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Abstract

Background: CRISPR-Cas9 genome-wide screens are being increasingly performed, allowing systematic
explorations of cancer dependencies at unprecedented accuracy and scale. One of the major computational
challenges when analysing data derived from such screens is to identify genes that are essential for cell survival
invariantly across tissues, conditions, and genomic-contexts (core-fitness genes), and to distinguish them from
context-specific essential genes. This is of paramount importance to assess the safety profile of candidate
therapeutic targets and for elucidating mechanisms involved in tissue-specific genetic diseases.

Results: We have developed CoRe: an R package implementing existing and novel methods for the identification
of core-fitness genes (at two different level of stringency) from joint analyses of multiple CRISPR-Cas9 screens. We
demonstrate, through a fully reproducible benchmarking pipeline, that CoRe outperforms state-of-the-art tools,
yielding more reliable and biologically relevant sets of core-fitness genes.

Conclusions: CoRe offers a flexible pipeline, compatible with many pre-processing methods for the analysis of
CRISPR data, which can be tailored onto different use-cases. The CoRe package can be used for the identification of
high-confidence novel core-fitness genes, as well as a means to filter out potentially cytotoxic hits while analysing
cancer dependency datasets for identifying and prioritising novel selective therapeutic targets.
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Background
The ability to perturb individual genes at scale in human
cells holds the key to elucidating their function and it is
a gateway to the identification of new therapeutic targets
across human diseases, including cancer. In this context
the CRISPR-Cas9 genome editing system is the state-of-
the-art tool [1-3].

Several genome-scale CRISPR-Cas9 single guide RNA
(sgRNA) libraries have been designed and are available
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to date for genetic perturbation screens in human cells,
showing significantly improved precision and scale with
respect to previous technologies [4—8]. Some of these li-
braries have been employed in large-scale in-vitro
screens assessing each gene’s potential in reducing cellu-
lar viability/fitness upon inactivation, across hundreds of
immortalised human cancer cell lines [7, 9-12]. This has
led to comprehensive identifications of cellular fitness
genes, providing a detailed view of genetic dependencies
and vulnerabilities existing in cancer cells.

Several sources of bias must be considered when ana-
lysing dependency profiles derived from CRISPR-Cas9
screens. These include different guide efficiency and off-
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target effects [13, 14], genomic features like copy num-
ber amplifications [7, 15-17], variable phenotypic pene-
trance [18], and different experimental settings such as,
for example, screening time length and cells’ growth
medium [19, 20]. Taken together, these factors contrib-
ute to making the analysis of CRISPR-Cas9 screens not
trivial, and several tools have been proposed for this task
[12, 21-25].

When analysing data from CRISPR-Cas9 screens in
functional and translational studies another major com-
putational problem is to classify and distinguish genetic
dependencies involved in normal essential biological
processes from disease- and genomic-context-specific
vulnerabilities.

Identifying context-specific essential genes, and distin-
guishing them from constitutively essential genes shared
across all tissues and cells, i.e. core-fitness genes (CFGs),
is also crucial for elucidating the mechanisms involved
in tissue-specific diseases. Moving forward,focusing on
very well-defined genomic contexts in tumours allows
identifying cancer synthetic lethalities that could be
exploited therapeutically [26].

Gene dependency profiles, generated via pooled
CRISPR-Cas9 screening across large panels of human
cancer cell lines, are becoming increasingly available [27,
28]. However, identifying and discriminating CFGs and
context-specific essential genes from this type of func-
tional genetics screens remains not trivial.

The Daisy Model (DM) has been recently described
for identifying CFGs by jointly analysing data from gen-
etic screens of multiple cancer cell lines. In this ap-
proach, sets of fitness genes for each screened cancer
cell line are conceptually represented by the petals of a
daisy [10]. These have different extents of overlap, but
they generally tend to share a common set of CEGs (the
core of the daisy). Based on this idea, genes that are es-
sential in most of the screened cell lines are predicted to
be CFGs. This approach has been shown to be able to
identify CFGs that are enriched for fundamental cellular
processes such as transcription, translation, and replica-
tion [10]. Nevertheless, in [10] the minimal number of
cell lines (3 out of 5 screened) in which a gene should
be significantly essential in order to be predicted as
CEG, is arbitrarily defined with no indications on how to
determine this threshold on a numerically grounded
basis when applying the DM to larger collections of
screens.

In [11] we have introduced the Adaptive Daisy Model
(ADaM): a generalisation of the DM that is able to de-
termine the minimal number of cell lines that should be
vulnerable to knocking-out the putative CFGs, i.e.
dependent on them, in a semi-supervised manner.

We have also recently proposed an alternative un-
supervised approach within the Broad and Sanger
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Institutes’ Cancer Dependency Map collaboration [29],
where data from screening hundreds of cell lines are
analysed in a pooled fashion, independently of their tis-
sue of origin. This method builds on the intuition that if
a gene is universally essential then it should rank among
the top essential genes in most screened models, includ-
ing those that are the least dependent on it, or generally
showing a moderate to weak loss-of-fitness phenotype
upon CRISPR-Cas9 targeting.

Finally, a logistic regression based method for clas-
sifying genes into CFGs or context-specific essentials
has been recently introduced by Sharma and col-
leagues [30] as part of the CEN-tools suite, using ref-
erence sets of essential and non-essential genes for
the training phase [31].

Although the number of CRISPR-Cas9 and genome-
scale RNAi experiments is increasing rapidly, no ro-
bustly benchmarked method to identify sets of CFGs has
been devised yet in a unique and easy-to-use software
package.

We present CoRe: an R package implementing re-
cently proposed as well as novel versions of algorithms
for the identification of CFGs from a joint analysis of
multiple genome-wide pooled CRISPR-Cas9 knock-out
screens. Furthermore, we present results from a com-
parison of CoRe’s output (when applied to the largest in-
tegrative cancer dependency dataset generated to date
[19]) against widely used [10, 31], or more recent [30]
sets of CFGs obtained via an alternative approach (which
we have also tested on the same recent cancer depend-
ency dataset). We report an increased coverage of prior
known human essential genes, new potential core-fitness
genes, and lower false positive rates for CoRe’s methods
with respect to other state-of-the-art core-fitness sets
and available methods. Finally we show that CoRe is
computationally more efficient than other methods, and
that the CFGs obtained with CoRe could be used in the
future as a template classifier of a single screen’s specific
essential genes, via supervised classification methods,
such as the widely used BAGEL [24].

Implementation

Overview of the CoRe package

CoRe implements two methods at two different levels of
stringency yielding, respectively, (i) core-fitness essential
genes (CFGs) and (ii) common-essential genes (CEGs).
Both sets include genes that are essential for cell survival
invariantly across tissues and genomic backgrounds and
are involved in housekeeping cellular processes, thus are
conceptually the same. However, CFGs are identified in
CoRe more stringently and in a supervised manner,
whereas CEGs are outputted by a less stringent and un-
supervised method. These two-level of stringency make
CoRe suitable for a variety of use-case scenarios. These
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range from the robust identification of new human core
essential genes (where minimising false positive is essen-
tial, thus CFGs should be preferred to CEGs), to filtering
out potential cytotoxic candidates when focusing on
context-specific essential genes while identifying and
prioritising new therapeutic targets (where is more im-
portant to minimise the false negatives, thus CEGs
should be preferred to CFGs).

The first and more stringent method implemented in
CoRe is the Adaptive Daisy Model (ADaM) [11]: an
adaptive version of the Daisy Model (DM) [10] that
operates in a cascade of two steps, and it is usable on
data coming from large-scale CRISPR-cas9 knock-out
screens performed in heterogeneous in-vitro models, for
example immortalized human cancer cell lines from
multiple tissue lineages (Fig. 1A-D).

The second and less stringent CoRe method, imple-
mented in four different novel variants, is the Fitness
Percentile (FiPer) method, which identifies CEGs via a
pooled (pan-cancer) analysis of data from large-scale
CRISPR-Cas9 knock-out screens, performed in cell lines
from multiple tissues/cancer-types [20] (Fig. 1EF). For
each screened cell line, this approach considers the gene
rank positions resulting from sorting all screened genes
based on their effect on cell viability upon CRISPR-Cas9,
i.e. their essentiality, in decreasing order. FiPer then ex-
ploits the intuition that CEGs will always rank among
the top essential genes for most cell lines, including
those for which the fitness reduction is overall less
pronounced.

While ADaM takes as input strictly defined binary
scores of gene essentiality and it outputs discrete sets of
tissue-specific and pan-cancer CFGs, FiPer takes as input
quantitative descriptors of gene essentiality and it out-
puts a unique set of CEGs, also providing a visual means
for quickly assessing the tendency of individual genes to
be a CEG.

The Adaptive Daisy Model
The Adaptive Daisy Model (ADaM) [11] is implemented
in the function CoRe.ADaM of CoRe, which takes as in-
put (i) a binary dependency matrix, where rows corres-
pond to genes and columns to samples (screens or cell-
lines), with a 1 in position /i, j/ indicating that the inacti-
vation of the i-th gene through CRISPR-Cas9 targeting
exerts a significant loss of fitness in the j-th sample, i.e.
that the j-th cell line is dependent on the i-th gene; (ii) a
reference set of prior known CFGs. Binary dependency
matrices encompassing data for hundreds of cancer cell
lines can be downloaded from Project Score [28] and
used with this function by calling CoRe.download_
BinaryDepMatrix.

In order to identify CFGs using data from screening N
cell lines, the Daisy Model introduced in [10] computes

Page 3 of 16

a fuzzy intersection of genes that are essential, i.e. fitness
genes, in at least n* cell lines, where this number is de-
fined a priori. ADaM generalizes this approach by (i)
exploiting the bimodality of the distributions of the
number of genes essential in each number of cell lines
(Fig. 1A), and (ii) adaptively determining an optimal dis-
criminative threshold of minimal number of cell lines n*
that should be dependent on a given gene for calling
that gene a CFG.

Briefly, for a binary matrix encompassing gene de-
pendency profiles of n cell lines across thousands of
screened genes, ADaM computes fuzzy intersections of
genes [, for each n=1, ..., N. These fuzzy intersections
include genes with at least # dependent cell lines accord-
ing to the input matrix. For each tested n, ADaM com-
putes the true positive rate TPR(n) yielded by each I,
using the reference CFGs provided in input as positive
controls. In parallel, ADaM also computes the number
of genes that are expected to be essential in at least n
cell lines by chance, via random permutations of the in-
put matrix (Fig. 1B). Finally, ADaM determines the opti-
mal n* as the largest value providing the trade-off
between TPR(n) (inversely proportional to n) and the de-
viance of the number of genes with n dependent cell
lines (directly proportional to #) from its expectation
(Fig. 1C). The genes in the corresponding fuzzy intersec-
tion [,,- are predicted to be CFGs for the cell lines in the
input dependency matrix.

As the distribution of genes that are CFGs in a spe-
cific number of tissue-lineage/cancer-types is also bi-
modal [11], this procedure can be executed in a two-
step approach on large datasets of cancer dependency
profiles, accounting for hundreds of cancer cell lines
from multiple tissues, to predict pan-cancer CFGs
(Fig. 1D). In the first step ADaM predicts tissue-
lineage/cancer-type specific CFGs, then it iterates by
adaptively determining the minimum number ¢* of
tissue-lineages/cancer-types for which a gene should
have been predicted as a specific CFG to be now pre-
dicted as a pan-cancer CFG. t* is determined by ap-
plying the same algorithm and criteria used to
determine the »n* across the tissue-lineages/cancer-
types specific executions of ADaM (Fig. 1D). Particu-
larly, this last operation is performed on a binary
membership matrix with genes on the rows, tissue-
lineages/cancer-types on the column and a 1 in pos-
ition [i, j/ indicating that the i-th gene is a CFG for
j-th tissue-lineage/cancer-type.

All the functions called by CoRe.ADaM are exported
and fully documented in the CoRe package. In addition,
CoRe is equipped with the CoRe.PanCancer_ ADaM
wrapper function, implementing the two-step procedure
to identify pan-cancer CFGs, and the CoRe.CS_ADaM
function executing ADaM on a user-defined tissue-
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Fig. 1 Overview of the methods implemented in CoRe. A. Number of fitness genes in fixed numbers of cell lines (CLs) from a lung specific binary
cancer dependency matrix (BM). B. As for A but considering 1000 randomisations of the lung BM. C. ADaM execution on the lung BM: The aim is
to identify the minimal number n* of CLs in which a gene should be essential to be considered a lung specific core-fitness essential gene (CFG).
All possible n values (on the x-axis) are tested. For each n the genes essential in 2 n CLs are determined. The Recall of a reference set of CFGs
(blue curve, and right y-axis) is computed for this set of genes. At the same time the deviance of expectation of the size of this set of genes is
also computed (log, ratio with respect to average value in 1000 permutations of the lung BM - red curve, and left y-axis). The n* value (solid
vertical line) is that providing the best trade-off (dashed horizontal line) between the blue and the red curves. D. Schematic of the two-step
model of ADaM identifying pan-cancer CFGs. The first determines sets of tissue/cancer-type specific CFGs. The second step computes pan-cancer
CFGs as those predicted as tissues/cancer-type specific core-fitness genes for at least t* tissues/cancer-types. This is determined as for the n* in C.
E. Basic assumption of the FiPer method: common-essential genes (CEGs) are always among the top essential genes. 4 example genes are
shown. Each point indicates a CL. The coordinate on the x-axis indicates the rank position of the CL when sorting all CLs based on their
dependency on the gene under consideration, in decreasing order. The coordinate on the y-axis indicates the rank position of the gene under
consideration from sorting all screened genes based on their fitness scores observed in the CL under consideration, decreasingly. Common-
essential genes (RPL8 and RPL22) ranks always among the top fitness scores, resulting in an almost flat trend. The vertical dashed line indicates
the 90th percentile of dependency on the gene under consideration. F. Distribution of all genes’ fitness-rank-positions for the CL at their 90th-
percentile of least dependent cell lines, i.e. the dashed vertical line in E). The density of these scores is estimated using a Gaussian kernel and the
central point of minimum density is identified. Genes whose score falls below this minimum (i.e. to the left of the gray dashed line) are classified
as common-essential by FiPer Fixed

lineage/cancer-type, which can be used on dependency
matrices from Project Score [28] and cell line annota-
tions from the Cell Model Passports [32].

The Fitness Percentile method

The Fitness Percentile (FiPer) method works in an un-
supervised manner. It identifies a set of common-
essential genes (CEGs) by executing a single pooled

analysis of data from multiple CRISPR-Cas9 screens. In
addition, it takes as input a dependency matrix with
quantitative fitness effect indicators of screened genes
across cell lines.

We have designed and implemented in CoRe four
novel variants of this method, all sharing the same initial
step, which is executed for each individual gene in the
input dependency matrix, in turn. In this step (i) all cell
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lines are sorted according to their dependency on the
gene under consideration in decreasing order; (ii) the
rank position of the gene under consideration resulting
from sorting all screened genes according to their fitness
effect is determined, for each screened cell line; (iii) a
curve of the rank positions computed in (ii) is assembled
considering the cell lines ordered as in (i): the fitness
rank versus dependency percentile curve (FiPer curve,
Fig. 1E).

It is reasonable to assume that genes involved in fun-
damental cellular processes (likely to be CEGs, such as
RPL8 and RPL22 in Fig. 1E) will generally tend to rank
amongst the most significant fitness genes for all the
screened cell lines, including those that are the least
dependent on them. This tendency can be extrapolated
from the FiPer curves (thus measured in data coming
from multiple CRISPR-Cas9 screens) and used to esti-
mate the likelihood of a gene to be a CEG.

The CoReFiPer function implements four different
methods to assess this tendency assigning a FiPer score
to each gene differently. This is followed by a procedure
that finally partitions all screened genes into two groups,
with the first one containing the predicted CEGs.

The first method, the Fixed percentile (Fig. 1EF), con-
siders as the FiPer score of a gene its fitness rank pos-
ition in the cell line falling at the highest boundary of a
very large dependency percentile of cell lines (90th by
default). The Average method considers the average gene
rank position in all the cell lines falling over a very large
dependency percentile (90th by default). The Slope
method fits a linear model onto each gene’s FiPer curve,
then considers the slope of such a model as the gene
FiPer score. In the final AUC method, the FiPer score of
a gene is computed as the area under its FiPer curve.

Finally, a density function fitted onto the gene FiPer
scores’ observed distribution (which is typically bimodal)
using a kernel estimator and the score corresponding to
the point of central local minimal density is used as a
discriminative threshold to predict CEGs, which will be
those with a FiPer score less than or equal to it (Fig. 1F).

CoRe includes also the CoRe.VisCFness function
which visualises the tendency of a given gene to be a
CEG within a dependency dataset provided in input and
compares this tendency against that of a positive (RPL8
by default) and a negative (MAP2K1 by default) control,
and producing the plots shown in Fig. 1E.

Results

Comparison with existing methods and state-of-the-art
sets of core-fitness genes

We compared the sets of CFGs and CEGs predicted by
CoRe (through ADaM and all the FiPer variants) when
applied to the largest integrative dataset of cancer de-
pendency assembled to date, accounting for 17,486
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genes and 855 cell lines from 30 different tissue-lineages
and 43 cancer types (the DepMap dataset, Fig. 2AB)
[19], with state-of-the-art sets of core-fitness genes de-
rived from recent functional genetic screening datasets
[10, 11, 30, 31]. We also included in the comparison the
output of a logistic-regression based method, part of the
recent CEN-tools software proposed in [30] applied to
the DepMap dataset (Tables 1 and 2).

For the training phase of CEN-tools, we used the cu-
rated Hart2014 CFGs [11] (which we also used as refer-
ence set of positives while running ADaM), and the
BAGEL never-essential genes [10], also curated as de-
scribed in [11] (the curated BAGEL non-essential set).

In order to provide a fair benchmark with respect to
sets outputted by the unsupervised methods, we also
joined the Sharma2020 set, and the CEN-tools set with
the reference CFGs used in their respective training
phases, i.e., the Hart2017 set and the curated Hart2014
set. All the compared sets of CFGs and CEGs, the cu-
rated Hart2014 essential and curated BAGEL non-
essential genes are included in Additional File 1: Table
S1.

Amongst the predicted CFG sets derived from old and
new executions of supervised methods, ADaM yielded
the largest number of CFGs (460) not included in any of
the training sets (curated Hart2014, Hart2017 and
BAGEL non-essentials), when applied to the DepMap
dataset (Fig. 2A). The Sharma2020 set ranked second
(with 441), followed by the novel execution of CEN-
tools (with 379) (Fig. 2A). As expected, all these sets, in-
cluded more novel CFGs than Behan2019 (157 novel
CEGs), likely due to its derivation from a sensibly
smaller cancer dependency dataset (325 cell lines against
855 for ADaM and CEN-tools, and 325+489 for
Sharma2020, Fig. 2A).

The 4 variants of the CoRe FiPer method yielded
much larger and highly concordant sets of predicted
CEGs (median = 1825.5, min = 1424 for FiPer average,
max = 1987 for FiPer AUC, Fig. 2B), as well as novel hits
(median = 1115, min = 743 for FiPer average, max = 1262
for FiPer AUC, Fig. 2B). The set of CEGs predicted by
FiPer average was included in those predicted by all the
other FiPer variants. For this reason, we decided to as-
semble a 5th FiPer set by intersecting the output of
FiPer Slope, AUC and Fixed: the FiPer consensus set.
This yielded 1673 genes, of which 975 were novel hits
(Fig. 2A).

As a first exploratory analysis, we verified that all the
sets of CFGs/CEGs outputted by the CoRe methods cov-
ered most of the state-of-the-art sets of CFGs (ADaM
median Recall across prior known sets: 77.24%, FiPer
median Recall across prior known sets, averaged across
variants: 89.31%, Fig. 2C). Furthermore, while comparing
overall CFG/CEG sets similarities, we observed three
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major clusters composed respectively by (i) the sets out-  from MsigDB [36], to be used as positive controls, and
putted by the FiPer variants, then (ii) Sharma2020, CEN-  (ii) considered genes not expressed in human cancer cell
tools (both joined with respective training sets) and lines (using data from the Cell Models Passports [32]) or
ADaM sets, and (iii) Hart2014, Hart2017 and Behan2019  whose essentiality is statistically associated with a mo-
sets (Additional File 2: Fig. S1). Taken together, these re-  lecular feature (thus very likely to be linked to specific
sults suggest that the ADaM, CEN-tools and molecular contexts) [19] as negative controls (Add-
Sharma2020 sets might include similar numbers of novel itional file 11: Additional methods and documentation,
CEGs, thus potentially extending in a similar way the  Additional File 3: Table S2). Both these sets are inde-
other state-of-the-art CFG sets. pendent from the DepMap dataset.

To investigate and compare true/false positives rates Of the CFGs outputted by the supervised methods,
of the putative novel CFG/CEGs, we assembled, respect- ADaM had the best true positive rate (TPR), covering
ively, (i) a set of prior known CFGs (not included into  29% of the positive controls screened in the DepMap.
any of the training sets) curated in [19, 21] using data  Sharma2020 ranked second (23.4%) followed by CEN-
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Table 1 State-of-the-art sets of core-fitness essential genes considered to benchmark CoRe

Set name  Set Type Description and Source Dataset of origin and method

Hart2014 State-of-the-art A set of 360 genes presented in [33] and used as a Large collection of shRNA gene dependency profiles
reference set of core-  classification template by BAGEL: a supervised analysed with a linear algebra approach.
fitness essential computational framework for quantifying gene
genes essentiality significance in pooled library screens [10,

24].

Hart2017 State-of-the-art A set of 684 genes introduced in [31]. BAGEL reanalysis of 17 genome-scale knockout screens
reference set of core- in human cell lines performed with different libraries.
fitness essential
genes

Behan2019  State-of-the-art A set of 553 genes presented in [11]. ADaM analysis of a large collection of gene
reference set of core- dependency profiles from CRISPR-screens of 325 hu-
fitness essential man cancer cell lines from different tissue-lineages/can-
genes cer-types (now part of the Project Score database [28]),

using a manually curated version of the Hart2014 set
(the curated Hart2014 CFGs), as training. This was ob-
tained by excluding from the Hart2014 set 34 genes,
such as for example KRAS and CHD4, predicted to be
cancer drivers by the intOGen pipeline [34, 35]
Sharma2020  State-of-the-art A set of 519 genes presented in [30]. Logistic regression approach (part of the CEN-tools soft-

reference set of core-
fitness essential
genes

ware), which uses the BAGEL essential/never-essential
genes as training sets, respectively the Hart2017 set and a
set of 927 never-essential genes [10, 24]. This approach
was individually applied to the dependency profiles from
Project Score [28] and from the Broad DepMap portal
[I(https//depmap.org) (Release 19Q2). The final predicted
set was composed of genes predicted as CFGs in the
two analyses, excluding those in the training set.

For the comparison with the unsupervised methods,
this set was joined with the Hart2017 set (used in its
training phase), rising up to 1182 genes.

tools (23%) and Behan2019 (15%) (Fig. 2D). The median
TPR for the FiPer variants was 47%, with FiPer AUC
ranking first (54%) and FiPer Average last (42%). In
terms of false positive rates (FPRs), Behan2019 per-
formed the best, covering only 1.2% of the negative con-
trols included in the DepMap dataset. ADaM ranked
second (1.5%), followed by CEN-tools (1.7%) and

Sharma2020 (2.3%). The median relative FPR for the
FiPer variants was equal to 4% with FiPer average per-
forming best (2.5%) and FiPer fixed worst (7%).

To account for differences in set sizes, which impact
the observed TPRs/FPRs, we sought to compare the ob-
served FPRs with those expected when using a baseline
daisy model (DM) predictor of CFGs on the DepMap

Table 2 Sets of core-fitness and common-essential genes obtained by novel analyses of the DepMap dataset and considered to

benchmark CoRe

Set name Set Type Number of genes Dataset of
origin
CEN-tools Novel 756 DepMap
analysis  [For the comparison with the unsupervised methods, this set was joined with the curated Hart2014 set  dataset [19].
(used in its training phase), rising up to 1082 genes]
CoRe ADaM Novel 1075 DepMap
analysis dataset [19]
CoRe FiPer Novel 1424 DepMap
average analysis dataset [19]
CoRe FiPer Novel 1704 DepMap
slope analysis dataset [19]
CoRe FiPer Novel 1987 DepMap
AUC analysis dataset [19]
CoRe FiPer Novel 1947 DepMap
Fixed analysis dataset [19]
CoRe FiPer Novel 1673 DepMap
consensus analysis dataset [19]
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dataset, considering as the DM thresholds n* the n pro-
viding the observed TPRs of independent positive con-
trols (Fig. 2E and Additional File 4: Fig. S2).

When considering the supervised methods, CoRe out-
performed both CEN-tools and Sharma2020, yielding
better ratios of FPRs with respect to those obtained at
the observed TPRs by the DM (1.1 and 1.2 respectively
for Behan2019 and ADaM, against 1.4 for CEN-tools
and 1.8 for Sharma2020 (Fig. 2F)). Much better perfor-
mances were obtained by the FiPer variants (median
EPR / baseline ratio = 0.72) with FiPer AUC performing
the best (0.64) and FiPer average the worst (0.83).

Optimal sets of CFGs/CEGs are expected to be essen-
tial in a vast majority of cancer cell lines: they have an
average large negative impact on cellular fitness upon in-
activation and are constitutively expressed in non-
diseased tissues.

To evaluate these properties across the output of com-
pared methods and state-of-the-art sets, we first measured
the median number of cell lines dependent on the pre-
dicted sets of CFGs/CEGs (Fig. 3A). This was generally
large for all the supervised methods, with the Behan2019
CEGs being essential (scaled fitness score<-0.5, Add-
itional file 11: Additional methods and documentation) in
a median percentage of 99.8% cell lines of the DepMap
dataset, followed by CEN-tools (98.9%), ADaM (98.1%)
and Sharma2020 (96.8%). As expected, the CEGs yielded
by the FiPer variants, were generally essential in smaller
but still large percentages of cell lines (grand median =
82.3%, min = 70.2% for FiPer AUC - max =92% for FiPer
average). Nevertheless, when looking at the n* thresholds
required by the baseline DM to attain the observed TPRs
across predicted CFGs/CEGs (Fig. 3B), among the super-
vised methods the ADaM set showed again the best ratio
between median number of dependent cell lines versus
baseline (1.14, 98.1% against 86%), followed by CEN-tools
(1.06, 98.9% against 93%), Sharma2020 (1.05, 96.8%
against 92%) and Behan2019 (1.01, 99.8% against 98.6%)
(Fig. 3C). The FiPer variants CEGs showed a median ratio
between number of dependent cell lines versus DM
thresholds at same TPR that was generally strikingly large
across methods (median = 2.62, max 4.26 for FiPer AUC -
min 1.95 for FiPer average).

The proximity to 1 of all the ratios for the supervised
methods indicate that they all implicitly discover the
DM'’s optimal n* ADaM goes further and selects a set of
genes providing a TPR that would require a much lax
minimal number of dependent cell lines to be achieved
by the DM, thus resulting in an increased FPR. Further-
more, in these circumstances, the unsupervised methods
massively outperform the supervised ones, showing the
effectiveness of the FiPer criteria used to pick CEGs.

Next, we measured the median scaled fitness effect of
the predicted CFGs/CEGs across cell lines, and we find
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it comfortably below - 0.8 -- i.e. 80% of the median ef-
fect for curated Hart2014 (Methods) -- for all the super-
vised methods (strongest effect = - 0.99 for Behan2019,
weakest for Sharma2020 = - 0.83) and below - 0.5 -- i.e.
half the fitness effect of the curated Hart2014 -- for the
FiPer variants (strongest for FiPer average =-0.73,
weakest for FiPer AUC = - 0.59) (Fig. 3D).

Nevertheless, when comparing these values with their
equivalent for the CFGs predicted by the baseline DM at
the observed TPRs (excluding genes belonging to the
training sets), ADaM was again the best performing su-
pervised method (ratio between median fitness effect
and baseline = 0.99), followed by CEN-tools (0.98), Be-
han2019 (0.93), and Sharma2020 (0.89). The median ra-
tio for the FiPer variants was equal to 1.01 with FiPer
AUC performing best (1.02) (Fig. 3E).

Finally, we found that all the compared methods pre-
dicted sets of CFGs/CEGs that were constitutively
expressed in normal tissues at similar median levels
(Additional File 5: Fig. S3). In addition, the CFG sets’
cardinality was systematically comparable or lower than
that of CFG sets outputted by the baseline DM at the
observed TPRs, with the exception of Sharma2020 and
CEN-tools (Fig. 3F). Thus, these two sets were con-
firmed to be suboptimal and predicting larger numbers
of CFGs with respect to the baseline DM but with worse
FPRs at the observed TPRs (Fig. 2EF).

All these results were confirmed when the benchmark
analyses were extended to the Hart2014 and Hart2017
sets, adding to CEN-tools and Sharma2020 their corre-
sponding positive training sets and not excluding train-
ing set genes from positive/negative controls (thus
considering 905 positive and 8040 negative controls - of
which respective 466 and 695 are in the DepMap data-
set) (Additional File 6: Fig. S4).

When considering all state-of-the-art sets of CFGs and
supervised methods, we observed again that ADaM pro-
vides the best TPRs and FPRs (both absolute and relative
to baseline, Fig. 4A-D).

The Hart2014 set showed the best FPRs versus base-
line ratio, although this had to be extrapolated. In fact,
this set had a TPR (21.7%) that was lower than that of
the baseline DM classifier at the most stringent n*
threshold (TPR =24%, for 343 CFGs that are signifi-
cantly essential in 100% of the screened cell lines) (Fig.
4C), and strikingly did not include 66 positive controls
that are significantly essential in all the cell lines of the
DepMap dataset (Fig. 4E). These 66 genes were all cov-
ered by all the methods executed on the DepMap data-
set and only partially recalled by the Hart2017 (73%), the
Behan2019 (82%) and the Sharma2020 (94%) sets.

Taken together, these results strongly indicate that the
CFGs derived from the DepMap dataset reliably extend
state-of-the-art CFG sets and that, among those derived
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with supervised methods, the ADaM set is the most ro-
bust one. This was also confirmed in terms of number
of cell lines dependent on the predicted CFGs (Fig. 5AB)
and their median fitness effect (Fig. 5CD), relative to
baseline performances.

Methods’ performances using an independent cancer
dependency dataset

We sought to compare the CFGs and CEGs outputted
by the considered methods in terms of their median fit-
ness effect across multiple screened models when using
an independent cancer dependency dataset. To

accomplish this, we considered an integrated depend-
ency dataset generated by applying the DEMETER2
model to three large-scale RNAI screening datasets, cov-
ering 712 unique cancer cell lines [37], pre-processed as
specified in the Additional file 11: Additional methods
and documentation.

Also, in this case, the two versions of the ADaM CFGs
sets outperformed the other supervised methods both in
terms of absolute grand median fitness effect (-0.79
and - 0.61, respectively, for Behan2019 and ADaM, ver-
sus -0.6 and-0.5, respectively for CEN-tools and
Sharma2020) and ratio with respect to baseline DM
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(0.98 and 0.96, respectively for ADaM and Behan2019,
versus 0.94 and 0.76, respectively for CEN-tools and
Sharma2020, Additional File 7: Fig. S5). As we previously
observed, the FiPer variants’ CEGs showed an overall
milder grand median fitness effect (median = — 0.36) but
much better ratios with respect to baseline (median =
0.99).

Functional characterisation of predicted sets of core-
fitness-essential and common-essential genes

We performed a systematic statistical enrichment ana-
lysis of gene families across all sets of CFGs and
CEGs considered in our benchmark, to functionally
characterise them. This yielded a set of 13 families
significantly enriched (FDR <5%) consistently across
all the state-of-the-art sets of CFGs as well as in the
CFGs outputted by all tested supervised methods
(Fig. 6A and Additional File 8: Table S3), thus worthy
to be considered as bonafide true positive enrich-
ments in human core-fitness essential genes (the
core-fitness families). These families encompass most
of the true positive controls used in our benchmark
(ribosomal protein genes, proteasome, RNA polymer-
ase [36]), as well as other plausible families, such as
proteins involved in the initiation phase of eukaryotic
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translation [38], chaperonins [39], nucleoporins [40,
41] and less immediate hits, such as AAA-ATPase
[42, 43] and WD repeat domain families [44, 45].

The coverage of these families was much larger for the
more recent CFG sets when compared to the state-of-
the-art CFGs, with ADaM and Sharma2020 performing
best (average Recall across families =57 and 54%, re-
spectively). The unsupervised methods further extended
the coverage of these gene families with average Recalls
ranging from 63% (for FiPer average) to 68% (for FiPer
AUC), with a median of 65%.

57 gene families were significantly enriched (FDR <
5%) consistently across the CEG sets outputted by the
FiPer methods (Fig. 6B). These included all the 13 core-
fitness families plus 44 additional groups (the common-
essential families) such as COP9 signalosome [46, 47],
mediator complex [48], SNAP complex [49, 50] and pre-
foldin subunits [51], to name a few.

When comparing the predicted CFG and CEG sets
with the gene-essentiality timing characterisation pre-
sented in [52], we observed in the former more genes
exerting a negative fitness effect at an early time point
upon knock-out (early-essential genes), whereas the lat-
ter included more families enriched in genes whose ef-
fect on fitness can be detected only at a later time point
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(late-essential genes) (Fig. 6C), such as exosome complex
[53], dynactin [54] and ubiquitin-like modifier activating
enzymes [55, 56].

Evaluation of core-fitness gene sets as template
predictors of cell line specific essential genes

We performed a final analysis evaluating each state-of-
the-art set of core-fitness essential genes (CFGs), and
those outputted by CEN-tools and ADaM when applied
to the DepMap dataset, as a template classifier of cell
line specific essential genes with BAGEL: a widely used
bayesian method to estimate gene essentiality signifi-
cance in pooled CRISPR-cas9 screens [24].

To this aim, we analysed with BAGEL the dependency
profiles in the DepMap dataset generated at Sanger, and
preprocessed with CRISPRcleanR [21] (Additional file 11:
Additional methods and documentation), obtaining 7 in-
stances of BAGEL Bayes Factor (BF) matrices, quantify-
ing the likelihood of each gene to be essential in each
cell line, using each of the benchmarked set in turn as
positive reference set of essential genes in the BAGEL
classification template. To evaluate the robustness of the
obtained cell line specific BFs we assembled sets of cell
line specific positive/negative essential-gene controls.

As positive control, we considered putative oncogenetic
dependencies arising from oncogenes (from [35]) found
mutated or copy number amplified in a cell line (using data
from the Cell Model Passports [32]), whereas wild-type and
non-expressed (FPKM < 0.1) oncogenes were considered as
negative controls (Additional File 9: Table S4).

Then, we assessed the 7 BF matrices, pooling all in-
cluded values together and considering them as a unique
rank-based predictor (the larger the BF the higher the
likelihood of a gene to be essential) of cell line specific
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essential genes, by means of receiver operating charac-
teristic (ROC) analyses (Additional file 11: Additional
methods and documentation). Particularly, for each
benchmarked set we computed the area under the BF-
rank induced precision-recall curve (AUPRC) (Fig. 7A
and Additional File 10: Fig. S6) and the recall of positive
controls at 5% FDR (Fig. 7B). All the sets of CFGs out-
putted by CEN-tools and CoRe applied to the DepMap
dataset (Table 2) outperformed the state-of-the-art sets
of CFGs, showing a better ability to detect as signifi-
cantly essential mutated oncogenes, when used as a tem-
plate for BAGEL. Above all, ADaM achieved the highest
recall at 5% FDR (Additional file 11: Additional methods
and documentation).

Computational efficiency

We measured and compared running times of the
benchmarked methods applied to the DepMap dataset,
on different operating systems as well as on Google
CoLab, a Jupyter notebook service hosted by Google
servers (Table 3). The CoRe FiPer methods were be-
tween 16 (FiPer slope vs ADaM on Ubuntu 16.04 LTS)
to 98 (FiPer fixed vs ADaM on CoLab) times faster than
ADaM and between 31 (FiPer slope vs CEN-tools on
Ubuntu 16.04 LTS) to 123 times (FiPer fixed vs CEN-
tools on CoLab) faster than CEN-tools. Across FiPer
variants, the slope one was the slowest, probably due to
fitting of a linear regression model to a discrete distribu-
tion of gene fitness-rank-positions. Nevertheless, FiPer’s
running time was still significantly lower than ADaM
and both outperformed CEN-tools, which was the
method with the longest running times, invariantly
across operating systems.
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Table 3 Computational efficiency across methods. Assessments of running time of the six compared methods when executed on

different operating systems and on Google Colab

Algorithm MacOS Big Sur Ubuntu 16.04 LTS Windows 10 ColLab (Ubuntu 18.04 LTS)
ADaM 7 mins 3823 s 6 mins 30.88 s 10 mins 36.56 s 12 mins 1995 s

CEN-tools 10 mins 22.76 s 12 mins 34.74 s 15 mins 2433 s 15 mins 32.69 s

FiPer (average) 493s 6.52s 6.67's 8265

FiPer (AUC) 577s 7545 7835 9.79s

FiPer (fixed) 478s 5555 5765 757s

FiPer (slope) 18975 2407 s 29395 32265

Discussion same true positive rates, and our benchmark results

We introduced CoRe: an open-source R package
implementing both existing and novel methods for
the identification of core-fitness essential genes
(CEGs) --at two different levels of stringency-- from
joint analyses of multiple CRISPR-Cas9 pooled
recessive screens. We robustly and extensively
benchmarked CoRe against state-of-the-art sets of
core-fitness genes and other CFGs discovery
methods, using the largest integrative dataset of can-
cer dependencies to date. We observed that the sets
of core-fitness essential and common-essential genes
(CEGs, outputted by the less stringent methods) pre-
dicted by CoRe are much more comprehensive and
robust, in terms of true and false positive rates
(TPRs, FPRs) both absolute and relative to a baseline
classifier. For the latter, we considered a simple
baseline daisy model (DM) model [10] outputting as
CFGs those genes exerting a negative effect on fit-
ness upon CRISPR-Cas9 targeting in at least an opti-
mal minimal number of screened models, which is
known a priori. We also demonstrated that both
CoRe and other methods can implicitly detect this
optimal DM threshold, with the CoRe methods going
much further and accurately predicting sets of genes
that are essential in numbers of cell lines that are
larger than this threshold. This is much more evi-
dent for the less stringent methods implemented in
CoRe (i.e., the FiPer variants), thus showing the ef-
fectiveness of their underlying algorithm (based on
genes’ fitness percentile curves), which selectively
picks likely true CEGs. Particularly, across these var-
iants, the FiPer AUC method performs the best even
when compared to a consensus set of CEGs obtained
by intersecting the output of all the other FiPer vari-
ants. Consistently, AUC is the FiPer variant imple-
mented/executed by default by CoRe. However, the
other variants are also implemented in CoRe and
can be executed for reproducibility purposes.
Contrary to other methods, the sets of CFG/CEG
predicted by CoRe are also smaller than those out-
putted by a baseline DM predictor attaining the

were all confirmed when extending the analysis to
gene sets used in the training phase of at least one
of the compared methods, and when considering an
independent RNAi based cancer dependency dataset.

Furthermore, we found that the CoRe CFGs/CEGs ex-
tend gene families covered by previous state-of-the art
sets and methods, with the FiPer methods being able to
detect more subtle yet consistent fitness effects and core
late essential genes. Finally, the CoRe CFGs/CEGs are all
constitutively expressed in non-diseased tissue, pointing
to the primary role which these genes play inside the
cell. Indeed, it has been shown that higher essentiality is
correlated with higher expression and association in im-
portant biological pathways [57].

Importantly, our final benchmark analysis also sug-
gests that the CFGs yielded by our novel analyses of the
DepMap dataset might be better suited than the refer-
ence positive control sets currently used [31, 33] as posi-
tive predictor template when estimating cell line specific
essential genes with a supervised classification method,
such as BAGEL [24].

The development of new tools exploiting the wealth of
data currently being generated from CRISPR screens is
of paramount importance [58]. Paired with the gener-
ation of new data from large efforts and collaborative
endeavours, such as for example the Cancer Dependency
Map [29, 59], this will be vital for identifying new oncol-
ogy therapeutic targets, as well as for the characterisa-
tion of novel human core essential genes. Nevertheless,
another key need is to couple CRISPR screening data
with other genetic and molecular information of the
screened models and data from ‘normal’ samples. A
major reason for this is that a context-specific essential
gene in a given cancer genetic background might be, for
example, too toxic if suppressed in vivo or, in the oppos-
ite case, a gene characterized by a pan-essentiality profile
in cancer might show reduced on-target toxicities [60].

Conclusions
The identification of core-fitness genes has important
implications in different areas of the life sciences: from
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drug discovery and cancer therapy to the study of gen-
etic networks. However, different strategies are required
according to the type of biological question being inves-
tigated. From this perspective, the utility of CoRe is two-
fold. In fact, when performing functional genetic studies
or aiming at identifying novel CFGs, we recommend
adopting a more stringent approach, such as ADaM,
which can guarantee higher confidence. On the other
hand, when the focus is on the identification of new
therapeutic targets, thus, to seek new promising context-
specific essential genes, the opposite is true. Therefore,
applying a less stringent algorithm, such as the FiPer
method (particularly the FiPer AUC) allows a larger
number of genes to be classified as common-essentials,
thus ruling out confounding genes that may skew the
outcome of the analysis.

In addition, the CoRe workflow can be adapted to users’
needs and contingencies and it is compatible with many
pre-processing methods and tools to estimate fitness effect
significance. For example, the recently introduced
Chronos tool [61] (accounting for cell population dynam-
ics while estimating gene essentiality) could be used in-
stead of CERES [12]. In addition, when copy number
alteration profiles are not available for the screened
models, the unsupervised method CRISPRcleanR [21]
could be used to correct for gene-independent responses
to CRISPR-Cas9 targeting. Furthermore the recent
BAGEL?2 tool [62] can be used in the initial binarization of
essentiality scores, required for ADaM.

Finally, where sufficient data is available, i.e. enough
screened models, the algorithms implemented in CoRe
could be used to analyze specific subsets of cancer cell
lines hosting certain molecular features (e.g. KRAS muta-
tions in colorectal carcinoma), allowing identifying/com-
paring subtype specific core-fitness genes, which would be
of particular interest for translational cancer research.

With the increasing availability of comprehensive can-
cer dependency maps [29], tools such CoRe will be argu-
ably more and more needed in the future, and they will
contribute translating data and findings from such ef-
forts into novel therapeutic target candidates.
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