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1  |  INTRODUC TION

Simulation is a key component of population genetics. It helps to 
train our intuition and is important for the development, testing 
and comparison of inference methods. Because population genetic 
models such as the ancestral recombination and selection graphs 
(Griffiths & Marjoram, 1997; Neuhauser & Krone, 1997) are com-
putationally intractable for inference but relatively easy to sim-
ulate, simulations are also heavily used for parameter inference. 
Approximate Bayesian Computation (ABC; Beaumont et al., 2002) 
is a widely used example. Regardless of the application, the goal 
is to simulate data that is ‘realistic’ in the sense that it resembles 

real data from the population(s) of interest. Typically this is done by 
fixing some parameters that are fairly well-known, then choosing 
other parameters to match some property of the real data, usually 
based on summary statistics. However, this involves a potential loss 
of information in the reduction in summary statistics and then an 
implicit weighting on the relative importance of different summary 
statistics. Often, parameters that create simulations that match one 
type of summary statistic (e.g. the site frequency spectrum) do not 
match others (e.g. linkage disequilibrium patterns; Beichman et al., 
2017). Here, we present a novel parameter learning approach using 
Generative Adversarial Networks (GANs). Our approach creates 
both realistic simulated data and a quantitative way of determining 

Received: 29 July 2020  | Accepted: 5 March 2021

DOI: 10.1111/1755-0998.13386  

S P E C I A L  I S S U E

Automatic inference of demographic parameters using 
generative adversarial networks

Zhanpeng Wang1 |   Jiaping Wang1 |   Michael Kourakos2 |   Nhung Hoang2 |    
Hyong Hark Lee2 |   Iain Mathieson3 |   Sara Mathieson1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

1Department of Computer Science, 
Haverford College, Haverford, PA, USA
2Department of Computer Science, 
Swarthmore College, Swarthmore, PA, 
USA
3Department of Genetics, University of 
Pennsylvania, Philadelphia, PA, USA

Correspondence
Sara Mathieson, Department of Computer 
Science, Haverford College, Haverford, 
PA, USA.
Email: smathieson@haverford.edu

Funding information
National Institutes of Health, Grant/
Award Number: R15HG011528 and 
R35GM133708

Abstract
Population genetics relies heavily on simulated data for validation, inference and 
intuition. In particular, since the evolutionary ‘ground truth’ for real data is always 
limited, simulated data are crucial for training supervised machine learning methods. 
Simulation software can accurately model evolutionary processes but requires many 
hand-selected input parameters. As a result, simulated data often fail to mirror the 
properties of real genetic data, which limits the scope of methods that rely on it. 
Here, we develop a novel approach to estimating parameters in population genetic 
models that automatically adapts to data from any population. Our method, pg-gan, 
is based on a generative adversarial network that gradually learns to generate realistic 
synthetic data. We demonstrate that our method is able to recover input parameters 
in a simulated isolation-with-migration model. We then apply our method to human 
data from the 1000 Genomes Project and show that we can accurately recapitulate 
the features of real data.
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the match between any simulations proposed for a particular real 
data set. For us, ‘realistic’ means ‘cannot be distinguished from real 
data by a machine learning algorithm’, specifically a convolutional 
neural network (CNN).

Machine learning (ML) methods have been emerging more 
broadly as promising frameworks for population genetic inference. 
The high-level goal of training a ML method is to learn a function 
from the input (genetic data) to the output (evolutionary parameters). 
Some early efforts used machine learning to account for issues that 
arise with high-dimensional summary statistics (Blum & François, 
2010; Sheehan & Song, 2016; Ronen et al., 2013). More recently, ma-
chine learning approaches have used various forms of convolutional, 
recurrent and ‘deep’ neural networks to improve inference and visu-
alization (Adrion et al., 2020; Battey et al., 2021; Gower et al., 2020; 
Flagel et al., 2019; Sanchez et al., 2020; Torada et al., 2019; Chan 
et al., 2018). One of the goals of moving to these approaches was to 
enable inference frameworks to operate on the ‘raw’ data (genotype 
matrices), which avoids the loss of information that comes from re-
ducing genotypes to summary statistics. However, these algorithms 
rely heavily on simulated data sets for training. In machine learning 
more broadly, data are often hand-labelled with ‘true’ values—part of 
these data are used to train the model, and part are held aside to test 
the model. In population genetics, such ‘labelled’ training data are 
extremely limited, because the evolutionary ground truth is rarely 
known with certainty. Thus, all approaches rely on simulations to 
train and validate ML models.

Current simulators (Kern & Schrider, 2016; Excoffier et al., 2013; 
Hudson, 2002; Haller & Messer, 2019; Kelleher et al., 2016; Ewing 
& Hermisson, 2010; Teshima & Innan, 2009) are well equipped to 
replicate mechanisms of evolution but require many user-selected 
input parameters including mutation rates, recombination and gene 
conversion rates, population size changes, natural selection, migra-
tion rates and admixture proportions. We do not always have a good 
sense of what these parameters should be, especially in understud-
ied populations and non-model species. For example, mutation and 
recombination rates estimated in one population are frequently 
used to simulate data for another, despite the fact that these rates 
differ between populations (Adrion, Cole, et al., 2020; Harris, 2015; 
Hinch et al., 2011; Harris & Pritchard, 2017; Kessler et al., 2020).

Generative models provide one route to simulating more realistic 
population genetic data. Typically, generative models create artifi-
cial data based directly on observed data, without an explicit un-
derlying model. They have been used to create synthetic examples 
in a wide range of fields, from images and natural language to mu-
tational effects (Riesselman et al., 2018) and single cell sequencing 
(Lopez et al., 2018). In particular, Generative Adversarial Networks 
(GANs) work by creating two networks that are trained together 
(Mirza & Osindero, 2014; Goodfellow et al., 2014). One network (the 
generator) generates simulated data, while the other network (the 
discriminator) attempts to distinguish between ‘real’ data and ‘fake’ 
(synthetic) simulations. As training progresses, the generator learns 
more about the real data and gets better at creating realistic exam-
ples, while the discriminator learns to pick up on subtle differences 

and gets better at distinguishing examples. After training is com-
plete, the generator can be used to create new examples that are 
indistinguishable (by the discriminator) from real data, but where the 
ground truth is known (i.e. labelled data).

The use of GANs in population genetics is just beginning. 
Recently, Yelmen et al. (2021) created a GAN that generates artificial 
genomes that mirror the properties of real genomes. Their approach 
does not include an evolutionary model, so the resulting artificial ge-
nomes are ‘unlabelled’. Such an approach is useful for creating proxy 
genomes that preserve privacy but still maintain realistic aggregate 
properties. However, this synthetic data could not be used down-
stream to train or validate supervised machine learning methods 
since no evolutionary ground truth is known.

Here, we present a parametric GAN framework that combines 
the ability to create realistic data with the interpretability that 
comes from an explicit model of evolution. The discriminator is a 
permutation-invariant CNN that takes as input a genotype matrix 
(representing a genomic region) and classifies it as real data or syn-
thetic data. Throughout training, the discriminator tries to get bet-
ter at this binary classification task. The generator is a coalescent 
simulator that generates genotype data from a parameterized de-
mographic history. The generator is trained using a simulated an-
nealing algorithm that proposes parameter updates leading to more 
discriminator confusion. The discriminator is trained using a gradient 
descent approach that is standard for neural networks. We apply 
our method, called pg-gan, in a variety of scenarios to demonstrate 
that it is able to recapitulate the features of real genetic data and 
confuse a trained discriminator. Although we focus on humans, the 
underlying methodology enables the simulation of any population or 
species, regardless of how much is known a priori about their specific 
evolutionary parameters.

We anticipate that the approach outlined in this work will be 
useful in strengthening the match between simulated and real data, 
especially for understudied populations that deviate from broad 
geographic groups. In addition, our discriminator can be used on 
its own (after training) to evaluate and compare different candidate 
simulations for the same real data set. Downstream, our simulations 
can be used as a starting point for other methods that seek to quan-
tify local evolutionary forces such as natural selection or mutation 
rate heterogeneity. There has also been a push in the population 
genetics community to standardize simulation resources (Adrion 
et al., 2020)—we see our method as contributing to the assessment 
and refinement of published models as they are applied to new data 
sets.

2  |  MATERIAL S AND METHODS

At a high level, our method works by simulating data from an un-
derlying evolutionary model, then comparing it to real data via a 
neural network discriminator. As the discriminator is trained, it tries 
to minimize a loss function that incentivizes learning the difference 
between real data and synthetic data. But at the same time, the 
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generator refines the evolutionary model so that it recapitulates the 
features of real data and attempts confuse the discriminator. At the 
end, the evolutionary model can be used to simulate additional re-
alistic data for use in downstream applications or method compari-
sons. Additionally, the final parameters of the evolutionary model 
can be interpreted to learn more about the population or species of 
interest.

A GAN is not a traditional optimization problem—due to the dual 
nature of the generator and discriminator there are two optimization 
problems in a minimax framework, and it is difficult to evaluate the 
final trained model. Often the ‘GAN confusion’ (discriminator clas-
sification accuracy) can be used to assess the success of the algo-
rithm—a high classification accuracy (close to 1) indicates that the 
simulations are not capturing the real data and the discriminator is 
easily able to tell the difference between the two types of data. A 
low classification accuracy (close to 0.5) ideally indicates the evolu-
tionary model has created simulations that are well-matched to the 
real data. However, an accuracy close to 0.5 could also mean that 
the discriminator has not learned anything and is either flipping a 
coin when classifying examples, or classifying all examples as the 
same class.

Training a GAN is a delicate balance. If the discriminator learns 
too quickly and becomes very good at identifying a specific setting 
of the simulated data from the real, then all proposals by the gen-
erator may look equally confusing. As a result, many generator pro-
posals will be rejected and the discriminator will simply keep getting 
better a distinguishing the current setting from real data. On the 
other hand, if the discriminator learns too slowly, it may not be able 
to identify any generator proposals as better or worse. This often 
leads to a ‘random walk’ across the parameter space, with the dis-
criminator classifying everything as real or everything as simulated 
regardless of the generator's proposals. Throughout the Methods 
section, we outline techniques and strategies for balancing training 
and identifying degenerate states.

In the Method subsections below, we first outline the notation 
for pg-gan and discuss the general training strategy. Then, we 
provide further details about the generator and discriminator archi-
tectures. Finally, we discuss applications of pg-gan to both simu-
lated and real training data, as well as methods for evaluating the 
performance.

There are two inputs to the method, shown in orange in Figure 1. 
The first input is an evolutionary model parameterized by vector Θ
. The parameters can be very flexible, including evolutionary event 
times, effective population sizes and rates of mutation, recombina-
tion, migration and exponential growth. The parameters Θ can be 
fed into the generator G to produce a simulated region z, which we 
write as

The second input is a set of real data. We use xto denote a ge-
neric region from the real data. Both z and x have the same shape 
(n, S, 2) where n is the number of haplotypes, S is the number of SNPs 

in the region. The first channel represents the genotypes, and the 
second channel represents the inter-SNP distances. The outputs of 
pg-gan are the optimal evolutionary parameters Θ∗for the genera-
tor G, and a binary classifier D (the discriminator) which can predict 
if genomic regions are real or fake. Specifically, D(x)is the predicted 
probability that region xis real.

To incentivize the competing goals of the generator and discrim-
inator, we minimize binary cross-entropy loss functions. If we have 
M regions of simulated data {z(1),⋯, z(M)} generated under G(Θ), then 
the generator loss function is

This loss function is cross-entropy, but where we only have one 
class (the generated data), which we want the discriminator to clas-
sify as real (label 1).

At the same time, the discriminator D is trying to classify the 
generated regions as fake (label 0) and the real regions as label 1. 
Therefore, the discriminator loss function for M regions of real data 
X = {x(1),⋯, x(M)} and M regions of simulated data {z(1),⋯, z(M)} gener-
ated under G(Θ) is

Algorithm 1. (in the style of (Goodfellow et al., 2014)) shows the 
overall training of pg-gan.

z ∼ G(Θ).

ℒG(Θ) = −
1

M

M
∑

m=1

logD(z(m)).

ℒD(Θ,X) = −
1

M

M
∑

m=1

[

logD(x(m)) + log(1 − D(z(m)))
]

.

F I G U R E  1  pg-gan algorithm overview. The inputs to our 
method are an evolutionary model and a set of real data (orange). 
The parameters of the generator and discriminator (green) are 
updated in a unified training framework using simulated annealing 
(generator) and backpropagation (discriminator). The generated 
data and real data are analysed one genotype matrix at a time, 
where n is the number of haplotypes and S is the number of 
SNPs retained in each region. Inter-SNP distances are also fed 
in as a second channel, which provides the discriminator with 
information about SNP density [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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2.1  |  Generator

In image and video generation, the generator often takes the form 
of a CNN, since a large array of pixel information must be generated 
from a low-dimensional vector of noise (see Figure 1 of (Radford 
et al., 2015) for the architecture of a CNN-based image generator). 
For our purposes, we do not need to generate the individual geno-
types for each training example, but we do need to generate can-
didate parameters for input into an evolutionary simulator (we use 
msprime (Kelleher et al., 2016) in this study).

Using this lens, we can view the generator learning problem as 
minimizing the multivariate generator loss function ℒG(Θ) with re-
spect to Θ. We optimize the loss using simulated annealing (Pincus, 
1970) due to its flexible parameter updates and lack of reliance on 
an analytic gradient. In simulated annealing, initial parameter val-
ues are proposed and then gradually refined. A temperature is used 
to control whether or not new parameter proposals are accepted. 
The temperature usually begins at a high value, indicating that sub-
optimal parameter choices may be accepted liberally to facilitate 
exploration of the parameter space. As training proceeds, the tem-
perature ‘cools’, reducing the chance of accepting a poor parameter 
choice and allowing the method to converge on a set of parameters 
that optimizes the desired function. Unlike ABC methods which re-
quire simulating from the entire parameter space before analysing 
the real data, this simulated annealing approach uses the real data 
to adaptively narrow the focus to promising regions of the search 
space.

We use a pre-training phase (described in the Discriminator sub-
section) to choose a starting value for each evolutionary parameter, 
which forms the initial parameter vector Θ(0). We set the tempera-
ture for simulated annealing T(0) = 1 and linearly decrease it to 0 

over a fixed number of iterations. During each training iteration i , 
several new sets of candidate parameters are proposed, and eval-
uated based on the generator loss function ℒG(Θ). Each new set 
of parameters is proposed by sampling from a normal distribution 
around each current value, with variance based on the temperature. 
This allows the algorithm to explore the parameter space quickly 
in the beginning and refine the estimates towards the end of GAN 
training. More formally, at iteration i , the candidate proposal for 
parameter p is

where �2
p
 is the initial variance, which is based on the range of 

plausible values for each parameter. Out of the several candidate 
proposals, we choose the one that minimizes ℒG(Θ). Then, we com-
pare this loss to the loss of the previous iteration. If the proposal 
reduces or maintains the generator loss, we always accept it. If 
not, we use the simulated annealing temperature to help define 
a threshold for acceptance. Formally, if the proposal is Θ and the 
current set of parameter values at iteration i  is Θ(i), then the accep-
tance probability is

If the proposed parameters are accepted we train the discrimina-
tor using several mini-batches (with the simulated regions generated 
under Θ), then we set Θ(i+ 1)

← Θ. An important point is that we do 
not train the discriminator using the new parameter proposal unless 
it is accepted. During the candidate proposal phase, we are evaluat-
ing the parameter choices through the generator loss only.

Θ(proposal)
p

∼ 𝒩 Θ(i)
p
, �2

p
⋅ T

(i)

paccept =
ℒG(Θ

(i))

ℒG(Θ)
⋅ T

(i).
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2.2  |  Discriminator

For the architecture of the discriminator, we use a permutation-
invariant CNN based on defiNETti (Chan et al., 2018). Each region 
x (real) or z (simulated) has shape (n, S, 2) where n is the number of 
haplotypes in the sample, S is the number of retained SNPs, and 2 
indicates there is one channel for the genotypes and one channel for 
inter-SNP distances. The inter-SNP distances are duplicated down 
each column to allow this slice of the tensor to have the same shape 
as the genotype information. This also ensures that each convolu-
tional filter processes the genotypes and associated distances at the 
same time. Alternatively, the convolutional layers can be used on the 
genotypes only, and the distances concatenated later as a vector. 
However, this approach does not allow the processing of the two 
channels to be as tightly coupled. We use convolutional filters of 
shape 1 × 5 (1 haplotype, 5 SNPs) to ensure that the order of hap-
lotypes does not impact the results. We use ReLU as the activation 
function for all layers and also use dropout (Srivastava et al., 2014) 
during training to guard against overfitting. After several convolu-
tional layers, we condense the output by applying a column-wise 
permutation-invariant function. We experimented with both max 
and sum as permutation-invariant functions and decided to use 
sum throughout. It generally causes the discriminator to learn more 
slowly than max, allowing the generator time to find good param-
eter choices. max sometimes causes the discriminator to converge 
quickly, easily distinguishing the real from simulated data before the 
generator can move to a promising location in the parameter space. 
Note that we need a fixed number of SNPs in each region to make 
sure the discriminator output is always of the same size. However, 
we do not need a consistent number of haplotypes, provided that 
the permutation-invariant function used is not sensitive to this num-
ber (i.e. max or avg would be fine but sum would not).

For models that consider multiple populations, we augment this 
framework to include separate permutation-invariant components 
for each population, then concatenate the flattened output before 

input into the dense layers at the end of the network. An illustra-
tion of our discriminator architecture for two populations is shown 
in Figure 2.

Through discriminator training, we seek to minimize the loss 
function ℒD(Θ,X), with a small entropy term subtracted to disin-
centivize predicting all the same class. This entropy term is differ-
ent from the entropy regularization used to prevent mode collapse 
(Dieng et al., 2019), a common problem in GAN training. In such 
cases, the goal is to increase the entropy of the generator so it can 
produce a multi-modal distribution (e.g. different types of images 
such as hand-written digits). Mode collapse is not an issue for pg-
gan, as a single set of evolutionary parameters is desired. To min-
imize our discriminator loss function, we use gradient descent (via 
backpropagation) with mini-batches of 100 training examples (half 
are real and half are simulated). For each training iteration, we per-
form 100 mini-batch training updates if the proposed parameters 
are accepted. This allows the discriminator to learn gradually, as the 
parameters are being refined. While a classification accuracy close 
to 0.5 is desired by the end of training, the discriminator accuracy 
may be close to this value early on in the training process simply be-
cause it has not learned anything yet. The goal is for the discrimina-
tor to be optimized to distinguish real from simulated data as much 
as possible and still be wrong half the time.

Due to the simulated annealing training of the generator, initial 
step sizes of the parameters can be large to explore the parame-
ter space more quickly. This can present a problem for discriminator 
training. If the parameters change too quickly, the discriminator does 
not have time to learn the difference between the real data and data 
simulated under a wide variety of parameter setting. In some sit-
uations, this leads the discriminator to fail to learn anything and it 
predicts the same class (either real or fake) for all regions. To combat 
this issue, before GAN training begins we pre-train the discriminator 
only, using a variety of randomly sampled parameter values. We find 
that pre-training gives the discriminator an overall sense of the data, 
so that when generator training begins the discriminator is able to 

F I G U R E  2  Multi-population CNN discriminator architecture. Each example region is of shape (n, S, 2), where n is the number of haplotypes 
(usually with n∕2 from population 1 and n∕2 from population 2). The convolutional filters for population 1 and 2 are shared (i.e. not separate 
weights) so that haplotype commonalities can be more easily identified. The final output of the discriminator is the probability the region 
is real (which can be subtracted from 1 to find the probability the region is simulated). This CNN can be reduced for one population or 
extended for three populations [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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identify which generated regions were closer to the real and which 
were further away. We run the combined (generator and discrimina-
tor) training for 300 iterations.

2.3  |  Simulation study

To validate our approach, we first select the training data set to be a 
simulated one, so that we can test whether the inferred parameters 
are correct. To assess a variety of different types of parameters, we 
choose an isolation-with-migration model (see Figure 3a) with six pa-
rameters. The parameters include three effective population sizes: 
Nanc for the ancestral population size, and N1 and N2 for the sizes 
of each population after the split. We also infer the split time Tsplit, 
and the strength of a directional migration pulse (mig) at time Tsplit∕2
. Finally, we infer the per-base, per-generation recombination rate 
(reco). We evaluate the inferred parameters based on how well they 
match the true parameters. See Table 1 for the ranges and units of 
each parameter.

2.4  |  1000 Genomes data analysis

To demonstrate the effectiveness of our method on real data, we 
use pg-gan to infer demographic parameters for both single- and 
multi-population models in humans. To ensure that the real data 
are as similar as possible to the simulated data, we run several pre-
processing steps. To avoid processing the real data on-the-fly during 
training, we follow a data extraction pipeline to convert the real data 
into HDF5 format (Miles, 2015, 2017). Before converting VCF infor-
mation into HDF5 format, we select haplotypes from each popula-
tion and filter non-segregating and multi-allelic sites. The number of 
haplotypes is flexible (due to the permutation-invariant framework). 

We use between 196 and 198, matching the minimum number of 
individuals in each 1000 Genomes population.

During training, for each region x fed into pg-gan, we select 
a start SNP randomly from the entire genome. This random start 
point mitigates the effects of correlated nearby regions and local 
variations in mutation and recombination rate. Starting with this 
SNP, S = 36 biallelic SNPs are retained (along with their inter-SNP 
distances), which means the region has a flexible length. If 36 SNPs 
would cause the region to extend past the end of a chromosome, 

TA B L E  1  Parameter ranges

Parameter Min Max Units

Ne 1000 30,000 Individuals

reco 1 × 10− 9 1 × 10− 7 Per base per 
generation

mut 1 × 10− 9 1 × 10− 7 Per base per 
generation

Nanc 1000 25,000 Individuals

Tsplit 500 20,000 Generations

mig −0.2 0.2 Fraction of 
individuals

N1 1000 30,000 Individuals

N2 1000 30,000 Individuals

growth 0 0.05 Per generation

N3 1000 30,000 Individuals

T1 1500 5000 Generations

T2 100 1500 Generations

When inferring a parameter, we initialize its value by drawing a value 
uniformly from the given ranges. For each parameter update, we do 
not allow the parameter to go up to or outside its range. Overall, the 
ranges are meant to be plausible values based on previous studies or 
reasonable evolutionary events.

F I G U R E  3  Set of models. (a) A six-parameter, two-population isolation-with-migration model, which we use in the simulation study. 
The migration event is a single pulse at time Tsplit∕2, and can be in either direction. The final parameter (not shown in this diagram) is the 
recombination rate. (b) A five-parameter, single-population exponential growth model, which we use to infer histories for YRI, CEU and CHB 
separately. (c) A seven-parameter, two-population model, which we fit separately for YRI/CHB and YRI/CEU. The migration can be in either 
direction. (d) A seven-parameter, two population model which we fit to CEU/CHB. Migration occurs at T2∕2 and can be in either direction 
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

www.wileyonlinelibrary.com
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we reject the start SNP and sample a new one. For each region, 
we retain it if at least 50% of the bases are inside callable regions, 
as defined by the ‘20120824’ strict mask (1000 Genomes Project 
Consortium, 2015).

For both the real and simulated data, we recode the genotypes 
by setting the minor allele to the value ‘1’ and the major allele to the 
value ‘−’ so that the discriminator cannot learn to distinguish real 
data based on reference bias or ancestrally misidentified states. For 
the simulations where we must specify a region length L, we choose 
L = 50kb, which ensures that in the majority of situations we have at 
least S = 36 SNPs. The middle 36 SNPs are retained, and any regions 
with insufficient SNPs are centred and zero-padded. Such regions 
would automatically look very different from the real data, so the 
generator quickly learns to avoid parameters that cause insufficient 
SNPs.

We test four models: Figure 3b–d, as well as a three-population 
Out-of-Africa model originally specified in (Gutenkunst et al., 2009). 
The single-population model has five parameters: two effective pop-
ulation sizes N1 and N2, two size-change points T1 and T2, and the rate 
of exponential growth in the recent past. We fit this model to three 
human populations from the 1000 Genomes project: YRI (West 
African), CEU (European), and CHB (East Asian). The second model 
(OOA2) is a simplified two-population Out-of-Africa model. There are 
seven parameters: four effective population sizes, two time-change 
points and a migration pulse that can be in either direction, allowing 
for migration between African and non-African populations. We fit 
this model to two pairs of populations: YRI/CEU and YRI/CHB. The 
third model (POST) represents the post-out-of-Africa split between 
the ancestors of Europeans and East Asians. In this seven-parameter 
model, we allow a pre-split bottleneck and directional migration. We 
fit this model to the pair of populations CEU/CHB. Finally, we apply 
the three-population Out-of-Africa model (OOA3) to YRI/CEU/CHB, 
as implemented in stdpopsim (Adrion et al., 2020).

2.5  |  Evaluation metrics

One pervasive issue with GANs is the lack of a natural evaluation 
metric (see (Borji, 2019) for a comprehensive overview of GAN 
evaluation metrics). Many GANs have been evaluated qualitatively 
through user studies designed to see whether humans find the gen-
erated data realistic (Xu et al., 2018). For images, videos or text, this 
type of evaluation can be informative (although it tends to favour 
generators that memorize specific real examples; Borji, 2019), but 
this is not directly possible in the case of genetic data.

Visualizing summary statistics is an alternative, although since 
we do not know which statistics are sufficient for the model, it 
is dangerous to rely on these alone as a final evaluation metric. 
It is possible the discriminator is learning other statistics or rep-
resentations of the data that we are not aware of. In addition, 
explicitly matching some types of statistics can bias the resulting 
fitted model. For example, Beichman et al. (2017) found that SFS-
matching methods like �a�i (Gutenkunst et al., 2009) and SMC++ 

(Terhorst et al., 2017) are not able to recapitulate LD statistics. 
Further, we currently do not have an exhaustive or sufficient set 
of summary statistics that could be used to identify model param-
eters directly in a likelihood framework. However, as a qualitative 
assessment of our results, we compare summary statistics com-
puted on the real data and data simulated under our inferred pa-
rameters. This gives us a sense of which features of real data agree 
with our simulations and which do not.

To that end, we use seven types of summary statistics. In all 
cases, we use 5000 regions of real data (chosen randomly) and 5000 
regions of simulated data (each simulated independently under our 
inferred parameters) to compute the statistics. All pre-processing is 
the same as for GAN training, except for Tajima's D where we fix the 
region length, not the number of SNPs.

•	 SFS: We compute the site frequency spectrum (SFS) by counting 
the number of singletons, doubletons, etc in each of 5000 regions 
of real and simulated data. We plot the first 10 entries.

•	 Inter-SNP distances: We plot the distribution of inter-SNP dis-
tances for both the real and simulated data (measured in base 
pairs). This provides a general measure of SNP density.

•	 LD: We compute linkage disequilibrium (LD) by clustering pairs 
of SNPs based on their inter-SNP distance. We divide these dis-
tances into 15 bins and average the correlation r2 within each one.

•	 Pairwise heterozygosity: We plot the distribution of pairwise het-
erozygosity (�), computed separately for each region.

•	 Tajima's D: We plot the distribution of Tajima's D, computed sepa-
rately for each region. Here, we fix the region length to L = 50 kb 
instead of fixing the number of SNPs, as otherwise the distribu-
tion would be the same as pairwise heterozygosity.

•	 Number of haplotypes: We plot the distribution of number of 
haplotypes for each region.

•	 Hudson's Fst: For the two-population split models, we use Fst to 
measure population differentiation (Hudson et al., 1992).

As a more quantitative evaluation, we also report the final dis-
criminator classification accuracy. However, even this metric is not 
easy to interpret, as an accuracy close to 0.5 may indicate a degen-
erate situation where the discriminator has not learned anything (see 
Figure S1 for an example). Thus, for each model and data set we run 
pg-ganK = 10 times and select the model that minimizes the classi-
fication accuracy of the discriminator on the final generated data (not 
using any real data). The more generated data that the discriminator 
classifies as real–that is, the lower the discriminator accuracy–the 
better the generator. This metric was inspired by the Inception Score 
(Salimans et al., 2016) used to evaluate GANs, where generated data 
are fed into a more powerful discriminator. Since no generated re-
gion has ever been seen by the discriminator before, all generated 
regions are implicitly ‘test data’. In this way, we avoid relying on a 
held-aside real data set for evaluation, which allows us to use the 
(limited) real data exclusively for training.

Finally, we also ran a comparison study against the ABC method 
fastsimcoal (Excoffier & Foll, 2011). We provided fastsimcoal 
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with three of the same models (IM, OOA2, and POST) as well as a 
simulated joint SFS, and the full genome joint SFS for YRI/CEU, YRI/
CHB, and CEU/CHB. Then, we compared the parameters and sum-
mary statistics from fastsimcoal to those from pg-gan.

3  |  RESULTS

3.1  |  Simulation study

To validate our method, we first simulated the training data set, so 
we knew the true evolutionary parameters. We fit the six-parameter 
IM model from Figure 3a, using the parameter ranges in Table 1. 
Throughout, we usually fix the mutation rate to 1.25 × 10− 8 per 
base per generation, but it could be inferred along with the other 
parameters in species or populations where it is less established. See 
Figure S2 for example where we infer mutation rate as well as the 
other six parameters of the IM model.

During the pre-training phase, we train the discriminator on up 
to 10 different parameter sets, randomly chosen from the ranges in 

Table 1. We select Θ(0) to be the first set that achieves at least 90% 
discriminator classification accuracy (or the set that maximizes accu-
racy in the case when we do not achieve 90% after 10 pre-training 
iterations). This enables the discriminator to gain some structure 
that is relevant to the data before combined training begins. During 
each main training iteration, we choose 10 independent proposals 
for each parameter, keeping the other parameters fixed. This creates 
10 × P possible parameter sets, where P is the number of parameters 
(P = 6 for the IM model). We select the set that minimizes the gen-
erator loss, which has the effect of modifying one parameter each 
iteration. We also tested modifying all the parameters each iteration, 
but generally found that updating one at a time led to more stable 
and consistent results. For each parameter p, we set the initial vari-
ance �2

p
 to the parameter range divided by 15.

We performed 10 independent initializations of pg-gan on the 
full set of six parameters for the IM model. We selected the results 
that minimized discriminator accuracy on the final generated data. 
The results are shown in Figures 4,5 and Table 2. The first subplot in 
Figure 4 shows the losses for both the generator and discriminator. 
Since the generator loss considers half as many regions, it is multiplied 

F I G U R E  4  IM model parameter inference on simulated training data. In this scenario, we jointly infer the six parameters of the IM model 
from Figure 3a. The top plot shows both loss functions over the course of GAN training, and the second plot shows classification accuracy 
for both simulated and training data. The remaining plots show the model parameters as they are refined throughout GAN training. The 
inferred values are taken at the final iteration [Colour figure can be viewed at wileyonlinelibrary.com]
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by two to be on same scale as the discriminator loss. At first, the gen-
erator loss is high and the discriminator loss is low, because the dis-
criminator is easily able to detect the difference between simulated 
and training data. The second plot shows the discriminator accuracy 
on both simulated and training data. Both accuracies are initially high 
and then reduce to around 0.5. We see that here, pg-gan is able to 
find parameter values that bring the discriminator close to an accu-
racy of 0.5. The final classification accuracy on generated data here 
was 0.54, and the overall accuracy (considering both generated and 
training data) was 0.46. Our inferred parameter values are close to 

the true values (Table 2) and the site frequency spectrum and other 
summary statistics of data simulated with these parameter values 
closely match the summary statistics of the training data (Figure 5).

As a comparison, we performed ABC inference using fast-
simcoal using the same IM model, fitting the joint SFS from data 
simulated under the true model parameters. fastsimcoal closely 
matches the SFS and true parameters (Figure 6, Table 2), although 
it is not able to infer recombination rate. If we give it the correct 
recombination rate, then it closely matches the other summary sta-
tistics in Figure 5 as well.

F I G U R E  5  IM model statistics on simulated training data. Summary statistics for data simulated under our inferred parameters (‘simulated 
data’), compared with data simulated under the true parameters (‘training data’). Subfigures on the left correspond to statistics from the 
first population, and those on the right correspond to the second population. In the bottom panel, we show Fst between the two populations 
[Colour figure can be viewed at wileyonlinelibrary.com]

N1 N2 Nanc Tsplit mig reco

TRUE 9,000 5,000 15,000 2,000 0.050 1.25e−08

pg-gan 9,563 5,719 14,406 2,321 0.056 1.40e−08

fastsimcoal 8,455 4,864 15,395 1,887 0.028 –

Inferred parameters for the IM model (see Figure 3a). pg-gan results correspond to Figures 4,5, 
and fastsimcoal results correspond to Figure 6. For fastsimcoal, recombination rate is not 
shown, since it cannot be inferred from the SFS.

TA B L E  2  Comparison of pg-gan and 
fastsimcoal

www.wileyonlinelibrary.com


2698  |    WANG et al.

3.2  |  1000 Genomes data analysis

We analysed three populations (YRI, CEU and CHB) separately, each 
under the five-parameter model with recent exponential growth 
(EXP; Figure 3b). For all single-population results, we used n = 198 
(size of CEU) and S = 36. Unlike the simulated example above, we 
fix the distribution of recombination rates by sampling from the dis-
tribution of HapMap combined recombination rates (International 
HapMap Consortium, 2007), whereas in principle this distribution 
could also be inferred.

To assess the impact of the model on our evaluation metrics (classi-
fication accuracy and summary statistics), we first fit a one-parameter 
demographic model with a single constant population size Ne. We 
then contrast this result with the five-parameter exponential growth 
model (EXP). The summary statistics for these results are shown in 
Figure 7 for YRI and CHB, and a summary for all populations is shown 
in Figure 8a. Inferred parameters for each population under the five-
parameter exponential growth model are shown in Table 3. The ef-
fect of the Out-of-Africa bottleneck (N2) is very apparent in CEU and 
CHB, but absent in YRI. Data simulated with fitted parameters for YRI 
contain many more singletons than the real data, possibly indicating 
the recent exponential growth rate (or the time of onset T2) is overes-
timated. On the other hand, low power to detect rare variants in the 
real data could explain a lack of singletons in YRI or other populations.

We also compared summary statistics (Methods) between the 
real data and data simulated under the parameter choices corre-
sponding to the two scenarios from Figure 8a. In Figure 7, we show 
two sets of summary statistics each for YRI and CHB. On the left, we 
show the one-parameter demography results, and on the right we 
show the five-parameter results (using HapMap recombination rates 
in both cases). While some statistics match closely, others are less 
well-matched, consistent with the discriminator being imperfectly 
confused. Summary statistics for CEU are shown in Figure S3. For 
CEU, both the one- and five-parameter models produced low classifi-
cation accuracy, but the summary statistics are imperfect. This likely 
indicates that the discriminator did not learn as well in this scenario, 
not that the generator is producing high-quality simulated data.

For all our results, we discard any run where the discriminator 
classifies all regions in the same way (either all real or all simulated) 

at the end of training. For each set of 10 runs, 0–2 runs typically fail 
in this way. See Figure S1 for example of a failed run for YRI. For the 
remaining runs, we see a range of final classifications accuracies. For 
the five-parameter models, in YRI this range was 0.5–0.77 (mean 
0.619) and for CHB this range was 0.49–0.67 (mean 0.564). To pick 
the final result, we use the accuracy on the generated data only (i.e. 
not including the training data); 0.64–1.0 with mean 0.742 for YRI 
and 0.54–0.9 with mean 0.707 for CHB.

Next, we ran pg-gan on 1000 Genomes data from two popula-
tions. To model the split of African and non-African populations, we use 
two pairs of populations separately: YRI/CEU and YRI/CHB, using the 
OOA2 model from Figure 3c. We use CEU/CHB with the POST model 
from Figure 3d to represent the post-out-of-Africa split between the 
ancestors of Europeans and East Asians. The resulting classification 
accuracies are shown in Figure 8b. The YRI/CEU and YRI/CHB results 
are comparable to the single-population analysis, but the CEU/CHB 
classification accuracy is much higher. For all pairs of populations, we 
provide the parameter inference results in Table 4. Summary statistics 
for the YRI/CEU split (Figure 9) match the real data closely. YRI/CHB 
statistics are shown in Figure S4—for the YRI samples these statistics 
are not quite as closely matched, consistent with the slightly higher 
classification accuracy for this scenario. CEU/CHB statistics are shown 
in Figure S5 and are less well-matched to the real data, consistent 
with the relatively high classification accuracy and suggesting that this 
model does not contain all the important features for these population, 
for example archaic admixture or exponential growth.

We also ran fastsimcoal on the joint SFS from YRI/CEU, YRI/
CHB (using the OOA2 model from Figure 3c), and CEU/CHB (using the 
POST model from Figure 3d). We used the inferred parameters to cre-
ate new simulations (with the same fixed mutation rate and HapMap 
recombination rate distribution used for pg-gan). The resulting sum-
mary statistics for YRI/CEU are shown in Figure 10, demonstrating 
that fastsimcoal also matches the real data very well. The other 
fastsimcoal results are shown in Figure S6 (YRI/CHB) and Figure 
S7 (CEU/CHB). For YRI/CHB, fastsimcoal produces a slightly bet-
ter fit than pg-gan, but for CEU/CHB the two methods produce very 
different parameter estimates and neither method matches the sum-
mary statistics very well, supporting the suggestion that the genera-
tive model is missing some key features of the data.

F I G U R E  6  IM model SFS as inferred by fastsimcoal. Here, we compare the true SFS (‘training data’) with the SFS computed from data 
simulated under the parameters learned by fastsimcoal (‘simulated data’) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Finally, we ran all three populations through the OOA3 model, 
which was originally described in (Gutenkunst et al., 2009) and re-
cently implemented in stdpopsim (Adrion et al., 2020). This required 
using a 3-population CNN discriminator, which contains many more 
weights to optimize relative to the two population CNN. In addition, 

the OOA3 model requires 14 parameters. We inferred 10 of these 
parameters, fixing the four migration rate parameters and running 
pg-gan for 500 iterations. We also changed the mutation rate 
from 2.35 × 10− 8 (which was used in (Gutenkunst et al., 2009)) to 
1.29 × 10− 8 (the recommended human mutation rate from (Adrion 

F I G U R E  7  Single-population model. Summary statistic comparisons between 1000 Genomes Project data and data simulated under 
our pg-gan inferred parameters for a variety of scenarios. Top left: YRI vs. data simulated under the one-parameter constant population 
size model. Simulated accuracy: 0.52, overall accuracy: 0.63. Top right: YRI vs. data simulated under the five-parameter exponential growth 
model. Simulated accuracy: 0.72, overall accuracy: 0.58. Bottom left: CHB vs. data simulated under the one-parameter constant population 
size model. Simulated accuracy: 0.68, overall accuracy: 0.66. Bottom right: CHB vs. data simulated under the five-parameter exponential 
growth model. Simulated accuracy: 0.54, overall accuracy: 0.49 [Colour figure can be viewed at wileyonlinelibrary.com]

YRI 1-param demography (accuracy=0.63) YRI 5-param demography (accuracy=0.58)

CHB 1-param demography (accuracy=0.66) CHB 5-param demography (accuracy=0.49)

www.wileyonlinelibrary.com
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et al., 2020)). The inferred parameters and summary statistics are 
shown in Figure S8, as well as a diagram of the demographic model 
(reproduced from Figure 2b in (Gutenkunst et al., 2009)). We find a 
discriminator accuracy of 0.65 and fit some but not all statistics well, 
suggesting model misspecification, or the difficulty of exploring a 
relatively high-dimensional parameter space.

3.3  |  Computational resources

The runtime of our method is around 5–6 h using a Quadro P5000 
GPU. Pre-processing the real data takes several hours for each set 
of populations (YRI, CEU, CHB, YRI/CEU, YRI/CHB, CEU/CHB and 
YRI/CEU/CHB). The resulting file sizes are 540 M-944 M, but these 
do not need to be loaded into memory due to the HDF5 format. The 
runtime for fastsimcoal was around 55 min.

4  |  DISCUSSION

We present a method for automatically learning parameters that can 
be used to simulate realistic genetic data. Most existing methods 

optimize parameters to match summary statistics like the SFS. Our 
algorithm, pg-gan, is a more holistic approach, which finds param-
eters that generate data that are systematically indistinguishable 
from the input data, although in practice it also often matches the 
summary statistics.

Our generative adversarial framework simultaneously trains 
a generator to produce reasonable evolutionary parameters and a 
discriminator to distinguish real data from simulated. We use real 
data during training to make sure the simulations capture realistic 
genomic features. We demonstrate the use of our method in an 
isolation-with-migration simulation setting and create simulated 
data that mirrors three human populations individually, in pairs, and 
all together. The discriminator often achieves accuracy between 
50% and 70%, indicating strong, albeit incomplete, confusion be-
tween the real and simulated data. The approach is highly flexible 
and can automatically fit any parameterized model to any genomic 
data. We anticipate it will be particularly useful for understudied 
populations or species, since any unknown parameters can be in-
cluded in the model and learned.

Our approach yields a natural way of evaluating and refining 
simulation pipelines. If simulations are easily distinguished from real 
data, then the model is not producing realistic data. We easily reach 
essentially complete (50%) discriminator confusion and good sum-
mary statistic matching in simulations. But with real data, the fit is 
imperfect. This could be because there are features of the real data 
that our models do not include, for example false negatives and other 
genotyping errors, phasing errors, missing data and inaccessible re-
gions of the genome. Through changes to the generative model, it 
would be possible to incorporate these effects and evaluate their 
impact. To handle limited power to detect rare variants (likely why 
we see more singletons and rare variants in the simulations than the 
real data), we experimented with filtering a fraction of singletons 

F I G U R E  8  GAN confusion for 1- and 2-population models. (a) Comparison of one- and five-parameter models. We use a constant 
population size for the first group of bars, then move to the five-parameter exponential growth model (Figure 3b). We sample recombination 
rates from HapMap in both scenarios, instead of fixing the recombination rate. (b) Classification accuracy results on the population split 
models for YRI/CEU, YRI/CHB and CEU/CHB. The Out-of-Africa models and parameter inference for YRI/CEU and YRI/CHB generally seem 
to do well, but the CEU/CHB split model and/or parameter inference does not result in simulated data that matches real data [Colour figure 
can be viewed at wileyonlinelibrary.com]

(b)(a)

TA B L E  3  1000 Genomes single-population parameter inference

Population N1 N2 growth T1 T2

YRI 23,676 20,837 0.0379 2498 1214

CEU 25,127 4676 0.0061 1673 949

CHB 21,136 3150 0.0242 2584 645

Inferred parameters for the exponential growth model (see Figure 3b) in 
YRI, CEU and CHB. We generally infer similar parameters for CEU and 
CHB.

www.wileyonlinelibrary.com
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from the simulations. This improved the results for YRI, but not for 
CEU or CHB. Such filtering could be more adaptive in a future it-
eration. Features such as missing data could be important in some 
contexts (see ReLERNN (Adrion et al., 2020) for example of how to 
handle missing data). In general, such data quality-related features 

are dangerous for our approach, because they provide a way for the 
discriminator to easily distinguish real and simulated data. For exam-
ple, if the generative model had data missing at random but the real 
data are missing in a non-random fashion, then the discriminator will 
use this signal for classification. It would be important to make the 

Populations Nanc mig N1 N2 N3 T1 T2

YRI/CEU 18,693 −0.0627 4030 27,213 29,863 3501 1132

fastsimcoal 21,017 0.0342 3106 21,954 33,078 2844 1042

YRI/CHB 23,916 0.0738 2422 25,228 27,375 3036 529

fastsimcoal 20,950 0.0167 2959 31,871 32,511 2948 863

CEU/CHB 19,688 −0.0350 16,313 6613 9092 4733 966

fastsimcoal 17,761 0.0240 4044 11,405 15,675 3695 2336

Inferred parameters for the OOA2 model (see Figure 3c) fit to YRI/CEU and YRI/CHB, as well 
as the POST model (see Figure 3d) fit to CEU/CHB. Results for both pg-gan and fastsimcoal 
are included. For pg-gan, we generally see similar results for YRI/CEU and YRI/CHB, with a 
lower classification accuracy for YRI/CEU, indicating a closer match to the real data. Our results 
are broadly consistent with fastsimcoal, except for CEU/CHB, where neither method produces 
statistics that match the real data (see Figures S5 and S7).

TA B L E  4  1000 Genomes two-
population parameter inference

F I G U R E  9  YRI/CEU: two-population model. Summary statistic comparison real 1000 Genomes data and data simulated under the 
inferred parameters from Table 4 (first row). Left: statistics computed on YRI samples only. Right: statistics computed on CEU samples only. 
Sites with count zero are segregating in only one population. Fst between the two populations is shown in the bottom panel. Simulated 
accuracy: 0.68, overall accuracy: 0.54 [Colour figure can be viewed at wileyonlinelibrary.com]
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generative model sufficiently flexible that it could learn to replicate 
the distinguishing features of the real data.

Some subsets of populations were more difficult to fit than oth-
ers. The CEU/CHB split proved particularly difficult for both pg-gan 
and fastsimcoal. Since data quality should be similar between 
populations, this probably indicates that our model does not include 
demographic features that are important for patterns of variation 
in these populations, for example archaic admixture or exponential 
growth. More generally, our model ignores many important biolog-
ical features, for example heterogeneity in the mutation rate and 
other parameters, and natural selection. We assumed that mutation 
and recombination rates were known, but they can easily be added 
as parameters to the generative model and inferred (Figure S9). 
Heterogeneity could be modelled by fitting a distribution from which 
to draw parameters, rather than a point estimate. Natural selection, 
which can bias estimates of demographic parameters (Schrider et al., 
2016), is more difficult to model. The effects of regions under strong 
positive selection or long-term balancing selection can be minimized 
by removing them from the training data. However, background 

selection affects the majority of the genome and completely re-
stricting to ‘truly neutral’ regions of the genome is impractical. One 
simple but somewhat unsatisfactory solution is to approximate the 
effects of background selection across the genome by scaling effec-
tive population sizes with a factor drawn from empirical estimates 
of the effect of background selection across the genome (McVicker 
et al., 2009). A better solution would be to estimate the distribution 
of selection coefficients as part of the model (Johri et al., 2021). This 
requires a generator that can simulate selection, for example SLiM 
(Haller & Messer, 2019) but would be much more computationally 
intensive than the coalescent simulations in the current approach. 
Efficiently incorporating selection into the model is a key area for 
future development.

There are several areas of future exploration that involve algo-
rithmic modifications. In our current implementation, the topology 
of the demographic model needs to be specified ahead of time. 
However, it would be possible to extend our method to explore a 
space of demographic models, which would allow both the topol-
ogy and the model parameters to be learned automatically. Although 

F I G U R E  1 0  YRI/CEU: two-population model (fastsimcoal). Summary statistic comparison between YRI/CEU and data simulated 
under the OOA2 model parameters inferred by fastsimcoal. Here, we include all the statistics (unlike Figure 6) since we are providing 
fastsimcoal with a recombination rate distribution. Left: statistics computed on YRI samples only. Right: statistics computed on CEU samples 
only. Sites with count zero are segregating in only one population. Fst between the two populations is shown in the bottom panel [Colour 
figure can be viewed at wileyonlinelibrary.com]
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we mitigate overfitting by selecting real data regions at random (as 
opposed to a fixed sliding window), it is still a concern for the dis-
criminator due to the fundamental data imbalance. The amount of 
real data is fixed, but the number of simulated examples is unlimited. 
There are many ways to guard against overfitting neural networks, 
including regularization and architecture modifications. An import-
ant line of future research is to optimize the training procedure in the 
presence of limited real data.

Another asymmetry comes from the potentially different learn-
ing rates of the generator and discriminator. The training of both 
components needs to be balanced—if the discriminator learns the 
difference between real and simulated data too quickly, the gen-
erator might not have a chance to explore a parameter space that 
would actually cause confusion. On the other hand, if the discrimi-
nator learns too slowly, all generator updates might look equally con-
fusing. It would be interesting to explore adaptively controlling the 
learning rate—slowing down either the generator or the discrimina-
tor as needed through fewer parameter proposals or mini-batches. 
Understanding the behaviour of the discriminator is itself an import-
ant area of future work, which could help us investigate alignment 
between its hidden layers and traditional summary statistics.

Some idea of the uncertainty in the parameter space can be 
obtained by looking at the distribution of replicate estimates. In 
principle, this approach could be extended to provide bootstrap 
confidence intervals by fitting the model to resampled data. A more 
general approach would be to fix the discriminator and vary the gen-
erator parameters to identify the parameter space over which the 
discriminator has low accuracy.

Our approach could be incorporated into a transfer learning (Pan 
& Yang, 2010) framework. In transfer learning, the parameters of an 
ML model are initialized by training on a large data set, then ‘fine-
tuned’ by training on a smaller number of examples from the target 
data set. In our case, a large data set like the 1000 Genomes could 
be used to find an initial guess for discriminator weights, then these 
weights could be fine-tuned using data with fewer regions or se-
quenced individuals. The evolutionary model could still be modified, 
as transfer learning would be used for the discriminator, not the gen-
erator. The only restriction would be that the number of populations 
would need to match between the larger data set and the smaller 
data set. The original learning on the larger data set would primarily 
assist the discriminator in learning general features of genomic data 
sets—population-level specifics would be learned in the fine-tuning 
phase.

It is our hope that others will build upon this initial exploration 
into parametric GANs for population genetics. Future developments 
will include integrating more realistic features of real data, con-
structing bootstrap confidence intervals for parameter estimates, 
and applying our approach to non-human species. In terms of meth-
odological development, we aim to integrate transfer learning and 
develop interpretative approaches for the CNN discriminator, in 
order to investigate alignment between its hidden layers and tradi-
tional summary statistics. Modern machine learning has proved to 
be powerful in many domains, and our work emphasizes that this 

is true for population genetics as well. However, machine learning 
in population genetics requires novel architectures, for example 
our parametric generator and multi-population CNN discriminator—
innovations that will be useful for future development of ML meth-
ods in the field.
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