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Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively 

studying the organization of white matter in the human brain. Here we introduce QSIPrep, an 

integrative software platform for the processing of diffusion images that is compatible with nearly 

all dMRI sampling schemes. Drawing upon a diverse set of software suites to capitalize upon their 

complementary strengths, QSIPrep facilitates easy implementation of best practices for processing 

of diffusion images.
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Diffusion-weighted MRI (dMRI) is the primary technique for non-invasive studies of 

white matter organization in humans. In recent years, dMRI methods have proliferated 

as the technology has advanced1–4 (see Supplementary Note 1). However, rapid progress 

also yielded disparate acquisition schemes, analysis approaches, and file formats that are 

frequently incompatible. As a result, most teams tend to use a limited set of methods, failing 

to capitalize upon the complementary capabilities of different tools.

In response to these obstacles, we introduce QSIPrep, a unified and robust platform 

for processing and reconstructing nearly all dMRI data (Figure 1). QSIPrep leverages 

the metadata recorded in the Brain Imaging Data Structure (BIDS)5 to automatically 

configure appropriate preprocessing workflows based on the data provided. Furthermore, 

QSIPrep includes curated reconstruction workflows (see Extended Data Figure 3 and Online 

Methods) that consume the output from QSIPrep’s preprocessing pipeline and implement 

advanced reconstruction and tractography methods. Both preprocessing pipelines and 

reconstruction workflows are fully documented by animated “before vs. after” visual reports 

at each step, as well as standardized text that details the methods used (see supplementary 

figures 1 and 2 as well as Supplementary Note 2). Throughout, QSIPrep converts data to 

a consistent, interoperable format to capitalize upon the diverse strengths of top software 

packages (e.g., FSL6, DSI Studio7, DIPY8, ANTs9, and MRtrix10).

QSIPrep is distributed as both a Python package and as a Docker container that includes 

the necessary dependencies, ensuring that it is able to run on most computing systems11. 

QSIPrep has been publicly available since December 2019. Continuous integration testing, 
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modular design and an open development environment have enabled rapid bug detection and 

integration of feature requests from its user base.

To illustrate the generalizability of QSIPrep to various static q-space sampling schemes, we 

processed eight different datasets acquired with a wide range of acquisition parameters 

and scanning platforms (n = 655 total scans). The acquisition schemes for these 

datasets included a standard single-shell sequence12, four different multi-shell sampling 

schemes13,14,15,16, two Cartesian grid diffusion spectrum images (DSI) with different 

sampling densities, as well as a compressed-sensing DSI (CS-DSI) sequence with random 

q-space sampling17 (Extended Data Fig. 1). We compared the performance of QSIPrep to 

published pipelines tailored for each dataset on two outcomes: image smoothness and image 

quality.

The spatial smoothness of the image series was characterized by the mean of the estimated 

full width at half maximum (FWHM) smoothness of the b=0 images. This measure is 

impacted by multiple interpolations and imprecise spatial resampling of images, which 

introduce artifactual blurriness that reduces image contrast and anatomic detail. The 

image quality metric we evaluated was the neighboring DWI correlation (NDC)18. NDC 

summarizes the pairwise spatial correlation between each pair of dMRI volumes that sample 

the closest points in q-space; lower values reflect reduced data quality, driven by noise 

and misalignment between dMRI volumes. While denoising19,20 and motion correction will 

increase NDC, it can also be artificially inflated by interpolation-driven spatial smoothing. 

Accordingly, we regressed image smoothness from the NDC values before comparing 

pipelines (see Supplementary Note 3).

Significance in all tests reported here was determined using t-statistics from a linear 

mixed effects model with subject as a random intercept. Degrees of freedom and p-values 

were estimated using the Satterthwaite approximation. For shelled schemes, QSIPrep 

produced significantly less blurred images than pipelines tailored specifically for each 

dataset (Figure 2A and Supplementary Table 2). QSIPrep images were substantially less 

blurred than the custom pipelines developed for the single-shell sequence from the PNC 

(ΔFWHM = −0.16mm), the multi-shell sequence from ABCD (ΔFWHM = −0.8mm), and 

the multi-shell sequence from the HCP-Lifespan (ΔFWHM = −0.75mm). Comparisons of 

raw and processed data further demonstrates the relatively large increase in smoothness 

introduced by many previously published pipelines (Extended Data Figure 2). In contrast, 

the smoothness of QSIPrep’s outputs was slightly higher than that produced by the pipeline 

developed for the NODDI-optimized MultiShell 113 sequence (ΔFWHM = +0.09mm); no 

differences were seen in data from HBN.

Notably, QSIPrep yielded images with higher NDC than nearly all custom pipelines 

designed for shelled imaging sequences (Figure 2B and Supplementary Table 2). The only 

exception to this was the HCP pipeline, where NDC scores were not significantly different 

from QSIPrep. These results emphasize that QSIPrep produces images of superior (or at 

least noninferior) data quality compared to custom pipelines developed for a wide variety of 

shelled acquisition schemes.
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One important advantage of QSIPrep is that in addition to shelled acquisition schemes, it 

can also effectively process advanced non-shelled schemes using an algorithm introduced in 

QSIPrep. In this case, no direct comparisons to an existing pipeline were available, so only 

comparisons with raw data were evaluated. Inevitably, any image processing introduces at 

least some increase in smoothness (Figure 2C and Supplementary Table 4). As expected, 

images processed with QSIPrep were slightly but significantly smoother than the raw images 

(ΔFWHM = +0.53mm), similar to that seen for shelled schemes (Extended Data Figure 

2). Notably, processing non-shelled sequences with QSIPrep significantly improved data 

quality, reflected in a large increase in NDC values (see Figure 2D and Supplementary Table 

5).

Following preprocessing, QSIPrep’s set of curated reconstruction workflows provides two 

critical benefits to users: correct processing and a uniform derived output format. First, 

workflows are designed to ensure that data preprocessed by QSIPrep are handled correctly 

within the reconstruction workflow. Second, outputs from each reconstruction method 

conform to a consistent format across workflows. This emphasis on software interoperability 

facilitates comparisons between methods (Extended Data Figure 3). Additionally, QSIPrep 

allows users to apply standard processing and reconstruction methods developed for shelled 

sequences to advanced non-shelled sequences using a q-space-based interpolation. The 

ability to apply standard analytic methods to non-shelled schemes dramatically increases the 

accessibility of advanced non-shelled acquisition sequences.

One of the most popular applications for dMRI is to construct whole-brain structural 

connectomes via streamline tractography. However, file formats for storing and representing 

connectomes vary across software packages, thereby limiting comparisons. Furthermore, 

many software packages produce inconsistently sized matrices across subjects, due to 

some participants missing small regions from high-resolution atlases. In contrast, QSIPrep 

ensures that connectivity matrices are directly comparable across methods and participants. 

Specifically, the software checks that matrices are correctly shaped across all atlases and 

stores them in easily accessible HDF5 files. Finally, due to the interoperability of the 

component software elements, QSIPrep allows a far more diverse array of connectivity 

measurements to be calculated than is possible with individual software packages (see 

Supplementary Table 1).

Several limitations of the current version of QSIPrep should be noted. First, the software 

does not support double diffusion encoding q-space imaging or gradient tensor imaging. 

These scanning sequences are not widely used, are not currently supported by BIDS, and 

lack open preprocessing software. Second, it is critical to note that we do not claim that 

the reconstruction workflows are optimal for any given method, only that they implement 

current best practices. Traditionally, the question of optimality in reconstruction and 

tractography methods has been difficult to address, in part due to the lack of comparability 

of measures produced by different software packages. The interoperability provided by 

QSIPrep facilitates the comparison of many measures – including orientation distribution 

functions (ODFs), anisotropy scalars, and connectivity matrices – across reconstruction 

methods and sampling schemes.
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Taken together, QSIPrep allows researchers to correctly apply reproducible preprocessing 

pipelines and advanced reconstruction methods to nearly any dMRI data: a scope currently 

unmatched by other current dMRI pipelines (see Supplementary Note 4). By harnessing 

cutting-edge techniques from individual software packages and unifying them in an 

interoperable framework, the widely generalizable methods provided by QSIPrep perform 

as well or better than existing customized solutions that can only be applied to a subset 

of sampling schemes. As QSIPrep’s processing workflows adapt to the characteristics of 

the input data, it yields an appropriate pipeline as long as the user has correctly specified 

their data in BIDS. This alleviates much of the burden for users who wish to follow 

best practices in data processing, but do not have the time or skills to learn the minutiae 

of multiple software packages. Critically, the adaptive pipelines configured by QSIPrep 

dramatically enhance accessibility and reproducibility without sacrificing quality. This is 

underscored by the result that pipelines automatically constructed by QSIPrep yielded 

results with comparable or better data quality and smoothness compared to established 

pipelines for multiple studies. As such, QSIPrep facilitates the adoption of fully reproducible 

best practices for the processing, quality assurance, and reconstruction of diffusion images.

ONLINE METHODS

QSIPrep’s preprocessing workflows

The preprocessing workflow is dynamically built based on data provided as BIDS input. 

Separate dMRI scans can be grouped and processed together depending on their acquisition 

parameters and user-supplied options. Image processing can include denoising, Gibbs 

unringing, head motion, eddy current and distortion correction, b=0 reference image creation 

(including an optional single-subject b=0 template), coregistration to the T1w image, spatial 

normalization, image resampling, and gradient rotation. Figure 1‘s left panel depicts the 

sequence of these steps.

The execution of the workflow is managed by Nipype21, which provides support for 

multi-core parallelization, algorithm input validation and interfaces to the numerous 

software packages used by QSIPrep. Coding style and some workflows were adapted from 

fMRIPrep22 version 1.2.6. The steps detailed in this section can be enabled or disabled by 

providing flags on the command line call to QSIPrep. We refer the user to the documentation 

at https://qsiprep.readthedocs.io/en/latest/usage.html#command-line-arguments.

Conform, Merge, and Denoise workflow—One of the unique challenges of dMRI 

preprocessing is that the q-space sampling scheme is often split into multiple separate scans. 

Moreover, groups of these scans may be acquired with opposite phase encoding directions 

so that their b=0 images can be used for Susceptibility Distortion Correction (SDC). The 

heuristic used by QSIPrep is to divide the scans into “warped groups” that share the same 

susceptibility distortions. The warped groups are sent to the conform, merge, and denoise 

workflow.

All spatial transformation operations in QSIPrep (excluding TOPUP/eddy) are performed 

using ANTs9. ANTs internally uses an LPS+ coordinate system. The FSL-style bvec format 

required by BIDS specifies gradient directions with respect to the image axis, not world 
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coordinates. By conforming all images and bvecs to LPS+ image orientation, ANTs can be 

used directly for registration and transformation on both the images and the gradient vectors. 

The conform step enforces this orientation and checks that the images have matching qform/

sform mappings.

Next, warped groups undergo image-based artifact corrections (using MP-PCA23 or 

Patch2Self20, Gibbs unringing24, bias correction25, and b=0 image-based intensity 

normalization), and concatenated if multiple runs are present. This step can be done as 

concatenate-then-denoise or denoise-then-concatenate (default), depending on the user’s 

preference. If images are concatenated before denoising, there will be more data for MP­

PCA/patch2self to include in denoising. However, if the concatenated scans are very far out 

of alignment with one another, the performance of MP-PCA may be sub-optimal. The other 

denoising methods are not affected by when data is concatenated. The user can select the 

concatenate-then-denoise order using a command line flag. A visual description of these 

workflows is presented in Supplementary Figure 3.

Head Motion, Eddy Current and Susceptibility Distortion Correction workflow
—We combined head motion correction (HMC), eddy current correction (ECC), and 

susceptibility distortion (SDC) into a single workflow due to the interdependence of the 

TOPUP and eddy tools. This workflow is split into special cases for shelled sampling 

schemes (multi-shell or single-shell) and all other sampling schemes.

Shelled sampling schemes.: If a reverse-phase encoding direction image is available in the 

fmap/ or dwi/ directories, a fieldmap is calculated using TOPUP and sent to eddy to be 

applied in addition to HMC and ECC. In all other cases the fieldmap is calculated using 

workflows adapted from fMRIPrep and applied to the motion-corrected and imputed output 

from eddy.

Cartesian and random sampling schemes.: These schemes are processed using 

the QSIPrep’s novel SHORELine algorithm (https://qsiprep.readthedocs.io/en/latest/

preprocessing.html?#head-motion-estimation-shoreline) before being processed using the 

distortion correction workflows.

Regardless of the sampling schemes, SDC requires a careful selection of representative 

b=0 images from each DWI scan. QSIPrep selects up to three (depending on availability) 

b=0 images evenly spaced in time from each group of phase encoding directions. Using a 

representative subset of all b=0 images is required to limit the run time of TOPUP. The 

details of which images are used for SDC are included in the HTML report. Newer versions 

of QSIPrep implement the “best b=0” workflow used by the developmental HCP pipelines15, 

where b=0 images are selected that have the highest average spatial correlation to the other 

b=0 images in the same warped group.

b=0 template workflow—The reference image for each DWI series is created by 

extracting the b=0 images from the series after HMC, ECC, and SDC. They are combined 

using a normalized average as implemented in ANTs and undergo a histogram equalization 
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as implemented in DIPY. A visual report is generated showing the b=0 template before and 

after histogram equalization.

Intramodal template workflow—In cases where there are multiple sessions or multiple 

separate DWI scans that should not be merged, there will be multiple b=0 reference images. 

Each can be affected by errors in SDC or intermodal co-registration to the T1w image. 

QSIPrep provides the option to create an “intramodal template” using ANTs template 

construction26 on the set of b=0 reference images. The intramodal template is co-registered 

to the T1w image instead of each individual b=0 reference image. The transform to the 

intramodal template as well as the intramodal template’s transform to the T1w image are 

added to the stack of transforms that get combined and applied to each DWI (avoiding an 

additional interpolation).

Co-registration and resampling workflow—Coregistration between the b=0 template 

image (or the intramodal b=0 template) is performed using antsRegistration. If the user 

requests a T1w-based spatial normalization to a template, this is also performed using the 

antsRegistration-based workflow adapted from fMRIPrep. Similar to the HCP Pipelines27 

and the ABCD MMPS pipeline13, QSIPrep uses a rigid transformation to register the skull­

stripped T1w image to AC-PC alignment. Unlike these other pipelines, QSIPrep combines 

all spatial transformations so that only a single resampling can be applied. However, the 

eddy-based workflow uses eddy’s interpolation along with a separate final interpolation 

to AC-PC alignment. The final resampling uses a Lanczos-windowed Sinc interpolation 

if the requested output resolution is close to the resolution of the input data. If more 

than a 10% increase in spatial resolution is requested, then a BSpline interpolation is 

performed to prevent ringing artifact. The final resampling can at most include the affine 

head motion correction, the polynomial eddy current correction, the nonlinear susceptibility 

distortion correction, the nonlinear registration to the b=0 template, the coregistration to 

the T1w image, and the realignment to AC-PC orientation. Combining these into a single 

shot interpolation helps preserve high frequency spatial features and precision of the final 

transform. Any T1w-based steps can be skipped using the --dwi-only flag.

QSIPrep’s reconstruction workflows

A major challenge in comparing reconstruction methods is that many dMRI software 

packages have their own file formats, coordinate systems, orientation conventions, and 

visualization tools (see Supplementary Note 1). This diversity is compounded by the 

large number of possible dMRI acquisition schemes, many of which only meet the 

requirements of a subset of reconstruction methods. QSIPrep’s set of curated reconstruction 

workflows provides two critical benefits to users: correct processing and a uniform derived 

output format. First, workflows are designed to ensure that data preprocessed by QSIPrep 

are handled correctly within the reconstruction workflow. Second, outputs from each 

reconstruction method conform to a consistent format across workflows.

This emphasis on software interoperability facilitates comparisons between methods. For 

example, Extended Data Figure 3 displays the results from a number of reconstruction 

workflows, depicting disparate sampling schemes reconstructed using popular methods from 
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MRtrix3, DSI Studio, and the Laplacian-regularized MAPMRI (MAPL)3 implementation 

from DIPY. The visual similarity of the reconstructed ODFs and Fiber Orientation 

Distributions (FODs) suggests that many of these methods share important features like 

peak directions. All reconstruction outputs are produced in the native file format of each 

software package used and also consistently provided in a DSI Studio (fib format) file.

Capitalizing upon the interoperability described above, QSIPrep also allows users to 

apply standard processing and reconstruction methods developed for shelled sequences 

to advanced non-shelled sequences. To do this, QSIPrep converts non-shelled sampling 

schemes to a multi-shell scheme using a 3dSHORE-based q-space interpolation. This 

conversion allows, for example, the use of multi-shell multi-tissue reconstruction and 

MRtrix3 tractography methods on any non-shelled sampling scheme. The ability to apply 

standard analytic methods to non-shelled schemes dramatically increases the accessibility of 

these advanced acquisition sequences.

QSIPrep’s curated reconstruction workflows apply developer-recommended postprocessing 

and reconstruction steps, storing the results in both the software-native and DSI Studio 

formats. The pipelines were chosen from the most popular open-source diffusion imaging 

software packages such that there is at least one workflow for each q-space sampling 

scheme. A comparison of pipelines is shown in Supplementary Table 1 and their 

implementation details are described below grouped by software. While the included 

workflows use fixed parameters, users can download and edit workflow configuration files 

to change the workflow’s behavior.

MRtrix3—There are a number of MRtrix3-based workflows that share the same initial steps 

but differ in how the FOD estimation is performed. In each MRtrix3-based workflow the 

fiber response function is estimated using dwi2response dhollander28 with a brain mask 

based on the T1w. The main differences are the MRtrix3 workflows are in 1) the CSD 

algorithm used to estimate WM FODs and GM/CSF compartments (either multi-shell multi­

tissue CSD, MSMTCSD; or single-shell 3-tissue28,29 CSD, SS3T-CSD) and 2) whether a 

T1w-based tissue segmentation is used during tractography. The *_noACT versions of the 

pipelines must be used if SDC was not performed during preprocessing. ACT requires 

SDC to align the T1w-based segmentation for accurate use during tractography. Otherwise, 

cropping is performed at the T1w-based GM/WM interface along with backtracking. In 

all MRtrix3 pipelines, tractography is performed using tckgen, which employs the iFOD2 

probabilistic tracking method to generate 107 streamlines with a maximum length of 

250mm, minimum length of 30mm, FOD power of 0.33. Weights for each streamline are 

calculated using SIFT2, which is then used to estimate the structural connectivity matrix.

mrtrix_multishell_msmt.: This workflow uses the dwi2fod msmt_csd algorithm28 to 

estimate FODs for white matter, gray matter and cerebrospinal fluid using multi-shell 

acquisitions. The white matter FODs are used for tractography and the T1w segmentation 

is used for anatomical constraints30. mrtrix_multishell_msmt_noACT is identical except 

that no T1w-based anatomical constraints are used in tractography. mrtrix_singleshell_ss3t 
is optimized for single-shell acquisitions and also estimates multi-tissue FODs for 

white matter, gray matter and cerebrospinal fluid using the ss3t_csd_beta1 (SS3T-CSD) 
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algorithm28,29, provided via the MRtrix3Tissue fork of MRtrix3. The white matter FODs 

are used for tractography and the T1w segmentation is used for anatomical constraints30. 

mrtrix_singleshell_ss3t_noACT removes the anatomical constraints from tractography.

DSI Studio—dsi_studio_gqi runs the standard GQI reconstruction31 followed by 

deterministic tractography32. GQI works on almost any sampling scheme. GQI models 

the diffusion ODF. Diffusion ODFs exhibit smaller peaks than are commonly seen with 

CSD, but robustly detect fiber crossings33. Although GQI technically works on DTI scans, 

with spherical sampling on a single-shell around b=1000 s/mm2, its performance markedly 

improves when more q-space samples are available. The tractography performed in this 

pipeline ensures that 5 million streamlines are created with a maximum length of 250mm, 

a minimum length of 30mm, random seeding, a step size of 1mm, and an automatically 

calculated Quantitative Anisotropy32 (QA) threshold. Additionally, a number of anisotropy 

scalar images are produced such as quantitative anisotropy (QA)31, generalized fractional 

anisotropy (GFA), and the isotropic component of the ODF.

DIPY

dipy_mapmri.: Mean Apparent Propagator MRI (MAPMRI) is a recently proposed 

reconstruction method34 that can estimate ensemble average diffusion propagators (EAPs) 

and ODFs analytically using multi-shell, Cartesian, or random q-space sampling schemes. 

This method produces EAP-derived scalars like return to origin probability (RTOP), return 

to axis probability (RTAP), return to plane probability (RTPP), q-space inverse variance 

(QIV), and mean squared displacement (MSD). The ODFs are saved in DSI Studio format 

and optionally as spherical harmonics coefficients in the MRtrix3 format. dipy_3dshore. 
The 3D Simple Harmonic Oscillator-based Reconstruction and Estimation (3dSHORE)35 

method also uses a closed-form solution to estimate EAPs and ODFs from q-space data. 

This workflow uses the BrainSuite 3dSHORE basis in a DIPY reconstruction. Much like 

dipy_mapmri, EAP-related scalars such as RTOP, RTAP, RTPP, and MSD are estimated. For 

both of these reconstruction pipelines, tractography is run identically to the dsi_studio_gqi.

Experimental DSI scheme-converting reconstruction

csdsi_3dshore: This pipeline is for DSI or compressed-sensing DSI. The first step is an 

L2-regularized 3dSHORE reconstruction3 of the ensemble average propagator in each voxel. 

These EAPs are then used to 1) calculate ODFs, which are then sent to DSI Studio for 

tractography and 2) impute signal for a multi-shell (specifically HCP) sampling scheme, 

which is run through the mrtrix_multishell_msmt pipeline. The resampling is similar to 

a previouslydescribed GQI-based method36 but uses the 3dSHORE basis set to estimate 

out-of-sample images.

Structural connectivity matrices—Tractography resulting in connectivity matrices are 

conformed to a standard HDF5-based output format so as to be directly comparable across 

methods and software packages. A set of commonly used parcellation schemes are included 

with QSIPrep, such as the Schaefer atlases in the 100, 200, and 400 parcel resolutions, the 

brainnetome atlas (264 regions), AICHA (384 regions), Gordon (333 regions), the AAL (116 
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regions), and the Power atlas (264 regions). Furthermore, users can easily add their own 

custom atlases as required.

Evaluation Data

Data were gathered from a number of independent studies from multiple institutions. Each 

study obtained informed consent from participants and was approved by their institutions’ 

ethics committee. These samples were selected to test a variety of q-space sampling 

schemes and evaluate if QSIPrep handles each one correctly. An overview of the acquisition 

parameters is provided in Extended Data Figure 1. QSIPrep was run on the raw data from 

each study. Spatial smoothness and neighboring DWI correlation18 were calculated for the 

QSIPrep-preprocessed data and for the data processed using a pipeline specifically designed 

for that sampling scheme. In the case of non-shelled schemes, QSIPrep was compared to 

unprocessed data.

Single-shell, DTI.—The single shell data was collected as part of the Philadelphia 

Neurodevelopmental Cohort (PNC)12 and processed according to the methods described 

by Roalf et al.37. This pipeline is similar to QSIPrep, utilizing eddy (from FSL5) and 

custom code for applying distortion correction. The QSIPrep pipeline differs in that it adds 

MP-PCA, Gibbs unringing, FSL6, and resampling using ANTs. A total of 111 subjects were 

randomly selected from the available PNC dMRI data.

Multi-shell, NODDI-optimized.—This sampling scheme was designed with the goal of 

fitting microstructural models such as NODDI38. The data were published Pines et al.14, 

where the preprocessing scheme used FSL5’s TOPUP and eddy with outlier replacement 

enabled. The QSIPrep pipeline differed in that it added MP-PCA denoising, Gibbs 

unringing, FSL6, and resampling using ANTs. We evaluated a sample of 136 participants 

from the cohort used by Pines et al.

Multi-shell, ABCD.—A total of 106 datasets were downloaded from the NIMH Data 

Archive (NDA) repository as raw NIfTIs and following minimal preprocessing. The ABCD 

dMRI preprocessing pipeline13 does not use any of the same software as QSIPrep but 

performs similar steps. The ABCD pipeline includes gradient nonlinearity correction and 

uses in-house code for performing Eddy current and distortion correction. QSIPrep adds 

MP-PCA, Gibbs unringing, ECC, SDC using FSL6, and resampling using ANTs.

Multi-shell, HCP-Lifespan.—A total of 34 subjects were scanned using the HCP­

Lifespan imaging protocol15 and processed using both the official HCP diffusion pipelines39 

(v4.0.0-alpha.5) and QSIPrep. The HCP diffusion pipeline included motion and eddy current 

correction, distortion correction, across-scan intensity normalization, coregistration to the 

T1w image, gradient unwarping and image pair averaging. QSIPrep was upgraded as part 

of 0.9.0beta1 to include the image pair averaging so that QC measures could be compared 

directly between the QSIPrep and HCP pipeline outputs. QSIPrep was adjusted to use a 

quadratic first-level model in eddy to match the HCP diffusion pipeline.
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Multi-shell, HBN.—A total of 27 HBN16 subjects were processed using both an early 

prototype version of dMRIPrep (https://github.com/nipy/dmriprep) and QSIPrep. Both 

dMRIPrep and QSIPrep use TOPUP and eddy for distortion, eddy current, and motion 

correction, but dMRIPrep did not include Gibbs unringing or MP-PCA.

Cartesian grid (DSI) schemes.—Prior to QSIPrep there was no publicly available 

software for applying head motion correction to DSI or CS-DSI acquisitions. Therefore, 

the QSIPrep-preprocessed images were compared directly to the NDC calculated on the 

raw images. DSI258 was a repeated measures study with eight repeated scans per subject. 

CS-DSI acquired four different random schemes per subject. DSI 789 scans acquired 789 

unique coordinates on a Cartesian grid in q-space.
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Extended Data

Extended Data Fig. 1. Diffusion imaging data used in QSIPrep development and evaluation.
Cartesian (DSI), random (CS-DSI), and shelled (single-shell DTI and multi-shell) sequences 

were used to test the preprocessing and reconstruction workflows in QSIPrep. Sequences 

varied widely in their maximum b-value (1000–5000 s/mm2), number of q-space samples 

(64–789) and voxel size (1.5–2.3 mm). The row colors represent these schemes across 

all figures. The colors in the HCP-Lifespan image indicate that these samples came from 

different scans, grouped by phase-encoding direction.
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Extended Data Fig. 2. Comparing added smoothness from QSIPrep and previous pipelines.
Preprocessing generally increases the spatial smoothness of images relative to the raw 

images. Here the raw image smoothness (x-axis) is compared to the same images after being 

processed by the published pipeline for each dataset (left) and QSIPrep (right). The direct 

comparison between QSIPrep and the Previous Pipeline is presented in Fig. 2.
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Extended Data Fig. 3. QSIPrep reconstruction workflows produce comparable output across 
diverse sampling schemes and reconstruction methods.
Four sampling schemes each reconstructed using four methods: GQI from DSI Studio, 

multi-tissue CSD from MRtrix, and MAPL from Dipy. ODF fields are shown in two white 

matter regions (left), a single fiber area in the corpus callosum (top) and a crossing fiber 

region in the centrum semiovale (bottom). The middle panel shows ODFs reconstructed 

in the single fiber region, and the right panel shows ODFs reconstructed in the crossing 

fiber region for the four sampling schemes (rows) and the three reconstruction methods 

(columns).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

R01 MH111886 and R01 MH11886-02 for DJO, NINDS R01-NS099348-01 for XH and DSB, UL1TR001878 for 
JD and MK, 1 U01 EY025864-01 to GKA, MH080243 and Staunton Farm Foundation for BSL, T32 MH 018951 
for LMC, R01MH113550, RF1MH116920, R01MH120482 for TDS, CBICA Software Seed Grants for MC and 
AA, R01-EB027585-01 for EG, SF, AR, AHR AK, W911NF-16-1-0474 from the Army Research Office and by 
the Institute for Collaborative Biotechnologies under Cooperative Agreement W911NF-19-2-0026 with the Army 
Research Office to STG and JMV, RF1AG054409 to CD. BL was supported by T32MH014654. Support for the 
collection of the data for Philadelphia Neurodevelopment Cohort (PNC) was provided by grant RC2MH089983 
awarded to REG. Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive 
Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, 
longitudinal study designed to recruit more than 10,000 children age 9–10 and follow them over 10 years into early 
adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under 
award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, 
U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, 
U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, 
U01DA041089, U24DA041123, U24DA041147. A full list of supporters is available at https://abcdstudy.org/
federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found 

Cieslak et al. Page 14

Nat Methods. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://abcdstudy.org/
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html


at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the 
study and/or provided data but did not necessarily participate in analysis or writing of this report. This manuscript 
reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium 
investigators.

REFERENCES

1. Wedeen VJ, Hagmann P, Tseng W-YI, Reese TG & Weisskoff RM Mapping complex tissue 
architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–
1386 (2005). [PubMed: 16247738] 

2. Alexander DC A general framework for experiment design in diffusion MRI and its application in 
measuring direct tissue-microstructure features. Magn. Reson. Med. 60, 439–448 (2008). [PubMed: 
18666109] 

3. Fick RHJ, Wassermann D, Caruyer E. & Deriche R. MAPL: Tissue microstructure estimation 
using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385 
(2016). [PubMed: 27043358] 

4. Yeh CH, Smith RE, Liang X, Calamante F. & Connelly A. Correction for diffusion MRI fibre 
tracking biases: The consequences for structural connectomic metrics. Neuroimage 142, 150–162 
(2016). [PubMed: 27211472] 

5. Gorgolewski KJ et al. The brain imaging data structure, a format for organizing and describing 
outputs of neuroimaging experiments. Sci. Data 3, (2016).

6. Andersson JLR & Sotiropoulos SN An integrated approach to correction for offresonance effects 
and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016). [PubMed: 
26481672] 

7. Yeh F-C & Tseng W-YI NTU-90: A high angular resolution brain atlas constructed by q-space 
diffeomorphic reconstruction. Neuroimage 58, 91–99 (2011). [PubMed: 21704171] 

8. Garyfallidis E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 
(2014). [PubMed: 24600385] 

9. Avants BB, Epstein CL, Grossman M. & Gee JC Symmetric diffeomorphic image registration 
with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. 
Image Anal. 12, 26–41 (2008). [PubMed: 17659998] 

10. Tournier JD et al. MRtrix3: A fast, flexible and open software framework for medical image 
processing and visualisation. NeuroImage vol. 202 116137 (2019). [PubMed: 31473352] 

11. Gorgolewski KJ et al. BIDS apps: Improving ease of use, accessibility, and reproducibility of 
neuroimaging data analysis methods. PLOS Comput. Biol. 13, e1005209 (2017).

12. Satterthwaite TD et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. 
NeuroImage vol. 86 544–553 (2014). [PubMed: 23921101] 

13. Hagler DJ et al. Image processing and analysis methods for the Adolescent Brain Cognitive 
Development Study. Neuroimage 202, 116091 (2019). [PubMed: 31415884] 

14. Pines AR et al. Leveraging multi-shell diffusion for studies of brain development in youth and 
young adulthood. Dev. Cogn. Neurosci. 43, 100788 (2020). [PubMed: 32510347] 

15. Harms MP et al. Extending the Human Connectome Project across ages: Imaging protocols 
for the Lifespan Development and Aging projects. Neuroimage 183, 972–984 (2018). [PubMed: 
30261308] 

16. O’Connor D. et al. The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating 
inter-individual differences and their reliabilities across scan conditions and sessions. Gigascience 
6, giw011 (2017).

17. Paquette M, Merlet S, Gilbert G, Deriche R. & Descoteaux M. Comparison of sampling strategies 
and sparsifying transforms to improve compressed sensing diffusion spectrum imaging. Magn. 
Reson. Med. 73, 401–416 (2015). [PubMed: 24478106] 

18. Yeh FC et al. Differential tractography as a track-based biomarker for neuronal injury. Neuroimage 
202, 116131 (2019). [PubMed: 31472253] 

19. Veraart J. et al. Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–
406 (2016). [PubMed: 27523449] 

Cieslak et al. Page 15

Nat Methods. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://abcdstudy.org/consortium_members/


20. Fadnavis S, Batson J. & Garyfallidis E. Patch2Self: Denoising Diffusion MRI with Self-Supervised 
Learning. NeurIPS 1–11 (2020).

21. Gorgolewski K. et al. Nipype: A flexible, lightweight and extensible neuroimaging data processing 
framework in Python. Front. Neuroinform. 5, (2011). [PubMed: 21779242] 

22. Esteban O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 
111–116 (2019). [PubMed: 30532080] 

23. Veraart J, Sijbers J, Sunaert S, Leemans A. & Jeurissen B. Weighted linear least squares estimation 
of diffusion MRI parameters: Strengths, limitations, and pitfalls. Neuroimage 81, 335–346 (2013). 
[PubMed: 23684865] 

24. Kellner E, Dhital B, Kiselev VG & Reisert M. Gibbs-ringing artifact removal based on local 
subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581 (2016). [PubMed: 26745823] 

25. Tustison NJ et al. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 29, 1310–
1320 (2010). [PubMed: 20378467] 

26. Avants BB et al. The optimal template effect in hippocampus studies of diseased populations. 
Neuroimage 49, 2457–2466 (2010). [PubMed: 19818860] 

27. Sotiropoulos SN et al. Advances in diffusion MRI acquisition and processing in the Human 
Connectome Project. Neuroimage 80, 125–143 (2013). [PubMed: 23702418] 

28. Dhollander T, Raffelt D. & Connelly A. Unsupervised 3-tissue response function estimation 
from single-shell or multi-shell diffusion MR data without a co-registered T1 image. in ISMRM 
Workshop on Breaking the Barriers of Diffusion MRI vol. 5 5 (2016).

29. MRtrix3Tissue | MRtrix3Tissue is a fork of MRtrix3. https://3tissue.github.io/.

30. Smith RE, Tournier JD, Calamante F. & Connelly A. Anatomically-constrained tractography: 
Improved diffusion MRI streamlines tractography through effective use of anatomical information. 
Neuroimage 62, 1924–1938 (2012). [PubMed: 22705374] 

31. Yeh F-C, Wedeen VJ & Tseng W-YI Generalized q-Sampling Imaging. IEEE Trans. Med. Imaging 
29, 1626–1635 (2010). [PubMed: 20304721] 

32. Yeh FC, Verstynen TD, Wang Y, Fernández-Miranda JC & Tseng WYI. Deterministic diffusion 
fiber tracking improved by quantitative anisotropy. PLoS One 8, (2013).

33. Yeh FC, Wedeen VJ & Tseng WYI Practical crossing fiber imaging with combined DTI datasets 
and generalized reconstruction algorithm. Proc Intl Soc Mag Reson Med (2009).

34. Özarslan E. et al. Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for 
mapping tissue microstructure. Neuroimage 78, 16–32 (2013). [PubMed: 23587694] 

35. Özarslan E, Koay CG & Basser PJ Simple harmonic oscillator based reconstruction 
and estimation for one-dimensional Q-space magnetic resonance (1D-SHORE). in Applied 
and Numerical Harmonic Analysis 373–399 (Springer International Publishing, 2013). 
doi:10.1007/978-0-8176-8379-5_19.

36. Yeh F-C & Verstynen TD Converting Multi-Shell and Diffusion Spectrum Imaging to High 
Angular Resolution Diffusion Imaging. Front. Neurosci. 10, 418 (2016). [PubMed: 27683539] 

37. Roalf DR et al. The impact of quality assurance assessment on diffusion tensor imaging outcomes 
in a large-scale population-based cohort. Neuroimage 125, 903–919 (2016). [PubMed: 26520775] 

38. Zhang H, Schneider T, Wheeler-Kingshott CA & Alexander DC NODDI: Practical in vivo neurite 
orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–1016 
(2012). [PubMed: 22484410] 

39. Glasser MF et al. The minimal preprocessing pipelines for the Human Connectome Project. 
Neuroimage 80, 105–124 (2013). [PubMed: 23668970] 

Cieslak et al. Page 16

Nat Methods. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://3tissue.github.io/


Fig 1 |. QSIPrep workflows.
QSIPrep includes preprocessing (left column) and reconstruction (right column) workflows. 

BIDS data enters the workflow at the top left, following the blue arrow sequentially 

through the possible steps. The outputs from the preprocessing pipeline are inputs for 

the reconstruction workflows, which includes reconstruction methods from MRtrix3, DSI 

Studio, and DIPY. A matrix of orientation distribution functions (ODF)s shows a fiber 

crossing reconstructed from multiple sampling schemes with multiple methods in QSIPrep. 

Gray arrows labeled “Convert Formats” indicate that a reconstruction from one software 

package can be converted to be used in the destination software for further processing 
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(e.g., DIPY reconstructions can be used for tractography in MRtrix3). For further details on 

options for denoising workflows, see Supplementary Figure 1.
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Fig. 2 |. QSIPrep improves image quality without additional smoothing.
a,b, Comparison of image smoothness (FWHM, a) and data quality (NDC, b) produced by 

QSIPrep and previously published pipelines tailored for each acquisition scheme for shelled 

schemes. c,d, Comparison of image smoothness (c) and data quality (d) between QSIprep 

and raw data for nonshelled schemes (for example, Cartesian and random sampling).
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