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Uncertainty Quantification
in a Patient-Specific One-
Dimensional Arterial Network
Model: EnKF-Based Inflow
Estimator
Successful clinical use of patient-specific models for cardiovascular dynamics depends
on the reliability of the model output in the presence of input uncertainties. For 1D fluid
dynamics models of arterial networks, input uncertainties associated with the model out-
put are related to the specification of vessel and network geometry, parameters within the
fluid and wall equations, and parameters used to specify inlet and outlet boundary condi-
tions. This study investigates how uncertainty in the flow profile applied at the inlet
boundary of a 1D model affects area and pressure predictions at the center of a single
vessel. More specifically, this study develops an iterative scheme based on the ensemble
Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of
curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size
and shape of the estimated inflow, which is propagated through the model to determine
the corresponding uncertainty in model predictions of area and pressure. Model predic-
tions are compared to ex vivo area and blood pressure measurements in the ascending
aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results
discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.
[DOI: 10.1115/1.4035918]
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1 Introduction

Numerous studies have used one-dimensional (1D) fluid
dynamics models coupled with constitutive arterial wall models to
predict wave propagation in arterial networks [1–8]. One-
dimensional models are useful for understanding pulse wave prop-
agation in arterial networks [4,7,9–12] and for coupling with 0D
and 3D models to generate multiscale representations of larger
parts of the cardiovascular system [13–20]. The relatively simple
nature of these models allows them to be used in a patient-specific
context [21], improving diagnosis of observed hemodynamic
disorders, such as pulmonary arterial hypertension [22,23].

Successful use of such patient-specific models in clinical set-
tings depends on the reliability of the model output. Yet, the accu-
racy of the model output can be traced back to uncertainties in the

input parameters [24–26]. Many sources of uncertainty naturally
exist in cardiovascular models due to the complexity and variabil-
ity in the cardiovascular system itself [24,27]. For 1D cardiovas-
cular models, input uncertainties are associated with vessel
geometry, specification of equations predicting the fluid dynamics
and the arterial wall model, and parameters used to specify the
inflow and outflow boundary conditions [1,9], as described below:

(1) Geometry. For large vessels, geometric properties such as
vessel length, diameter and bending, as well as network
connectivity, can be obtained from magnetic resonance
imaging (MRI) [2,6,22,28] or computed tomography (CT)
images [29–31]. Accuracy in these measurements depends
on how still and how long the subject lies in the scanner,
the choice of image segmentation technique, and the geo-
metric approximations used in reconstructing the vessel
and network connectivity from the imaging data [32,33].
This study compares numerical simulations with experi-
mental data where high precision measurements of vessel
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length (via caliper) and diameter (via ultrasonic crystals)
were made directly on single vessels during experimenta-
tion, both in vivo before excision and ex vivo after [34,35].
Vessels in this study are assumed to be nontapered (i.e.,
effects of bends and changes in vessel diameter along ves-
sels are ignored).

(2) Fluid dynamics. In this study, blood is assumed to be New-
tonian with constant viscosity and density, and the flow is
assumed to be fully developed. As a result, the velocity pro-
file is assumed parabolic [4]. While density and viscosity
can be measured fairly accurately in large arteries, the
velocity profile is more flat than parabolic [4,36], which
gives rise to error in computations. In addition, in smaller
vessels viscosity is no longer constant [37]. For the straight
vessel studied here, uncertainties associated with these
assumptions are minor, particularly since the data are from
ex vivo experimental studies in which measurements are
not taken until steady pulsating flow has been obtained.

(3) One-dimensional model. This study uses the 1D
Navier–Stokes equations for conservation of momentum
and volume to relate flow, pressure, and area. To close the
system, these are coupled with a constitutive equation relat-
ing vessel area and pressure. The latter equation encodes
either elastic [6,9,38–40] or viscoelastic [1–3,10,13,41,42]
deformation. This 1D approximation is a simplification that
does not account for flow disturbances within the network,
particularly in the presence of junctions. Moreover, model
parameters defining viscosity, flow velocity, vessel stiff-
ness, viscoelastic relaxation, and amplitude are difficult to
measure, therefore providing a significant source of uncer-
tainty, even within the single vessel model studied here.

(4) Inflow boundary condition. A boundary condition is speci-
fied at the network inlet. This can be done by applying a
time-varying flow profile (which may be obtained from
MRI measurements) or by using a model that predicts the
pumping of the left heart. The flow at the inlet is complex
[43], and even if predicted with a 3D heart model [44], it is
associated with a significant level of uncertainty [45]. This
study focuses on quantifying uncertainty related to the
inflow boundary condition.

(5) Outflow boundary conditions. Outflow boundary conditions
are typically assigned using either a fractal tree model
[6,46–48] or a three-element Windkessel model
[2,4,14,49,50] to represent the impact of flow from vessels
not included in the network. The measurements of branch-
ing angles and ratios in the small vessels used to specify
fractal tree models are typically extracted from studies over
several species and therefore are not precise. Numerical
methods for estimating Windkessel model parameters (two
resistors and a capacitor) exist for elastic models but do not
hold for viscoelastic models used in this study [8], giving
rise to uncertainty in parameter values.

(6) Numerical approximation. In addition to the physical quan-
tities described above, errors associated with the numerical
scheme chosen to solve the fluid equations are another
source of uncertainty. This study employs a 1D finite ele-
ment method with specified spatial and time discretization
schemes. Previous work studying the convergence of this
solver showed that the time discretization significantly
affects the accuracy of the numerical solution, while the
spatial discretization does not [8]. The numerical error in
the time discretization of the solver is used in this study as
a means of assessing trust in the model predictions, as
described in Sec. 2.3.

Even if measurement techniques for estimating the quantities
addressed above were perfect, complete data needed to estimate
all of these quantities do not exist. In particular, the lack of con-
current area, pressure, and flow data makes it difficult to validate
1D models. 1D flow and geometry data for large vessels can be

extracted from MRI measurements [51], while blood pressure can
be measured noninvasively in superficial arteries using Finapres
or tonometry methodologies [52,53] or invasively in deeper ves-
sels using a pressure transducer [54,55]. To obtain sufficient reso-
lution, MRI flow measurements must be averaged over several
cycles during breath-hold, while blood pressure measurements are
instantaneous. Thus, while “complete” validation of 1D models is
difficult, acknowledgment of associated uncertainties could signif-
icantly improve the use of model-based predictions.

Typical validation of 1D arterial network models includes com-
parison of predicted and measured flow obtained in networks with
geometry specified from MRI measurements. A majority of these
studies have been done with models that predict wall deformation
using simple linear elastic wall models [6,8,9,14,23,28]. However,
it is known that arterial wall deformation (particularly within the
aorta) exhibits both nonlinear and viscoelastic characteristics [42].
Some studies have accounted for linear viscoelastic [2,7,13] or
nonlinear elastic [31,56] deformation, yet to our knowledge none
have accounted for nonlinear viscoelasticity. Accurate model pre-
diction necessitates the use of nonlinear viscoelastic wall models
along with matching inflow and outflow boundary conditions and
other previously mentioned inputs [2,57]. All of these factors
influence wave propagation as well as the type and nature of the
reflected waves, thus impacting the shape of the pressure wave-
form [58].

Most of the studies discussed above are deterministic, i.e., the
proposed models fit given waveforms without addressing how
changes in input parameters affect output predictions. However,
several recent studies [24–26,59–66] have noted the importance
of quantifying uncertainty in the model output given variation in
the input, which becomes especially important in developing
trustworthy models to aid in clinical decision-making. To our
knowledge, only a few of these studies have addressed this topic
for 1D arterial network models. Chen et al. [24] conducted sto-
chastic simulations within a 1D network to explore the sensitivity
of blood flow and pressure to uncertainty in geometric and hemo-
dynamic parameters, including blood density and viscosity. These
parameters were randomized using a log-normal distribution, then
model predictions of flow and pressure were computed. Sankaran
and Marsden [25] took a similar approach, using stochastic collo-
cation to examine uncertainties relating to vessel geometry,
boundary conditions, and flow-split in 3D models for abdominal
aortic aneurysm, carotid artery bifurcation, and a patient-specific
Fontan surgery. Sankaran et al. [59] studied the impact of uncer-
tainties in vessel geometry on patient-specific simulations of the
coronary arteries, coupling stochastic collocation with a machine
learning-based surrogate to the 3D model. More recently, San-
karan et al. [60] presented a data-driven approach using adaptive
stochastic collocation to quantify uncertainties relating to vessel
geometry, boundary conditions, and blood viscosity in a patient-
specific model of the coronary arteries. This study analyzed the
relative impact of uncertainties in minimum lumen diameter,
lesion length, boundary resistance, and blood viscosity on blood
flow simulations, highlighting the importance of uncertainty in
minimum lumen diameter. Eck et al. [26] employed a generalized
polynomial chaos (gPC) method computed by stochastic colloca-
tion to study the sensitivity of pressure waves to arterial stiffness,
while Xiu and Sherwin [61] used gPC to explore uncertainty in
pulse wave propagation in a reduced human arterial network
model by randomizing a material parameter related to wave prop-
agation speed. Xiao [62] employed a reduced-order unscented
Kalman filter to estimate wall stiffness in the carotid artery, as
well as Windkessel model resistance and compliance parameters
in an idealized aortic bifurcation in a 3D fluid–solid interaction
model. Eck et al. [63] recently presented a six-step procedure out-
lining uncertainty quantification and sensitivity analysis in cardio-
vascular models, focusing on Monte Carlo and polynomial chaos
techniques, while Schiavazzi et al. [64] presented a framework for
propagating uncertainties in clinical data to uncertainties in model
parameters and model output, using Bayesian parameter
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estimation techniques, on a patient-specific 3D model simulating
virtual stage II single ventricle palliation surgery. The closest
related study is that of Brault et al. [65,66], which used
projection-based gPC to investigate the sensitivity of 1D model
output to uncertainty in the inlet boundary condition. Brault et al.
prescribed a periodic inflow model with known form and random-
ized parameters such as mean and peak flow rate, treating them as
independent, uniformly distributed random variables.

The primary objective of this study is to use ex vivo area and
pressure data from three single vessels (the ascending aorta, the
carotid artery, and the femoral artery) extracted from a healthy
male Merino sheep to predict the inflow waveform. In particular,
we aim to quantify uncertainty in the shape and magnitude of the
estimated inflow waveform, then use this input uncertainty to
quantify the corresponding uncertainty in the model output predic-
tions of area and pressure at the center of the vessel for each of
these three single vessels of different sizes taken from different
locations in the arterial network. This is shown using both a linear
and a nonlinear viscoelastic wall model.

The inflow boundary condition is estimated in this study using
a Bayesian inverse problems approach [67,68], which provides a
natural measure of uncertainty in the inflow estimation. We show
how uncertainty in the inflow profile (i.e., the temporal profile pre-
scribed at the vessel inlet boundary) can be propagated through
the model to predict uncertainty in the model output at the center
of the vessel. More specifically, we develop an iterative scheme
based on the ensemble Kalman filter (EnKF) that estimates the
inflow from a prior distribution of curves. The EnKF [69,70] has
proven to be a useful tool in estimating both unknown model
states and parameters in various applications, including weather
prediction [71,72] and reservoir modeling [73]. Numerous varia-
tions of the original EnKF for state estimation have been derived;
in particular, in this study we adapt the augmented EnKF for com-
bined state and parameter estimation derived in Arnold et al. [74].

To our knowledge, this is the first study to propose a methodol-
ogy for systematically estimating the inflow boundary condition
and one of the first studies to address propagation of uncertainty
in arterial network models. In our view, prediction of output
uncertainty is essential in successfully rendering physiological
models patient-specific for use in clinical decision-making. While
the current study focuses on inflow estimation, this is just one
example that provides a foundation for how such methodologies
can be applied in this setting.

In addition to estimating the inflow boundary condition, this
study also compares area and pressure predictions obtained using
linear and nonlinear viscoelastic models. A previous study showed
that including nonlinear elastic deformation is essential within the
aorta, while linear elastic deformation was adequate to estimate
wall deformation in smaller vessels including the carotid and

femoral arteries [42]. However, that study was done without
accounting for the fluid dynamics considered here. Results of this
study show that the proposed methodology is able to estimate
inflow boundary conditions and predict the corresponding output
uncertainties for vessels of different size and that accounting for
nonlinear viscoelastic deformation improves the estimation.

2 Materials and Methods

2.1 Experimental Data. Data for this study include blood
pressure and cross-sectional area measurements from the ascend-
ing aorta (AA), the femoral artery (FA), and the carotid artery
(CA) of a healthy male Merino sheep, aged 18–24 months with an
approximate weight of 32 kg. The excised vessel segments were
mounted in the organ chamber of the mock circulation (shown in
Fig. 1) and stretched to their in vivo length, which was measured
using a high-precision caliper. The vessels were subjected to
physiological hemodynamic conditions induced by a Jarvik heart
pump. The external arterial diameter of each vessel was measured
using sonomicrometry, and blood pressure was measured using a
solid-state microtransducer. More details of the experimental pro-
tocol can be found in Armentano et al. [75] and Valdez-Jasso
et al. [76]. In this work, we analyze the measured area and pres-
sure data over one cardiac cycle in each of the AA, FA, and CA,
treated as single vessels of different sizes taken from different
locations in the network. The vessels, along with their correspond-
ing area and pressure data, are shown in their network location in
Fig. 2.

2.2 Fluid Dynamics Model. Blood flow, pressure, and area
are predicted using a 1D fluid dynamics model derived from the
Navier–Stokes equations under the assumptions that the vessels
are cylindrical, that the vessel length is significantly greater than
the vessel radius, that the blood is incompressible, that the fluid is
Newtonian, and that the flow is axisymmetric with a parabolic
velocity profile. Under these conditions, conservation of mass and
momentum [3,8,77] is given by

@A

@t
þ @q

@x
¼ 0;

@q

@t
þ @

@x

4

3

q2

A

� �
þ A

q
@p

@x
¼ �8p�

q

A
(1)

where the blood density q ¼ 1:06 g ml�1 and viscosity l ¼ 0.049
g s�1 cm�1 are assumed constant, with kinematic viscosity
� ¼ l=q. The area of the vessel is denoted by A ¼ A x; tð Þ (meas-
ured in cm2), the pressure by p ¼ p x; tð Þ (mmHg), and the flow
by q ¼ q x; tð Þ (ml s�1).

Deformation of the arterial wall is predicted using a viscoelastic
wall model of the form

Fig. 1 (Left) Mock circulation including a pneumatic pump, a perfusion line connected to the chamber with the mounted ves-
sel segment, a resistance modulator (R), and a reservoir. Blood pressure (P) is measured with a microtransducer while the
diameter (D) is measured with a pair of ultrasonic crystals using sonomicrometry. (Middle) The single, straight vessel segment
shown with inflow and outflow boundary conditions. (Right) Time series data for area and pressure at the center of the vessel.
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e tð Þ ¼ K 0ð Þs eð Þ p tð Þ½ � þ
ðt

t0

dK t� fð Þ
df

s eð Þ p fð Þ½ �df (2)

where K tð Þ ¼ 1� A1e�t=b1 determines the viscoelastic relaxation
with the parameter A1 denoting the amplitude associated with the
characteristic relaxation time b1. Area is related to pressure via
the strain function e ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0=A tð Þ

p
, where A0 is the zero-

pressure area. The elastic response function s eð Þ p½ � in Eq. (2) can
be linear or nonlinear. The linear Kelvin model has the form

s eð Þ p½ � ¼
r0p

Eh
(3)

with parameters E the elastic modulus, h the wall thickness, and
r0 the zero-pressure radius, while the nonlinear sigmoid model has

s eð Þ p½ � ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 pk þ akð Þ
Ampk þ A0ak

s
(4)

where Am denotes the maximal cross-sectional area, a the charac-
teristic pressure at which the vessel begins to saturate, and k an
exponent determining the steepness of the sigmoid curve [42].

The inflow at the proximal end of the vessel is estimated using
the proposed EnKF scheme, while at the outlet, flow and pressure
are related via a three-element Windkessel model

dq

dt
þ R1 þ R2

R1R2C
q ¼ 1

R1

dp

dt
þ p

R1R2C
(5)

with two resistors R1 and R2 (dynes s cm�5) representing the char-
acteristic impedance and total peripheral resistance, respectively,
and a capacitor C (cm5 dyne�1) denoting arterial compliance.

2.3 The EnKF-Based Inflow Estimator. This study devel-
ops an EnKF-based iterative scheme based on the work by Arnold
et al. [74] that, given discrete observations of area and pressure at
the center of the vessel, estimates a time-varying flow profile from
a prior distribution of curves; this scheme is hereby referred to as
the EnKF-based inflow estimator. A brief review of the idea
behind Bayesian filtering and the general augmented EnKF algo-
rithm for state and parameter estimation is given in the Appendix.
We adapt this methodology for the current application to perform
inflow estimation in a 1D vessel.

To this end, we consider area A ¼ A x; tð Þ and pressure p ¼
p x; tð Þ evaluated at the center of the vessel at xmid ¼ L=2, where L
is the vessel length, as our model states, which we write in vector
form as

u ¼ u xmid; tð Þ ¼ A xmid; tð Þ
p xmid; tð Þ

� �
(6)

and we treat the inflow curve q ¼ q 0; tð Þ as an unknown, time-
varying parameter to be estimated at T þ 1 discrete time points tj,
j ¼ 0; 1; …; T. Using the fluid dynamics model (1)–(2), we
take a given inflow curve and compute the corresponding area and
pressure curves at xmid by employing a stabilized space-time finite
element method based on the discontinuous Galerkin method,
which we refer to in this paper as the “fluid solver” [3]. The spa-
tial discretization of the fluid solver uses continuous linear poly-
nomials, while the temporal discretization is defined by piecewise
constant functions. Previous work studied convergence of the fluid
solver using different wall models, varying the number of ele-
ments, the number of time steps per period, and the total number
of periods [8]. Based on this work, we use 12 elements and a mini-
mum of 400 time steps per period, ensuring convergence of the
solver with both the linear and nonlinear wall models. We run the

Fig. 2 Arterial network representation showing (from left to right) the carotid artery (CA), the ascending aorta (AA), and the
femoral artery (FA). Time series data for area and pressure, along with the corresponding area versus pressure loop, are
shown at each vessel location.

011002-4 / Vol. 2, MARCH 2017 Transactions of the ASME



solver for 12 periods to guarantee that the effects of initial condi-
tions wear off, requiring that the last and next-to-last periods dif-
fer by no more than a prescribed tolerance.

Further, we assume that we have noisy measurements of area
and pressure at the center of the vessel at the same T þ 1 discrete
time points tj, j ¼ 0; 1; …; T, which we model as

yj ¼ y tjð Þ ¼ uj þ ej (7)

where uj ¼ u xmid; tjð Þ and ej is some observation error. For sim-
plicity, we can always discretize the inflow so that its discretized
time points match the time points of the data.

2.3.1 Generating a Prior. Let q be a vector denoting the time-
discretized inflow curve that we aim to estimate such that

q ¼ q 0; t0ð Þ; q 0; t1ð Þ;…; q 0; tTð Þ½ � 2 RTþ1. Since the fluid solver
requires a value of q at each discretized time point tj,
j ¼ 0; 1;…;T, we begin our EnKF-based scheme to estimate q
by assigning each entry qj ¼ q 0; tjð Þ an initial probability distribu-

tion with mean lj and variance r2
j , as illustrated in Fig. 3. In this

study, we let qj be normally distributed, although the methodology
developed here is not restricted by this choice. For each j, the
mean lj is chosen to be a point q̂j ¼ q̂ 0; tjð Þ from a curve q̂ esti-

mated a priori, and the standard deviation rj is selected based on
our level of uncertainty in the shape and magnitude of the curve at
that point, as described in the bullets below.

� The choice of mean curve q̂ should encompass any a priori
knowledge of the data that may help to get a sense of the pos-
sible shape of the inflow curve. The q̂ used in this work was
obtained by the following procedure: Originally, measured
blood pressure was prescribed at the inlet, and a correspond-
ing flow was predicted using the fluid solver. However, as
discussed by Anliker et al. [78], this flow had large negative
components following systole. A small negative flow can be
expected physiologically, reflecting a reversed flow into the
heart upon valve closure. To obtain a positive flow, the
Windkessel model parameters were adjusted, resulting in a
cardiac output exceeding that known for sheep. Subse-
quently, the flow profile was scaled to ensure a mean cardiac
output of 4.2 l per minute (common for sheep); for more
details, see Battista et al. [8].

� The standard deviation rj can be assigned differently at each
j based on some a priori information regarding the certainty
in the shape of the curve or set to be the same rj ¼ r for
some r. For simplicity, in our simulations we assigned the
same r at each j, but we used a different r for each of the
three single vessels to reflect its respective scale.

Once a distribution is assigned to each entry qj in the time-
discretized inflow curve, a random sample of size N is drawn
from the distribution at each j, which results in T þ 1 samples

S0 ¼ qn
0

� �N

n¼1
; S1 ¼ qn

1

� �N

n¼1
; …; ST ¼ qn

T

� �N

n¼1
(8)

These samples are collected into T þ 1 vectors s0; s1;…; sT 2 RN ,
where

sj ¼

q1
j

q2
j

�

qN
j

2
6666664

3
7777775
¼

q1 0; tjð Þ
q2 0; tjð Þ

�

qN 0; tjð Þ

2
666664

3
777775 2 RN (9)

which are then concatenated into a matrix S ¼ s0; s1;½
…; sT � 2 RN� Tþ1ð Þ

. The rows of the matrix S can be used to
form our initial ensemble of N discretized inflow profiles. Since
connecting the sample points randomly may result in nonphysical

flow profiles, we sort the columns of S in ascending order to gen-
erate flow profiles that are physiologically plausible. The rows of
the sorted matrix S therefore comprise our initial ensemble of N
discretized inflow profiles qn, n ¼ 1;…;N, with mean near q̂. To
enforce regularity and smoothness in the inflow profiles when
solving the partial differential equations, each inflow curve is
interpolated using a cubic spline so that the time discretization of
the flow matches that needed to ensure convergence of the fluid
solver.

2.3.2 Implementation. After forming the initial ensemble of
inflow curves, the EnKF-based inflow estimator is applied, com-
prising the following two-step procedure:

(1) Prediction Step: For each ensemble member n, where
n ¼ 1;…;N:
(a) Use the fluid solver to compute the model states

un ¼ un
0; un

1; …; un
T½ �, where

un ¼
An

pn

" #
¼

An
0;A

n
1; …; An

T

pn
0; p

n
1; …; pn

T

" #
2 R2� Tþ1ð Þ

(10)

that correspond to the inflow profile qn ¼ qn
0; q

n
1; …; qn

T½ � 2
RTþ1 for two different time discretizations: one coarser (but con-
verged) for prediction, denoted by unð Þcoarse; the other finer and
converged for error control, denoted by unð Þfine.

(b) Assuming that the model error is related to the time
discretization error in the fluid solver, assign the stand-
ard deviation cn

j of the model innovation term for each
ensemble member to be a factor of the difference
between the two solutions computed in (a):

cn
j ¼ sj un

j

	 

coarse

� un
j

	 

fine
j; j ¼ 0; 1; …; T (11)

where un
j

	 

coarse

and un
j

	 

fine

are the model state vectors at time tj
computed with the coarse and fine time discretization, respec-
tively, and s > 1 is a multiplicative factor taken here to be
s ¼ 1:2. Hence cn

j is proportional to the error in the solver differ-

ence at each time tj for each ensemble member n, allowing for
individualized innovation [74,79].

(c) Compute the prediction state ensemble via the equation

unð Þpred ¼ unð Þcoarse þ vn (12)

where vn 2 R2� Tþ1ð Þ
is a random vector with components

vn
j � N 0; diag cn

j

	 
2
� �� �

for j ¼ 0; 1;…; T.

Fig. 3 Illustration of how to form an initial ensemble of inflow
profiles by assigning probability distributions at discretized
points. Here, for example, a Gaussian distribution is assigned
at each of six equispaced time points over the interval [0, 0.53]
s. (Left) The assigned distributions have means given by the
discretized points on the curve and fixed standard deviations.
(Right) At each discretized time point, the corresponding distri-
bution is sampled (here, the sample size is three) and the sam-
ple points are connected in an ascending manner to form
physically plausible inflow profiles. These profiles are then
smoothed with a cubic spline to enforce regularity (not
pictured).
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(d) Combine prediction states and inflow profiles to form

an augmented prediction ensemble znð Þpred

� �N

n¼1

¼ zn
0ð Þpred

; zn
1ð Þpred

; …; zn
Tð Þpred

 �� �N

n¼1
, where

znð Þpred ¼
unð Þpred

qn

" #
¼

Anð Þpred

pnð Þpred

qn

2
664

3
775 2 R3� Tþ1ð Þ

(13)

and compute its mean using ensemble statistics

�zð Þpred ¼
1

N

XN

n¼1

znð Þpred 2 R3� Tþ1ð Þ
(14)

(2) Observation update: For each time point tj, j ¼ 0; 1;…;T,
sequentially:

(a) Generate an observation ensemble of size N about the
observed value yj:

yn
j ¼ yj þ wn

j ; n ¼ 1; …; N (15)

where wn
j � N 0;Dð Þ for some observation noise covariance D 2

R2�2 assumed here to be known and constant.
(b) Compute the prediction covariance matrix

Cjð Þpred
¼ 1

N�1

XN

n¼1

zn
j

	 

pred
� �zjð Þpred

� �
zn

j

	 

pred
� �zjð Þpred

� �T2R3�3

(16)

(c) Compute the Kalman gain matrix

Kj ¼ Cjð Þpred
BT B Cjð Þpred

BT þ D
� ��1

(17)

where B ¼ 1 0 0

0 1 0

� �
2 R2�3 is the augmented observation

matrix.
(d) Compute the posterior augmented ensemble using the

formula

zn
j ¼ zn

j

	 

pred
þKj yn

j � B zn
j

	 

pred

� �
(18)

(e) Compute posterior ensemble mean

�zj ¼
1

N

XN

n¼1

zn
j 2 R3 (19)

and covariance

Cj ¼
1

N � 1

XN

n¼1

zn
j � �zj

	 

zn

j � �zj
	 
T 2 R3�3 (20)

The two steps above comprise a single iteration of the algorithm,
which may be run successively to ensure convergence of the filter.
The algorithm results in a posterior ensemble of inflow profiles,
yielding a mean inflow profile (referred to as the EnKF estimate)

as well as an estimate of the variance of the ensemble at each dis-
cretized time point tj, j ¼ 0; 1; …; T. The variance of the result-
ing ensemble at each discretized time point provides a measure of
uncertainty in the estimated inflow at that time point since the var-
iance indicates how wide or narrow the posterior ensemble distri-
bution is around the mean value of the estimated inflow at that
point. Therefore, in this work, we use the 62 standard deviation
curves around the estimated mean inflow profile to represent our
uncertainty in the inflow estimation.

The resulting mean inflow profile and 62 standard deviation
uncertainty curves are propagated through the model to generate
model output predictions of area and pressure at the center of the
vessel with corresponding predictions of uncertainty. The model
output predictions of uncertainty obtained by propagating the 62
standard deviation inflow uncertainty curves through the model
are interpreted as representing a measure of uncertainty in the
model output predictions of area and pressure obtained using the
mean estimated inflow curve, thereby connecting the uncertainty
in the estimated inflow with uncertainty in the resulting model
output.

3 Results

The proposed EnKF-based inflow estimator was applied to esti-
mate the unknown temporal flow profile prescribed at inlet bound-
ary given area and pressure data measured at the center of a
straight vessel for each of three single vessels (AA, CA, and FA,
shown in Fig. 2). Area and pressure time series data for each ves-
sel were provided at 107 discrete time points equispaced over the
length of one cardiac cycle. The initial ensemble of inflow profiles
for each simulation was formed as described in the methods sec-
tion on generating prior curves (depicted in Fig. 3). For these sim-
ulations, geometry was assumed known and outflow boundary
dynamics were determined using a three-element Windkessel
model with known parameters.

The method was analyzed on the experimental and simulated
AA data a priori to determine the effects of varying the number of
ensemble members, the convergence of the inflow estimator after
multiple iterations of the filtering algorithm, and the filter’s ability
to estimate a flow that was able to predict measured area and pres-
sure at the center of the vessel. Based on these results, for the fol-
lowing experiments an ensemble of size N ¼ 100 was used and
the algorithm was run for one iteration. The EnKF computations
were performed in MATLAB, while the fluid equations were solved
in Cþþ. Communication between the two platforms was done
using text files. Results were obtained running the algorithm
sequentially on a Mac OS X desktop computer with a 3.2 GHz
Intel Core i3 processor and 8 GB RAM. Simulations took an aver-
age of 4.5 h each to complete.

We first applied the EnKF-based inflow estimator to data from
the ascending aorta using the linear Kelvin viscoelastic wall
model (3) with known parameters to predict radial deformation.
Parameters for the wall model were chosen to fit the data when
inputting the a priori flow curve q̂ as the inlet boundary condition;
these parameter values are listed in Table 1 along with the Wind-
kessel model parameters for the outflow boundary condition. As
described in the methods section, the two-step procedure of the
inflow estimation algorithm was performed using the innovation
model with standard deviation assigned in Eq. (11), with the
coarse time discretization set to 428 time steps and the fine set to
856 time steps. The resulting estimated inflow waveform and 6 2
standard deviation uncertainty curves are shown in Fig. 4(a),
while the corresponding model output predictions and output
uncertainty curves are shown in Figs. 4(b)–4(d). While a majority
of the area and pressure data is captured within the predicted
uncertainty bounds, there is clear underestimation of the area time
series shown in Fig. 4(b) toward the beginning of the cardiac cycle
and of the pressure time series in Fig. 4(c) toward the end. The
portions of the data not captured by the model predictions are
more easily seen in the area versus pressure plot in Fig. 4(d).

Table 1 Kelvin linear wall model parameters and Windkessel
model outflow boundary condition parameters used for predic-
tion of area and pressure in the ascending aorta. Parameter val-
ues are stated with three significant digits.

Kelvin wall model parameters Windkessel parameters

r0 Ehð105Þ A1 b1 R1 R2 C

AA 0.91 6.62 0.467 0.0546 776 1823 0.0386
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Motivated by these results, we attempted to capture more of the
data within the predicted uncertainty bounds by increasing the
standard deviation of the model innovation term defined in
Eq. (11) to include a multiple of the difference between the data
and the baseline EnKF mean prediction in both area and pressure.
This essentially directs the filter in a systematic manner to trust
the data more than it trusts the model, which results in increased
uncertainty in the estimated inflow and corresponding model pre-
dictions shown in Figs. 4(e)–4(h). The plots in Figs. 4(f) and 4(g)
better capture the time series data for both area and pressure
within the wider predicted uncertainty bounds.

In both of the aforementioned cases, the nonlinearity in the AA
pressure-area data (showing decreased deformation with increased
pressure) cannot be fully captured by the linear wall model. The
area versus pressure plots in Figs. 4(d) and 4(h) make this espe-
cially clear. Inspired by results in Valdez-Jasso et al. [42], we
extended the wall model to include nonlinear viscoelasticity. In
particular, we used the nonlinear sigmoid viscoelastic wall model
(4) with known parameters listed in Table 2, keeping the original
implementation of the innovation standard deviation in Eq. (11).

Table 2 also lists the Windkessel parameters used for the outflow.
Results are shown in Figs. 4(i)–4(l), where the nonlinearity in the
AA data is much better accounted for in the model predictions
(especially visible in Fig. 4(l)). Tests using the sigmoid model (4)
and increasing the innovation standard deviation in Eq. (11) did
not show significant improvements. However, comparing the plots
in Figs. 4(i)–4(l) to Figs 4(a)–4(d), it can be seen that using the
sigmoid wall model results in an inflow estimate and correspond-
ing model output predictions of area and pressure with wider
uncertainty bounds about the mean curve than when using the
Kelvin model. Simulations to confirm this result using synthetic
data generated with a known inflow profile are included in the
Appendix.

The aforementioned results for the ascending aorta suggest that,
while resulting in wider uncertainty bounds, including nonlinear
viscoelasticity in the wall model significantly improves predic-
tions of area and pressure by better capturing nonlinearity present
in the data. With this in mind, we applied the EnKF-based inflow
estimator using the sigmoid wall model (4) with parameters in
Table 2 to estimate the inflow profiles for the carotid and femoral

Fig. 4 Results with AA data using the linear Kelvin wall model (top row), the linear Kelvin wall model with increased model
innovation (middle row), and the nonlinear sigmoid wall model (bottom row). EnKF estimated inflow profiles (solid red) and 62
standard deviation curves (dashed red) obtained from an initial ensemble of inflow curves (gray cloud) are shown in ((a), (e),
(i)). Predicted area and pressure curves using the EnKF estimated inflow profiles and 62 standard deviation curves are shown
in ((b), (f), (j)) and ((c), (g), (k)), respectively. Corresponding area versus pressure curves obtained using the EnKF estimated
inflow profiles are shown in ((d), (h), (l)). Area and pressure data are plotted in black.

Table 2 Sigmoid nonlinear wall model parameters and Windkessel model outflow boundary condition parameters used for predic-
tion of area and pressure in the ascending aorta (AA), femoral artery (FA), and carotid artery (CA). Parameter values are stated with
three significant digits

Sigmoid wall model parameters Windkessel parameters

r0 A0 Am a k A1 b1 R1 R2 C ð10�4Þ

AA 0.955 2.87 4.67 82 5.5 0.467 0.1 780 950 7.54
FA 0.275 0.237 0.326 105 1.03 0.787 0.02 4798 10,815 0.740
CA 0.392 0.482 0.503 91.5 2.98 0.477 0.071 7800 15,500 0.740
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arteries. We chose these single vessels as representatives to dem-
onstrate the effectiveness of the proposed algorithm in estimating
the inflow and corresponding uncertainty for vessels of different
sizes from different locations within the arterial network. Result-
ing model predictions and uncertainty estimates for area and pres-
sure in each vessel are shown in Fig. 5, which also includes the
AA results from Figs. 4(i)–4(l) for completeness. As an additional
measure of overall system performance, we used the estimated
inflow profiles and 62 standard deviation uncertainty bounds to
predict the flow at the center of each vessel, also shown in Fig. 5
with corresponding uncertainty estimates.

4 Discussion

The success of patient-specific models in clinical decision-
making relies heavily on the accuracy of the model predictions.
Uncertainty quantification plays a vital role in determining how
the model output is affected by input uncertainties. For 1D fluid
dynamics arterial models, as noted in the introduction, input
uncertainties can be found in vessel geometry, fluid model
assumptions, parameters specifying the arterial wall model, and
parameters relating to the inflow and outflow boundary
conditions.

The methodology developed in this study presents a promising
technique for quantifying uncertainty in the inflow boundary con-
dition along with the uncertainty in model predictions of area and
pressure. More specifically, this study developed an EnKF-based
iterative filtering scheme to systematically estimate the inflow
boundary condition for a single, nontapered vessel given measure-
ments of area and pressure at the center of the vessel, providing

not only an estimate of the size and shape of the inflow profile but
also a natural measure of uncertainty in the output.

4.1 Inflow Estimation. To our knowledge, this is the first
study to systematically estimate the inflow boundary condition.
Brault et al. [65] acknowledged inflow uncertainty by assigning a
periodic model with known form for the inflow and randomizing
parameters including mean and peak flow rate, but that study
relied on specification of the inflow by a parameterized equation.
Brault et al. also relied on the assumption that randomized param-
eters could be adequately characterized using independent uni-
formly distributed random variables, and the study did not
compare model output results to experimental data. Our method-
ology, on the other hand, does not require any explicit inflow
model, offering more freedom in estimating the shape best suited
to predict given area and pressure data, provided some a priori
estimate of the inflow profile is available (see Fig. 3). Our use of
the EnKF also allows for unique posterior distributions to be
determined at each time-discretized point of the estimated inflow
so that output predictions do not rely on the choice of an initial
distribution.

Moreover, our proposed scheme provides a measure of uncer-
tainty arising naturally in the inflow estimation that can be used to
assess uncertainty in the model output predictions of area and
pressure. The measure of uncertainty obtained in our inflow esti-
mation is an inherent feature of the EnKF and stems from the use
of Bayesian filtering to solve the inverse problem of estimating
unknown model inputs. Other methods, such as gPC and stochas-
tic collocation, prescribe uncertainty in the input by assigning dis-
tributions (with designated means and variances) to unknown

Fig. 5 Predicted area, pressure, and flow at the center of the vessel obtained using the EnKF estimated inflow profiles and 6
2 standard deviation curves for single vessels at different locations in the arterial network. Results are shown for (from left to
right) the carotid artery (CA), the ascending aorta (AA), and the femoral artery (FA). Corresponding area versus pressure
curves obtained using the EnKF estimated inflow profiles are also shown at each vessel location. Area and pressure data are
plotted in black.
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input parameters, and then assess the sensitivity of model output
with respect to these input uncertainties—input estimation is not
explicitly performed. Chen et al. [24], Sankaran and Marsden
[25], and Eck et al. [26] took this type of approach in quantifying
uncertainties related to various input parameters, such as vessel
geometry and physical parameters including blood density and
viscosity. The Bayesian approach, on the other hand, assigns a
prior distribution to each unknown input parameter, then estimates
the input parameters themselves to find posterior input parameter
distributions with mean and variance estimates which are then
propagated through the model to assess corresponding output
uncertainty.

When generating the prior ensemble of inflow profiles (see Sec.
2.3.1), the samples at each time-discretized point are connected in
a structured fashion to produce an ensemble of physically plausi-
ble inflow profiles. The effects of correlation structure in the prior
generation of inflow profiles on the resulting inflow estimates may
be analyzed in future work. Further, Eq. (18) uses correlation
between the area, pressure, and inflow at time j to update the
inflow at time j but not at other time points along the inflow pro-
file. An alternative approach would be to update all T þ 1 points
in the inflow profile at each observation time, by modifying the
algorithm to account for correlation between all of the points in
the inflow profile and the model predictions of area and pressure
at that time. However, this approach would require that the model
be rerun after each observation update in order to recompute the
area and pressure predictions, which would add significantly to
the computing time and computational cost of running the algo-
rithm. Future work may include implementing this type of
approach and comparing the inflow estimation results with those
obtained in this study.

Results using experimental area and pressure data [76] over one
cardiac cycle taken from three excised vessels (AA, CA, and FA)
in different locations along the arterial network in a healthy sheep
show that the proposed EnKF-based inflow estimator is robust in
finding an inflow profile that well matches the data starting from
an ensemble of flow profiles with varying magnitudes and shapes.
The experimental studies considered in this work were done in
single, nontapered vessels, but previous work has used these data
to show that measurements from individual vessel segments
reflect dynamics observed within a network [8]. Future work may
include adapting the EnKF-based inflow estimator developed in
this study to accommodate use of tapered vessels as well as multi-
ple vessels in network simulations.

Other future work includes optimizing the code to run more
efficiently and at a lower computational cost, perhaps by ridding
the MATLAB interface and implementing the filtering portion of the
algorithm in Cþþ. Moreover, the embarrassingly parallel nature
of Bayesian filtering algorithms during state propagation (since
each ensemble member is independently propagated) suggests a
very natural way to parallelize the algorithm. Finally, while the
EnKF is a very useful and efficient tool in these types of problems,
the methodology developed in this work is not restricted by its
use, and other Bayesian nonlinear filtering techniques, such as
particle filtering, could be used instead if desired. Particle filtering
may be particularly well suited for problems in which the result-
ing parameter distributions are thought to be non-Gaussian.

4.2 Additional Sources of Uncertainty. While we focused
only on inflow estimation in this study, assuming fixed values for
the other typically uncertain model inputs listed in the introduc-
tion, our novel use of the EnKF in this setting can be extended to
include estimation of additional model inputs, such as vessel
geometry and outflow boundary condition parameters—the inflow
estimation shown in this work is simply one example of how the
proposed methodology can be used to quantify uncertainty in
patient-specific cardiovascular models. Kalman-type Bayesian fil-
tering was previously used by Xiao [62] to estimate input parame-
ters including arterial wall stiffness in a 3D fluids model, yet its

use in systematically estimating a time-dependent boundary con-
dition for 1D arterial network models is new to this work. Since
the model predictions of area and pressure are sensitive to the
choice of wall model parameters and outflow boundary Windkes-
sel model parameters listed in Tables 1 and 2, future work aims to
optimize these parameters using Bayesian filtering methodology
prior to or simultaneously while running the EnKF-based inflow
estimator.

Further, the effectiveness of the EnKF-based inflow estimator
was demonstrated in this study using patient-specific ex vivo area
and pressure measurements over one cardiac cycle obtained from
three single vessels (AA, CA, and FA) of different sizes and dif-
ferent arterial network locations in a healthy sheep. However,
additional sources of uncertainty lie in the data themselves: there
is variation, e.g., among different patients and across cardiac
cycles, as well as measurement errors (both device and human).
Differences in the ex vivo area and pressure data among the
healthy sheep considered in this study can be seen in Battista et al.
[8], where plots show the variation among different sheep for dif-
ferent single vessels at various locations in the arterial network.
While data from one cardiac cycle from one sheep were analyzed
in this study, the patient-specific capabilities of the methodology
developed in this work could allow for a systematic comparison
of inflow profiles estimated at different vessel locations using data
over multiple cardiac cycles from different sheep.

4.3 Modeling Aspects. Most 1D cardiovascular studies use
flow data to discuss effects of viscoelasticity, although its expres-
sion relates area and pressure. This makes it difficult to validate
predicted pressure-area dynamics. The experimental data [76]
used in this study, however, contain measurements of both area
and pressure, allowing us to directly assess the relation between
the two quantities. Our simulations suggest that the nonlinearity in
the pressure-area data is better captured using a nonlinear sigmoid
wall model with assumed known parameters than a linear Kelvin
model.

A previous study by Valdez-Jasso et al. [42] used the same data
to compare the linear Kelvin model with the nonlinear sigmoid
model as well as the nonlinear arctangent model proposed by Lan-
gewouters et al. [80]. Valdez-Jasso et al. concluded that the sig-
moid model improved data prediction over the arctangent model
for larger arteries like the aorta, while the Kelvin model was pref-
erable for smaller, stiffer vessels like the carotid artery. In particu-
lar, the arctangent model was not able to predict unstressed vessel
radius. However, that study neglected to consider the fluid dynam-
ics, which may explain why our results show that use of the non-
linear sigmoid model improved prediction of pressure-area
dynamics for all three vessels (AA, CA, and FA) regardless of
size and network location. We did not consider the arctangent
model here.

Although data from only one sheep were considered in this
study to demonstrate the effectiveness of the EnKF-based inflow
estimator, the patient-specific benefits of this methodology lie in
its ability to analyze and quantify uncertainty for individual
patients and then make comparisons. This ideology may be espe-
cially useful in analyzing patients with diseases such as hyperten-
sion and noting any differences that the estimation process may
distinguish between patient types. This kind of analysis could
have clinical implications if parameters relating to different
patient groups (e.g., healthy control versus hypertensive) were dis-
tinguishable enough to potentially act has markers for disease.

5 Conclusions

This study developed a new iterative scheme based on the
EnKF to systematically estimate the inflow boundary condition
for a single, nontapered vessel given measurements of area and
pressure at the center of the vessel. This estimation scheme pro-
vides not only an estimate of the size and shape of the inflow pro-
file but also a natural measure of uncertainty in the model output,
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offering a promising technique for quantifying uncertainty in
patient-specific 1D arterial network models. Results also suggest
the use of nonlinear viscoelasticity in the arterial wall model in
order to better capture nonlinearities in the data.
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Appendix A: Bayesian Filtering and the Augmented

EnKF

Assume a differential equation model involving both model
states x ¼ x tð Þ 2 Rd and parameters h 2 Rk, whose values may
be uncertain or completely unknown. Further assume discrete,
noisy observations y‘ 2 Rm, ‘ ¼ 0; 1; …; T, of some model
states. Given these observations, the inverse problem is to esti-
mate the states and/or unknown model parameters. Inverse prob-
lems of this type are generally ill-posed [81–83].

In the Bayesian framework, states and parameters are treated as
random variables with probability distributions, and their joint
posterior density p x; hjyð Þ is connected to the likelihood function
p yjx; hð Þ and prior distribution p x; hð Þ through Bayes’ theorem

p x; hjyð Þ / p yjx; hð Þp x; hð Þ (A1)

Assuming xjf g1j is a Markov process, an evolution-observation
model can be written for the stochastic state and parameter esti-
mation problem using discrete time Markov models: the state evo-
lution equation is of the form

Xjþ1 ¼ F Xj; h
	 


þ Vjþ1; j ¼ 0; 1; 2;… (A2)

where F is a known propagation model, Vjþ1 is an innovation pro-
cess, independent of the state vector Xj, and h is a parameter,
while the observation equation is of the form

Yj ¼ G Xjð Þ þWj; j ¼ 1; 2;… (A3)

where G is a known operator and Wj is the observation noise,
independent of Xj. Denoting by Dj the accumulated observations
up to time t ¼ tj, the aim is to sequentially update the posterior
distribution p xj; hjDj

	 

using the following two-step scheme:

p xj; hjDj

	 

! p xjþ1; hjDj

	 

! p xjþ1; hjDjþ1

	 

(A4)

This scheme can be viewed as a predictor–corrector method: the
first step, known as the prediction step, uses the state evolution
equation to make a prediction of the state propagation using only
the current data, while the second step, the observation update,
corrects that prediction by taking the new data into account.

When employing the augmented (or joint) EnKF [84], it is

assumed that the current density p xj; hjDj

	 

is represented in

terms of an ensemble xn
jjj; h

n
j

� �n oN

n¼1
comprising both states and

parameters. Here, the notation xjjj denotes that our current model

prediction (index on the left of the bar) and most recent data
arrival (index on the right) are both at time tj. The prediction step
of the filter uses the state evolution equation to update each
ensemble member individually via the formula

xn
jþ1jj ¼ F xn

jjj; h
n
j

� �
þ vn

jþ1; n ¼ 1;…;N (A5)

where vn
jþ1 is an independently drawn realization of the innovation

process Vjþ1, which is often modeled as a normal random variable
with zero mean and some known covariance. Prediction ensemble

statistics are computed using the augmented state and parameter

vectors zn
jþ1jj ¼ xn

jþ1jj; h
n
j

� �
2 Rdþk; n ¼ 1;…;N; which fol-

lows from defining an augmented evolution model where the
propagation scheme for the static parameter is assumed to be per-
fect, i.e., h ¼ constant. Hence, the prediction ensemble mean �zjþ1jj
and prior covariance matrix Cjþ1jj are computed using the ensem-

ble statistics formulas

�zjþ1jj ¼
1

N

XN

n¼1

zn
jþ1jj 2 Rdþk (A6)

and

Cjþ1jj ¼
1

N � 1

XN

n¼1

zn
jþ1jj � �zjþ1jj

	 

zn

jþ1jj � �zjþ1jj
	 
T 2R dþkð Þ� dþkð Þ

(A7)

respectively. When an observation yjþ1 arrives, an observation
ensemble is generated via the formula

yn
jþ1 ¼ yjþ1 þ wn

jþ1; n ¼ 1; …; N (A8)

where wn
jþ1 is an independently drawn realization of the observa-

tion noise process Wjþ1, also typically modeled as a zero mean,
normally distributed random variable with known covariance
matrix D. In the case of a linear observation model where G xjð Þ ¼
Gxj for some projection matrix G 2 Rm�d , the observation model
is extended for the augmented state by writing

yjþ1 ¼ Bzjþ1 þ wjþ1; B ¼ G 0½ � 2 Rm� dþkð Þ
(A9)

where 0 is a zero matrix of size m� k. The combined posterior
ensemble is then obtained by the updating formula

zn
jþ1jjþ1 ¼ zn

jþ1jj þKjþ1 yn
jþ1 � Bzn

jþ1jj
	 


; n ¼ 1;…;N (A10)

where the Kalman gain Kjþ1 is given by

Kjþ1 ¼ Cjþ1jjB
T BCjþ1jjB

T þ D

� ��1

(A11)

The posterior mean vectors and covariance matrices for both the
states and parameters are computed using the posterior ensemble
statistics.

In this augmented state-parameter formulation of the EnKF,
since the parameters are not updated in the prediction step in
Eq. (A5) and are not observed quantities of the system, the param-
eters are updated in Eq. (A10) only through their cross-correlation
with the model states, as encoded in the Kalman gain matrix
(A11). This becomes evident by partitioning Cjþ1jj as

Cjþ1jj ¼
Cxx Cxh

Chx Chh

� �
2 R dþkð Þ� dþkð Þ

(A12)

and rewriting the Kalman gain in Eq. (A11) as

Kjþ1 ¼
Cxx

Chx

� �
GT GCxxGT þ D
	 
�1

(A13)

in terms of the projection matrix G from the extended observation
model (A9).

Arnold et al. [74,79] developed methodology for modeling the
innovation process Vjþ1 in the state evolution equation (A2) by
assuming that the covariance of the innovation term is related to
the numerical discretization error in the solver used to propagate
the states; that is, the authors let Vjþ1 be a zero-mean, normally
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distributed random variable where the covariance matrix at each
time step is assigned based on the difference between the solu-
tions of higher and lower order numerical methods used to solve
the model equations. More specifically, for each ensemble mem-
ber n, the innovation term vn

jþ1 in (A5) is a realization of the ran-

dom variable Vn
jþ1 � N 0;Cn

jþ1

	 

, where the covariance matrix

Cn
jþ1 is defined as

Cn
jþ1 ¼ diag cn

jþ1

	 
2
� �

(A14)

with standard deviation

cn
jþ1 ¼ s

����xn
jþ1 � x̂n

jþ1

���� (A15)

computed using the higher order method error control method
[79]. Here, xn

jþ1 and x̂n
jþ1 are the model solutions using a lower

order solver and a higher order solver, respectively, and s > 1 is a
safeguard factor to account for the omission of higher order terms.

This method provides a systematic approach for estimating the
innovation variance in the filter, offering a way to assign the
model innovation in Eq. (A5) that is specific to each ensemble
member at each time step, while avoiding unnecessary cost in
manually choosing a fixed covariance matrix for the innovation
term a priori.

In estimating the inflow boundary condition in this study, we
set hj ¼ q tjð Þ and treat each time-discretized point along the
inflow profile as an unknown model parameter. Each time-
discretized point in the inflow profile is then updated using its cor-
relation with the corresponding model states (area and pressure) at
that time via a modified version of the augmented EnKF, as
described in Sec. 2.3. We apply the method of Arnold et al.
[74,79] in estimating the variance of the model innovation term,
using the numerical error in the time discretization of the fluid
solver to set the standard deviation in Eq. (A15), as detailed in
step 1(b) of the algorithm presented in Sec. 2.3.2.

Some works in the literature have cited issues using the aug-
mented EnKF for parameter estimation in high-dimensional sys-
tems with strong nonlinearities, e.g., see Refs. [85] and [86], or

Fig. 6 Results using the linear Kelvin wall model (first and third rows) and the nonlinear sigmoid wall model (second and
fourth rows) with synthetic AA data generated using the Kelvin model (first and second rows) and the sigmoid wall model
(third and fourth rows). EnKF estimated inflow profiles (solid red) and 62 standard deviation curves (dashed red) obtained
from an initial ensemble of inflow curves (gray cloud) are shown in ((a), (e), (i), (m)). Predicted area and pressure curves using
the EnKF estimated inflow profiles and 6 2 standard deviation curves are shown in ((b), (f), (j), (n)) and ((c), (g), (k), (o)), respec-
tively. Corresponding area versus pressure curves obtained using the EnKF estimated inflow profiles are shown in ((d), (h), (l),
(p)). The area between 62 standard deviation uncertainty bounds is shaded in light blue. The true inflow profile and corre-
sponding area and pressure data are plotted in black.
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multiplicative combinations of parameters [87]. A suggested alter-
native approach is to use a dual EnKF scheme involving two inter-
acting filters: one to update the states, and one to update the
parameters. Both heuristic [85] and Bayesian consistent [88] ver-
sions of the dual EnKF have been proposed. While the 1D model
used in this study is nonlinear, particularly with the inclusion of
the sigmoid wall model (4), we have not had such issues estimat-
ing the inflow profile parameters using the augmented EnKF-type
scheme presented in this work. However, it would be possible to
implement a dual state-parameter estimation scheme in this set-
ting, which may prove useful if additional parameters (e.g., wall
model parameters) were to be estimated along with the inflow
profile.

Appendix B: Wall Model Comparison Using Synthetic

Data

The results in Sec. 3, Fig. 4, show that using the nonlinear sig-
moid wall model (4) in the fluid dynamics model (1)–(2) provides
more accurate model predictions of the pressure-area data than
using the linear Kelvin wall model (3), since the sigmoid model
better captures the nonlinearity in the data. However, using the
sigmoid wall model results in slightly wider uncertainty bounds
about the estimated inflow than using the Kelvin wall model,
which translates into wider uncertainty bounds about the corre-
sponding model output predictions of area and pressure at the cen-
ter of the vessel.

Motivated by this result, we performed simulations with syn-
thetic data generated using a known inflow profile to explore the
effects that the choice of wall model has on the EnKF-based
inflow estimation and corresponding model output predictions, in
terms of both accuracy and uncertainty. Taking the flow curve q̂
described in Sec. 2.3.1 as the known inflow profile, we generated
two sets of synthetic area and pressure data: one using the linear
Kelvin wall model (which we refer to as the “Kelvin data”) and
parameters listed in Table 1, the other using the nonlinear sigmoid
wall model (the “sigmoid data”) and parameters for the ascending
aorta listed in Table 2. Each set consists of area and pressure time
series data at 201 discrete time points, equispaced over the length
of one cardiac cycle, with added Gaussian noise.

We then employed the EnKF-based inflow estimator using the
different wall models to estimate the inflow profile relating to
both the Kelvin and sigmoid data. Fig. 6 shows the results for
each of the four combinations: Kelvin wall model on Kelvin data,
sigmoid wall model on Kelvin data, Kelvin wall model on

sigmoid data, and sigmoid wall model on sigmoid data. To
numerically quantify the accuracy in the EnKF-based mean esti-
mated inflow and corresponding model output predictions of area
and pressure compared to the true inflow and corresponding syn-
thetic area and pressure data, we compute the coefficient of deter-
mination (R2) values using the formula

R2 ¼ 1� SSres

SStot

(B1)

where SSres denotes the residual sum of squares between the esti-
mated and true inflow (or model predictions and synthetic data)
and SStot denotes the total sum of squares proportional to the var-
iance in the true inflow (or synthetic data). The ratio SSres=SStot is
known as the fraction of unexplained variance: the smaller this
fraction is (i.e., the closer to one the R2 value is), the smaller the
unexplained variance due to error in the model estimate. To
numerically quantify the uncertainty, we compute the area
between the upper and lower uncertainty bounds (62 standard
deviation curves about the mean) on the EnKF-based estimated
inflow and the corresponding upper and lower uncertainty bounds
on the model output predictions. Table 3 lists the R2 values and
uncertainty estimates for each of the four cases.

In terms of the inflow estimation, the EnKF-based algorithm is
able to estimate the true inflow profile fairly well in all four cases,
especially when using the Kelvin wall model on the Kelvin data
(shown in Fig. 6(a)) and the sigmoid wall model on the sigmoid
data (Fig. 6(m)). This is also evident in the inflow R2 values listed
in Table 3. Although slightly larger when using the sigmoid wall
model, the 62 standard deviation uncertainty bounds are not sig-
nificantly different in any of the four cases, as is also demon-
strated with the inflow uncertainty estimates in Table 3.

Regarding the model output predictions, Figs. 6(b) and 6(c)
show that applying the Kelvin wall model on the Kelvin data
results in very accurate mean predictions of both area and pressure
with tight uncertainty bounds. Use of the Kelvin wall model on
the sigmoid data results in less accurate mean predictions but still
has tight uncertainty bounds (Figs. 6(j) and 6(k)), while failing to
capture the nonlinearities in the data (Fig. 6(l)). On the other
hand, Figs. 6(n) and 6(o) show that applying the sigmoid wall
model on the sigmoid data gives accurate mean predictions with
wider uncertainty bounds than when using the Kelvin wall model.
While use of the sigmoid wall model on the Kelvin data does not
provide as accurate of mean predictions (Figs. 6(f) and 6(g)) as
using the Kelvin wall model, the wider uncertainty bounds on the
predictions are better able to capture the data than the tight bounds
produced using the Kelvin model. The uncertainty estimates for
area and pressure in Table 3 show that the Kelvin wall model has
tighter bounds than the sigmoid model for both data sets.

These simulations demonstrate that while use of the Kelvin
wall model results in tighter uncertainty bounds on the model pre-
dictions for both data sets, it fails to capture the nonlinearities in
the sigmoid data. However, while use of the sigmoid wall model
may result in better predictions of nonlinear data, the correspond-
ing uncertainty bounds are wider.
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