
Fe3O4/PS composites Diesel/water separation Adsorption capacity: 7.9 g g−1 Materials recycled ten times [196]
Edible oil/water separation Adsorption capacity: 8.3 g g−1
Lubricating oil/water separation Adsorption capacity: 16.4 g g−1
P(St‐co‐DEAEMA) membranes Oil/water separation Chloroform/water, hexane/water CO2‐switchable separation [119]
sPS‐based nanofibrous monoliths

Adsorption of:

Organic solvent

Edible oil

Fuel oil

Adsorption capacity:

81.3 g g−1

44.4 g g−1

41.9 g g−1

Highly reusable, loss of 10% uptake capacity after 20 cycles. [112]
Graphene foams Removal of oil (toluene, hexadecane, and olive oil) [258]
rGO‐based cellular network Adsorption of diesel, gasoline, motor oil, petroleum, and toluene Adsorption capacities: 100–300 g g−1 using the material with a density of 4.3 mg cm−3; over 600 g g−1 with a lower density material (1.5 mg cm−3) Recycled by compression for at least six cycles with the capacity maintained at >95% [259]
Ag NPs‐PVSA beads

Adsorption of:

Hg2+

Rhodamine B

Adsorption capacit:

190.58 mg g−1

53.02 mg g−1

Multifunctional in removing inorganic, organic, and biological contaminants

Easily handled

[98]
Inactivation of S. aureus Bactericidal efficiency: 98.39%
Inactivation of E. coli Bactericidal efficiency: ≈100%
Ag‐m‐MOP‐PAM composites Catalytic reduction of 4‐nitrophenol Rate of reaction: 0.037–0.197 min−1 [205]
Fe3O4‐PAM beads Decomposition of MO Decomposition efficiency: 99.6% Material reused six times [195]
TiO2 beads Photodegradation of MB Degradation efficiency: 98.53%; rate constant = 0.05 min−1 Photodegrading the organic and photodisinfection of biological contaminants [101]
Photodisinfection of Ecoli Bactericidal efficiency: 100%
Photodisinfection of Saureus Bactericidal efficiency: 100%
PAE‐based polyHIPEs Degradation of bisphenol A (BPA) Degradation efficiency: 98%

Organic photocatalyst

Visible light‐active

[147]
P(St‐co‐DVB) impregnated with PEI CO2 capture from different sources

Adsorption capacity: 5.6 mmol g−1 (pure CO2); 4.5 mmol g−1 (10% CO2/N2); 6.4 mmol g−1 (under moisture)

High CO2/N2 selectivity, fast kinetics, stability [108]
P(St‐co‐DVB)/nano‐TiO2/PEI CO2 capture Capture capacity: 5.25 mmol g−1 Rapid adsorption/desorption within 10 min; reused 50 times with a capacity loss of less than 10% [199]
PGD‐HKUST‐1‐PEI CO2 capture from different sources Adsorption capacity: 4.3 mmol g−1 (pure CO2); 3.0 mmol g−1 (simulated flue gas); 1.8 mmol g−1 (air) 2.8 mmol (CO2 from simulated flue gas) per gram after 20 cycles [217]
CNT‐PEI foam CO2 capture Capture capacity: 2.555 wt% Highly recyclable [288]
HIPE templated p(NMe3 +–MS OH) material CO2 capture

Overall sorption rate: 2.5 × 10−2 mmol;

Swing size: 4.9 × 10−1 mmol g−1

Reversible CO2 capture by humidity swing [186]
P(VBC‐DVB) modified with quaternary ammonium hydroxide groups CO2 adsorption

Adsorption rate: up to 1.1 × 10−1 mmol min−1 g−1; desorption rate = up to 3.5 × 10−2 mmol min−1 g−1; overall rate = up to 2.5 × 10−2 mmol min−1 g−1

Swing size: up to 7.2 × 10−1 mmol g−1

[291]
Zeolite‐embedded PAM‐derived carbon foams CO2 capture

Capture capacity: 5 mmol g−1

Regenerated by electric swing adsorption

CO2/N2 selectivity of up to 80

70% performance retention after 30 cycles under humid conditions

[250]
Silica‐P(St‐co‐DVB) Removal of particulate matters (PM2.5)

Removal efficiency: 93%

Saturated adsorption capacity: ≈520 mg g−1

Easily separated, recycled [187]
P(St‐co‐MMA) monolith filter Removal of particulate matters (PM2.5) and CO2 Removal efficiency: 73% for PM2.5 and 77.2% for CO2 Materials showing excellent dust loading capacity and good resistance [118]
Zwitterionic hydrogel polyHIPEs Environmental sensitivity Anti‐polyelectrolyte effect [145]
Modified P(St‐DVB‐EHA) membranes Sensing K+ ions Improved detection limits and selectivity [compared to poly(vinyl chloride) (PVC) membranes] Nernstian response to K+ ions [121]
Porous Co3O4 NH3 gas sensing Sensitivity 146% and response time 2 s for a concentration of 100 ppm Limit of detection: 0.5 ppm [293]
rGO/PolyHIPE foam Pressure sensing

High sensitivity (over 0.6 Pa to 200 kPa pressure range)

Response time: less than 15.4 ms

Cyclic stability: at least 10 000 cycles

[253]
rGO/polyHIPE foam Pressure sensing

Gauge factor: 1.5 within 15% strain

Pressure response range: up to > 200 kPa

Pressure sensitivity: 0.83 kPa−1 for pressure <20 kPa

[255]