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Abstract

Effective monitoring and prediction of flood and drought events requires an improved 

understanding of how and why surface-water expansion and contraction in response to climate 

varies across space. This paper sought to (1) quantify how interannual patterns of surface-water 

expansion and contraction vary spatially across the Prairie Pothole Region (PPR) and adjacent 

Northern Prairie (NP) in the United States, and (2) explore how landscape characteristics influence 

the relationship between climate inputs and surface-water dynamics. Due to differences in glacial 

history, the PPR and NP show distinct patterns in regards to drainage development and wetland 

density, together providing a diversity of conditions to examine surface-water dynamics. We 

mapped surface-water extent across eleven Landsat path/rows representing the PPR and NP 

(images spanning 1985–2015). The PPR not only experienced a 2.6-fold increase of surface-water 

extent under median conditions relative to the NP, but also showed a 3.4-fold greater difference 

in surface-water extent between drought and deluge conditions. The relationship between surface­

water extent and accumulated water availability (precipitation minus potential evapotranspiration) 

was quantified per watershed and statistically related to variables representing hydrology-related 

landscape characteristics (e.g., infiltration capacity, surface storage capacity, stream density). To 

investigate the influence stream-connectivity has on the rate at which surface water leaves a 

given location, we modeled stream-connected and stream-disconnected surface water separately. 

Stream-connected surface water showed a greater expansion with wetter climatic conditions in 

landscapes with greater total wetland area. Disconnected surface water showed a greater expansion 
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with wetter climatic conditions in landscapes with higher wetland density, lower infiltration and 

less anthropogenic drainage. From these findings, we can expect that shifts in precipitation and 

evaporative demand will have uneven effects on surface-water quantity. Accurate predictions 

regarding the effect of climate change on surface-water quantity will require consideration of 

hydrology-related landscape characteristics including wetlands.
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1. Introduction

Surface-water dynamics have strong implications for ecosystem functioning and human 

land use including biogeochemical balances (Hoffmann et al., 2009), species distribution 

(Boschilia et al., 2008; Calhoun et al., 2017), hydrologic connectivity (Heiler et al., 1995; 

Pringle, 2001)), and agricultural productivity (Mokrech et al., 2008; Gornall et al., 2010). 

Yet natural variability in surface-water extent poses a basic challenge to gathering timely, 

accurate information (Poff et al., 1997; Beeri and Phillips, 2007). While satellite imagery 

can be used to map variability in surface-water extent over time, predicting future changes 

in surface-water extent (e.g., in response to changes in climate, land use, or natural disasters) 

requires improving our understanding of how the landscape influences surface-water extent 

over time and space. The relative importance of hydrologic processes and flowpaths across 

a landscape (e.g., surface storage, infiltration, evapotranspiration, runoff) can be expected to 

influence the timing, duration and extent of surface water for a given location (Euliss and 

Mushet, 1996; LaBaugh et al., 1996, van der Kamp et al., 1999)

Winter (2001) presented the concept of hydrologic landscapes as a means to classify 

landscape units based on their hydrologic attributes (land-surface form, geology and 

climate). These attributes, it is argued, could then be used to predict the partitioning of 

water into storage, infiltration, evapotranspiration and runoff (Wagener et al., 2007). In many 

landscapes when rainfall intensity is greater than both the rate of soil infiltration and the 

soil moisture deficit it is assumed that overland flow, subsurface flow, and groundwater 

flow will dominate, contributing to increased stream discharge (Eamus et al., 2006). These 

landscapes could be described as exhibiting a lower potential for surface-water expansion. 

Alternatively, in landscapes with low topographic gradients and poorly developed drainage 

networks, runoff events rarely deplete available surface storage, meaning that although 

stream discharge may elevate, much of the surplus water remains as surface water (Shaw et 

al., 2012; Kuppel et al., 2015). These landscapes show a higher potential for surface-water 

expansion with evapotranspiration often the primary mechanism for water loss (Winter and 

Rosenberry, 1998). Landscapes with a tendency to accumulate surface-water are relatively 

common across the globe and include former glacial landscapes including the Prairie 

Pothole Region (PPR) (Sass and Creed, 2008; Shaw et al., 2012), and parts of China (Yao et 

al., 2007) and Russia (Stokes et al., 2007), permafrost regions (Smith et al., 2007), as well as 

low gradient landscapes including the Argentine Pampas (Kuppel et al., 2015); the Pantanal 

in Brazil (Hamilton, 2002), and the Orinoco Llanos in Columbia and Venezuela (Hamilton, 
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2004). Although such landscapes have previously been shown to experience surface-water 

expansion in response to increased precipitation (Huang et al., 2011; Kuppel et al., 2015; 

Vanderhoof et al., 2016) or melting ice (Stokes et al., 2007; Yao et al., 2007), we are 

unaware of studies that have explicitly compared surface-water expansion and contraction 

between landscapes of differing surface-water expansion potential.

The PPR and adjacent Northern Prairie (NP), which span the upper mid-west of the 

United States, occur within and beyond the last glacial maximum, respectively, and together 

represent a range in the potential for surface-water expansion. The PPR is characterized 

by a high density of depressional wetland and lake features (Zhang et al., 2009), a relic 

of glacial retreat (Flint, 1971). Most wetlands are relatively small (< 0.5 ha) depressions, 

underlain by glacial till with low permeability, and occur within a landscape matrix of 

natural grassland and agriculture (Winter and Rosenberry, 1995; Zhang et al., 2009; Cohen 

et al., 2016). This is in contrast to the adjacent NP such as the Northwestern Great Plains 

(Montana, western North and South Dakota) and the Central Irregular Plains (southern 

Iowa and northern Missouri), which lack the high density of small wetlands and show 

a well-developed drainage network due to its occurrence outside of the last maximum 

glacial extent (USGS, 2013). The NP and PPR are also characterized by substantial spatial 

and interannual variability in air temperature and precipitation (Bryson and Hare 1974). 

Variations in temperature and moisture content of competing air masses results in a strong 

north-south temperature and east-west precipitation gradient. The precipitation-evaporation 

deficit is least in the east (i.e., Minnesota and Iowa), and increases to the west (i.e., 

Montana) (Kantrud et al., 1989; Millet et al., 2009). This variability in climate has a strong 

influence on water levels across the region. In the PPR in spring, wetland depressions 

receive water from both precipitation and snowmelt. In the summer, water level is controlled 

by direct precipitation, evaporation and wetland vegetation transpiration (Winter and 

Rosenberry, 1995; LaBaugh et al., 1998; Carroll et al., 2005), with evapotranspiration 

typically dominating water loss (Rosenberry et al., 2004).

Monitoring variation in water levels across the PPR has been of high interest as it is a 

key factor in flood abatement, water quality, biodiversity, carbon management and aquifer 

recharge (Gleason et al., 2008). Water level data at Devils Lake, North Dakota, for example, 

have been collected as far back as 1867 and provide a regional indicator of hydrological 

conditions (Wiche, 1996; LaBaugh et al., 1996). Efforts have been expanded to map 

interannual changes in surface-water extent across the PPR at a landscape scale using 

remotely sensed imagery (Kahara et al., 2009; Niemuth et al., 2010; Vanderhoof et al., 

2016). However, while substantial interannual variation in water level has been documented 

across the PPR (Huang et al., 2011; Vanderhoof et al., 2016), and primarily attributed 

to interannual variation in temperature and precipitation (Johnson et al., 2005; Zhang et 

al., 2009), such surface-water patterns have to date been minimally characterized for the 

remainder of the NP. In addition to interannual patterns of temperature and precipitation, we 

would also expect that surface-water extent will depend on landscape parameters such as 

infiltration capacity, storage capacity, and drainage characteristics (Euliss and Mushet, 1996; 

LaBaugh et al., 1996; van der Kamp et al., 1999). Spatial models incorporating some of 

these factors can provide additional insights into the risk of flood and drought events across 

the PPR (Niemuth et al., 2010).
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The PPR, in conjunction with adjacent NP, provides an ideal physiographic example in 

which to analyze the influence of landscape characteristics on surface-water expansion 

and contraction. Although the interaction between water level and climate has been 

studied extensively at select locations within the PPR (e.g., Cottonwood Lake) (Winter 

and Rosenberry, 1998; Huang et al. 2011), minimal research has sought to understand 

spatial variability in the relationship between climate and surface-water extent. Our research 

questions addressed in this study are:

1. How do interannual patterns of surface-water expansion and contraction vary 

spatially across the Prairie Pothole Region and adjacent Northern Prairie of the 

United States?

2. How do landscape characteristics influence the relationship between climate 

inputs and surface-water dynamics?

The successful exploration of this spatial patterning and landscape-scale statistical functions 

will inform hydrologic/hydraulic and biogeochemical modeling and has implications for 

biodiversity/habitat modeling and management (e.g., Allen et al., 2016; Golden et al., 2017)

2. Methods

As detailed below, we used Landsat imagery to map surface-water extent under dry, average, 

and wet conditions across portions of the PPR and adjacent NP. We compared the expansion 

and contraction of surface-water extent between the PPR and adjacent NP. As stream­

connected surface water can leave a location easily as stream flow, stream-connected and 

disconnected surface water were analyzed separately. We then used a two-level modeling 

approach to investigate the influence of landscape variables on surface-water dynamics. In 

the first stage, surface-water extent per watershed was statistically related to accumulated 

water availability, defined as precipitation minus potential evapotranspiration. This first 

stage produced the dependent variable for the second model, the slope of the relationship 

between surface-water extent and climate inputs per hydrological unit (a watershed) or 

the Surface Water Climate Variable (SWCV). The SWCV was then regressed against 

independent variables representing landscape characteristics (e.g., infiltration capacity, 

surface storage capacity, stream density, long-term climate normals). This approach allowed 

us to explore what landscape characteristics drive spatial variability in the relationship 

between surface-water extent and climate.

2.1 Study Area

Our study area consisted of eleven Landsat path/rows (total area = 308,439 km2) in the U.S. 

portion of the PPR and adjacent NP (Figure 1). The PPR across North and South Dakota, 

western Minnesota, northern Iowa and northern Nebraska, is dominated by the North and 

Northwest Glaciated Plains. This ecoregion is characterized by landscape features formed 

during its recent glacial history. Drift plains, large glacial lake basins and shallow river 

valleys support row crop agriculture. Grasslands and livestock grazing dominate areas where 

glaciers left deposits of uneven glacial till (Sayler et al., 2015). The PPR is dominated by 

cultivated crops (59%), herbaceous (18%) and hay/pasture (10%) (Homer et al., 2015). 

Adjacent to the PPR, the Northwestern Great Plains, across western North and South 
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Dakota, is a semiarid unglaciated plain which tends to have shallow soils with a clay 

texture not conducive to growing crops and instead dominated by livestock grazing across 

grasslands (Sayler et al., 2015). To the southeast of the North Glaciated Plains lies the 

Western Corn Belt and the Central Irregular Plains in Iowa and Nebraska. Glacial till forms 

the parent material for most of the soil in Western Corn Belt and the northern part of the 

Central Irregular Plains, within the study area. Level and gently rolling hills and fertile 

soils support agriculture (Sayler et al., 2015). The NP is dominated by herbaceous land 

cover (47%) with cultivated crops (28%) and hay/pasture (9%) also common (Homer et 

al., 2015). Using the precipitation averages (1981–2010) defined by the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM, Daly et al., 2008), the PPR study 

area receives 6% more precipitation on average than the NP study area (626 mm yr−1 

relative to 592 mm yr−1, respectively) and 1.5% less evaporative demand or potential 

evapotranspiration (PET) (603 mm yr−1 relative to 594 mm yr−1, respectively). These 

differences were not found to be statistically different using the Wilcoxon rank sum test.

Our regression analysis used eight-digit Hydrologic Unit Codes (HUC8s; USDA NRCS, 

2015) as the unit of analysis (n=150) across all eleven Landsat path/rows (Figure 1). HUC8s 

were used instead of smaller watersheds such as HUC10s or HUC12s to ensure that patterns 

in surface-water expansion and contraction represented landscape patterns, not individual 

or small groups of water features. HUC8s that occurred at the edge of a Landsat path/row 

with an area of < 50 ha were excluded from further regression analysis to limit the inclusion 

of incompletely characterized watersheds. The threshold of 50 ha was selected as it was 

a natural break in the distribution of HUC8 sizes. Patterns of surface-water expansion and 

contraction were compared between the PPR and NP. We note that one path/row (p37r26) 

in northern Montana was technically within the most western section of the PPR, but was 

found to behave dissimilarly from the PPR and similarly to the NP in terms of both its 

landscape characteristics (e.g., stream density, wetland density) and surface-water expansion 

and contraction. Because of this, p37r26 was included in the adjacent NP for analyses where 

findings were organized by PPR and NP.

2.2 Landsat Image Processing

2.2.1 Path-Row and Image Selection—Surface-water extent was mapped for a series 

of images across 11 Landsat path/rows (Figure 1). These path/rows were selected to 

represent the PPR and adjacent NP and were intentionally selected to represent a range 

of ecoregions, climate conditions (west to east and north to south) and densities of wetlands 

and streams. Snow-free images (acquired approximately from April through October) 

containing less than 10% cloud cover from the Landsat 4–5 TM, Landsat 7 ETM+ (prior 

to failure of the scan-line corrector in 2003) and Landsat 8 OLI sensors were selected 

between 1985 and 2015. The number of images processed within each path/row averaged 14 

(range: 9 to 17 acceptable images) and were intentionally selected to document interannual 

variability in surface-water extent, by selecting images from wet, average and dry years 

(Table 1). The terms “wet”, “average” and “dry” were defined in reference to local norms, 

using the Palmer Hydrological Drought Index (PHDI) and the 12-month Standardized 

Precipitation Index (SP12) (NOAA, NCDC, 2014). The range of conditions captured by the 

time series within each path/row in relation to the historical climate conditions (1895–2015) 
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are shown in Table 1. The PHDI is based on a monthly water balance accounting approach 

that considers precipitation, evapotranspiration, runoff and soil moisture. The indices rely on 

weather station data and are interpolated at 5 km (NOAA NCDC, 2014). A complete list of 

images included in the analysis is presented in the Appendix (Table A1).

2.2.2 Image Processing—Images were atmospherically corrected and converted to 

surface reflectance values using the Landsat Ecosystem Disturbance Adaptive Processing 

System (Masek et al., 2006). A minimum noise fraction transformation was applied to 

reduce within-image noise (Green et al., 1988). The per-pixel water fraction was estimated 

using the Matched Filtering algorithm, a partial unmixing method in the ENVI software 

package (Exelis Visual Information Solutions, Inc, Herndon, Va) (Turin, 1960; Vanderhoof 

et al., 2016). This algorithm is trained on a water spectral signature, which was derived from 

open-water polygons manually selected within each path/row, resulting in a water signature 

specific to each image. The water fraction output was linearly stretched to maximize our 

ability to separate water from non-water. CFmask, a quality control layer provided with 

Landsat images, was used to mask out clouds and cloud shadows (Zhu and Woodcock, 

2014), while the National Land Cover Database (NLCD) (2011) was used to mask out 

impervious surfaces, defined as low, medium and high density development (Homer et al., 

2015), which can show spectral confusion with surface water. Each surface-water image was 

visually inspected for quality using visual interpretation as well as ancillary datasets (e.g., 

National Agricultural Imagery Program (NAIP) imagery, National Wetland Inventory (NWI) 

dataset (USFWS, 2010)). Select images were removed or edited primarily due to spectral 

confusion between water and bare rock or shadowed vegetation.

2.2.3 Surface-Water Extent Validation—The surface-water extent maps were 

validated using 1-m resolution NAIP imagery. Landsat images were selected for validation 

based on the temporal coincidence of the Landsat and NAIP imagery collections (Table 2). 

Because terrestrial surface water is a relatively rare cover type, it is difficult to generate 

enough inundated reference points through a simple random-point generation. Therefore, 

random points were generated in reference to NWI polygons overlapping with the NAIP 

and Landsat imagery. Points were then visually identified as inundated or non-inundated 

using the NAIP imagery. To account for the scale difference between a random point and a 

900 m2 Landsat pixel, the Landsat pixel boundaries for each random point were identified. 

The point was classified as the majority class (inundated or non-inundated) identified by 

NAIP within the Landsat pixel boundary surrounding each random point. Reference points 

were generated per Landsat/NAIP pair (500 or 1000), with the number of reference points 

varying depending on the amount of NAIP imagery available within the Landsat path/row 

extent, and the number of random points that occurred within Landsat NA pixels. Metrics 

presented included overall accuracy, omission error, commission error, dice coefficient, and 

relative bias. Omission and commission errors were calculated for the category “water”. The 

dice coefficient is the conditional probability that if one classifier (product or reference data) 

identifies a pixel as water, the other one will as well, and therefore integrates omission and 

commission errors (Fleiss, 1981; Forbes, 1995). The relative bias provides the proportion 

that water is under (negative) or overestimated (positive).
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The Landsat per-pixel fraction water was binned into inundated (≥ 0.3) and non-inundated 

(< 0.3) classes. This threshold was selected as it best balanced errors of omission and 

commission. Overall accuracy for the Landsat surface-water maps across the 11 path/

rows was 93.9% with errors of omission for surface water averaging 8.5% and errors of 

commission for surface water averaging 8.2% (Table 3). The surface-water maps showed 

no relative bias and a dice coefficient of 92%. Errors of omission and commission can be 

primarily attributed to mixed Landsat pixels occurring over small wetlands (a few pixels in 

size) or at the edge of larger wetlands or open water features. In some images parts of or 

entire agricultural fields were classified as water. It is common in both the spring months, 

when crops need to be planted, and fall months, when crops are being harvested, for fields 

to experience wet conditions (Fausey et al., 1987; King et al., 2014). In addition, poorly 

drained soil is common across this region (Skaggs et al., 1994) and wetland depressions 

often occur within agricultural fields. Consequently, subsurface tile drainage has become 

increasingly popular across the region to speed up the removal of excess soil water (Blann 

et al., 2009). It is often unclear to what extent surface-water mapped within agricultural 

fields represents historical or current wetlands, poorly drained fields, or misclassified pixels. 

Lastly, a close match in acquisition date between the Landsat and NAIP images is essential 

for the NAIP imagery to accurately represent ground conditions. Variability in the date 

match can be considered one potential source of error, as the occurrence of a rain event or 

seasonal variability can change surface-water conditions over even short time periods.

2.3 Surface-Water Extent Analysis

Surface-water abundance (ha km−2) was calculated per HUC8 with HUC8 area being 

adjusted for each image based on the abundance of not applicable (NA) pixels (e.g., cloud 

cover, cloud shadow) in each image. We used the high-resolution National Hydrography 

Dataset (NHD, 1:24,000) to classify surface water as (1) continuous connected with the 

stream network, or (2) disconnected from the stream network. The NHD line dataset was 

buffered by 14 m, the reported digital horizontal accuracy of the dataset (USGS, 2000) and 

NHD area was added to account for the width of large rivers. Surface-water polygons that 

intersected the stream network in a given image were classified as continuously connected 

water (CCW). Surface-water polygons that did not intersect the stream network in a given 

image were classified as discontinuous water (DCW) or discontinuous from the stream 

network. We acknowledge that the NHD is known to be incomplete (e.g., lacking short 

and ephemeral stream lines) and that some stream lines within the NHD are disconnected 

from downstream waters (Heine et al., 2004). However, the NHD is the most complete 

nationally-available stream dataset.

Processed images within each path/row were ranked from least-to-most amount of surface 

water per area. Median condition was defined as the image or two images representing 

the median amount of surface-water extent, estimated from all images within a path/row. 

Drought and deluge conditions were defined as the average of the two end-member 

images showing the least and most amount of total surface-water extent for each path/row, 

respectively. Surface-water extent was then summed across the PPR and NP path/rows and 

divided by the total area to calculate the hectares of surface-water extent per km2 for each 
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region. The NP portion of path 27, row 30 (p27r30) and p30r30 were deleted, as was the 

PPR portion of p26r30 to avoid double counting overlapped path/rows.

2.4 Stage One – Derivation of the Surface Water Climate Variable (SWCV)

In stage one, surface-water extent in each HUC8 was related, using linear regression, to 

water availability, defined as precipitation minus PET summed over a time interval. Water 

availability provided an estimate of the amount of water in each watershed available to either 

(1) runoff, (2) infiltrate to shallow or deep groundwater sources, or (3) be stored as surface­

water. Surface water was again partitioned into CCW and DCW using its spatial relationship 

to the NHD. Precipitation data were compiled using the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM, Daly et al., 2008). PET, or the atmospheric demand 

for evaporation and transpiration in the absence of water limitations, which can be expected 

over open surface water, was compiled using gridded surface meteorological data PRISM 

and the North American Land Data Assimilation System Phase 2 (Abatzoglou et al., 

2011). PET was calculated using the Penman-Monteith equation that required inputs of 

minimum and maximum temperature, daily average dewpoint temperature (equivalently, 

vapor pressure or vapor pressure deficit), wind speed and downward shortwave radiation 

(Abatzoglou et al., 2011, Mitchel et al., 2004). The datasets were resampled to 125 m using 

cubic convolution and summarized for each HUC8. Water availability was summed for a 

series of monthly periods preceding each image date (3, 6, 9, 12, 18, 24, 30 and 36 months) 

to identify the accumulation period for which the greatest number of HUC8’s showed a 

significant (p<0.05) slope between water availability and surface-water extent. This logic 

was meant to reduce the probability that a zero slope resulted from surface water responding 

more strongly to climate drivers at a different time interval. This first stage produced surface 

water climate variables (SWCV), our dependent variables for stage 2, i.e., the slope of the 

relationship between CCW and DCW surface-water extent to accumulated water availability 

(Figure 2). The slope or stage 2 dependent variable is referred to as the surface water climate 

variable (SWCV) from this point forward.

Cloud cover makes it challenging to restrict analysis of Landsat imagery to a specific season, 

while including imagery that covers more than one season potentially conflates seasonal 

surface-water dynamics with interannual surface-water dynamics. The influence of seasonal 

change in surface-water extent within our analysis contributed to the uncertainty (primarily 

through sampling error) in the SWCV. For example, if we included an image from June 1993 

and one from August 1993 and related both images to the last nine months of precipitation 

and PET (Sept 1992 - May 1993 and November 1992 – July 1993, respectively), greater 

seasonal dynamics or variation in surface-water extent between the two dates can be 

expected to show up as greater uncertainty in the slope, defined by the standard error of 

the slope. This becomes more evident as the accumulated period becomes larger (e.g., 36 

months). By explicitly considering the uncertainty of the slope in the regression analysis, 

as described below in the Stage 2 Analysis (Section 2.6), we can, to the extent possible, 

account for seasonally induced variation in surface-water extent.
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2.5 Landscape Variables for Stage 2 Analysis

The independent variables summarized for each HUC8 and included in the analysis were 

selected to characterize mechanisms through which water can leave the landscape (e.g., 

infiltration, runoff, tile drainage), mechanisms through which water can remain and expand 

on the landscape (e.g., wetland density, wetland size, topography), as well as other potential 

influences on surface water dynamics (e.g., climate norms, land cover). The National 

Wetland Inventory (USFWS, 2010) and NHD stream dataset (USGS, 2013) were used to 

calculate wetland and stream characteristics including stream density, wetland count and 

areal density, and proportion of total wetland area attributed to large (>8 ha) features. A 

threshold of 8 hectares was selected as this is the size threshold used by USFWS to define 

a lacustrine system (Cowardin et al., 1979). We do not refer to these features as lakes, 

however, as water depth and associated vegetation are also important features to defining 

lacustrine systems, and were not evaluated. We did not include distance variables, which 

were previously found to be highly correlated with simpler variables already in the analyses: 

mean wetland-to-wetland distance was previously found to be highly correlated with 

wetland density (r = −0.95, p<0.01) and mean wetland-to-stream distance highly correlated 

with stream density (r = 0.88, p<0.01) (Vanderhoof et al., 2017). Surface topography can 

influence the capacity for surface water to expand and was quantified as the weighted 

averaged slope gradient, as defined by the U.S. Department of Agriculture’s Soil Survey 

Geographic (SSURGO) Database (Soil Survey Staff, 2017). Topographic Wetness Index was 

not included because of the relative weakness of such indices in landscapes with little relief 

(e.g., Schmidt and Persson, 2003) and the data intensive nature of calculating TWI with a 

10 m DEM across such a large study area. Additional variables derived from the SSURGO 

database to characterize infiltration capacity include available water storage (0 – 150 cm), 

annual minimum depth to water table, and saturated hydraulic conductivity (Ksat). Human 

influence was quantified as the abundance of agricultural activities, or the percent of each 

HUC8 classified as agriculture, defined as the NLCD (2011) cover categories hay/pasture 

and row crop. Anthropogenic modifications to drainage systems, or the percent land cover 

artificially drained, was estimated as the percent of each HUC8 where row crop cover type 

(NLCD 2011) and very poorly drained or poorly drained soils as defined by the National 

Resources Conservation Service’s SSURGO database were collocated following Christensen 

et al., (2013). The climate normals per HUC8 (1989–2013) were calculated to represent the 

Landsat image range. The precipitation averages are provided as part of the PRISM dataset 

(Daly et al., 2008). PET was calculated as a function of monthly mean PRISM temperature 

and day length following Hamon (1961). The Moisture Index (MI) was calculated as the 

ratio of precipitation and PET where, if PET exceeded precipitation, MI = precipitation/PET 

– 1, and if precipitation exceed or equaled PET, then MI = 1 = PET/precipitation. Values 

range from −1 (dry) to 1 (wet) (Willmott and Feddema, 1992; Feddema, 2005). The climate 

averages were resampled to 1 km from 4 km using inverse-distance weighting, prior to being 

averaged per HUC8. The distribution of values within each of the independent variables are 

shown in Table 4. Spearman rank correlations with a Bonferroni correction (Dunn, 1961) 

were calculated for the independent variables (Table 5).
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2.6 Stage 2 - Analysis - Landscape Mechanisms Explaining Variability in SWCV

In stage two, CCW and DCW SWCVs, or the slope of the relationship between CCW 

and DCW and accumulated water availability, were related to landscape variables using 

feasible generalized least-squares (FGLS) regression, with HUC8s (n=150) as the unit of 

analysis. FGLS allowed us to estimate the heteroscedastic structure of the residuals (Lewis 

and Linzer, 2005) and has been previously applied within landscape ecology contexts (e.g., 

Acharya, 2000; Villalobos-Jimenéz and Hassall, 2017). The SWCVs were found to be 

significant for the largest number of HUC8s using a 9-month period of accumulation for 

both CCW and DCW, which was therefore used as the accumulation period for further 

analyses (Table 6). The SWCVs were found to be spatially autocorrelated using Global 

Moran’s I (spatial relationship conceptualized using inverse distance) (DCW SWCV, 9 

months, z-score=7.8, p<0.01, CCW SWCV, 9 month, z-score=4.1, p<0.01), violating the 

assumption of independence between samples. To account for spatial autocorrelation in 

the SWCVs, we calculated an autocovariate in ArcGIS 10.3, Geostatistical Analyst (ESRI, 

Redmond CA) which uses adjacent HUC8s to create a neighbor value. By including a spatial 

autocovariate in the ordinary least-squares (OLS) regression model, we controlled for how 

much the response variable reflected response values of adjacent HUCs, before identifying 

additional significant explanatory variables (Dormann et al., 2007; Betts et al., 2009). 

The autocovariate was automatically retained while only significant independent variables 

(p<0.05) were additionally retained. The dependent variable was normalized using a Box­

Cox power transformation (R package MASS, Venables and Ripley, 2002). Multicollinearity 

was formally assessed using the regression collinearity diagnostics described by Belsley 

et al. (1980) and implemented in the R package perturb (Hendrickx, 2012). Collinearity 

may affect parameter estimation when a condition index greater than 10 is associated with 

variance decomposition proportions greater than 0.5 for two or more explanatory variables 

(Belsley, 1991). Both models complied with collinearity requirements.

Having an estimated dependent variable (e.g., SWCV) does not necessarily present a 

problem for a regression analysis, but we must recognize that the regression model error 

term contains two components: (1) the expected random error resulting from sources of 

variation not accounted for in the model, and (2) the difference between the true value of the 

dependent variable and the estimated value (sampling error). In this study, the uncertainty 

around the dependent variable (SWCV) was not constant across observations. Instead, the 

dependent variable showed a strong positive correlation with its standard error (DCW 

SWCV, R2 = 0.59, p<0.05; CCW SWCV, R2 = 0.70, p<0.05) (Figure 3). FGLS allowed 

us to estimate both components of the error. To do so, we: (1) calculated the logarithm of 

squared residuals from the OLS model, (2) regressed the log-residuals on the independent 

variables included in the OLS model, (3) calculated the exponential of fitted values from 

that regression, which estimates the variance of the regression residual that is not due 

to sampling of the dependent variable, z, and (4) estimated the basic model again now 

including weights (1 z−1) (Hanushek, 1974; Lewis and Linzer, 2005). We found the final 

model residuals to be random using the studentized Breusch-Pagan test (Breusch and Pagan, 

1979).
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To help add confidence regarding which landscape variables were more or less important, 

we also fit random forest models in R using the package randomForest (Liaw and Wiener, 

2015). The random forests were run with the SWCVs as the dependent variable and 

landscape characteristics as independent variables. We derived 500 binary trees or bootstrap 

iterations using out of bag (OOB) samples (70% of samples to train and 30% of samples 

to validate). Variable importance was calculated as the change in node impurity (i.e., Gini 

importance). Random forest models are generally insensitive to collinearity among metrics, 

however the inclusion of correlated variables can deflate variable importance as well as the 

overall variation explained by the model (Murphy et al., 2010). We implemented random 

forest model selection to select the smallest number of non-redundant variables (varSelRF R 

package) (Murphy et al., 2010).

3 Results

3.1 Surface-Water Extent

Median surface-water extent as well as the amount of water added and lost from the surface 

between wet and dry periods was found to vary considerably across the study area (Figure 

4 and 5). Analysis of the median total surface-water extent between the PPR and the NP 

demonstrated that the PPR had 2.6 times greater surface-water extent than the NP (Table 

7). The PPR also showed greater variability in total surface-water extent, adding 5.7 ha 

km−2 during very wet conditions and losing 2.8 ha km−2 during very dry conditions, for 

a maximum net difference of 8 ha km-2. This can be compared to the NP which gained 

1.6 ha km−2 during very wet conditions and lost 0.8 ha km−2 during very dry conditions, 

a net difference of 2.4 ha km−2 (Table 7). DCW, or water that was discontinuous with the 

stream network, showed greater expansion and contraction in extent in both the PPR and 

NP, relative to CCW which intersected the stream network. Consequently, DCW increased 

as a percent of total surface water during wet periods and decreased as a percent of total 

surface water in dry periods. This suggests that across the study area, surface water that 

was disconnected from the stream network disproportionately served a surface water storage 

function during wet periods, reducing the amount of water contributing to downstream 

flooding. Similarly, DCWs disproportionately experienced loss during dry periods.

3.2 Relationship between Surface-Water Extent and Water Availability

Including PET instead of using precipitation alone tended to increase the percentage of 

HUC8s showing a statistically significant relationship between surface-water extent and 

water availability across the different accumulation periods that we tested, although this 

was not true for all time periods. For instance, the percent change from precipitation to 

precipitation minus PET ranged from −1.4 to 38% for DCW and −6.3 to 24.3% for CCW. 

For DCW there was a jump in the percentage of HUC8s showing a significant relationship 

between six and nine months, but the percentage of HUC8s stabilized after this time period 

out to 36 months. CCW showed a similar but smaller jump in the percentage of HUC8s 

with a significant relationship between six and nine months (Table 6). At nine months, 

all images, regardless of being collected in the spring, summer or fall, would include 

winter precipitation. We observed substantial spatial variability in the statistical relationship 

between surface-water extent and water availability. Using nine months as the accumulation 

Vanderhoof et al. Page 11

Hydrol Earth Syst Sci. Author manuscript; available in PMC 2021 November 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



period, we observed a strong spatial pattern in DCW. PPR HUC8s tended to show a steep 

slope, exhibited by a substantial increase in surface-water extent with increased water 

availability, while HUC8s across the NP tended to show a weaker slope, exhibited by minor 

to no increases in surface-water extent with increased water availability (Figure 6 and 7). 

For CCW, the spatial pattern was less consistent within the PPR or ecoregion boundaries. 

Instead, HUC8s with a steep slope tended to be HUC8s with large lakes or floodplains 

(Figure 6 and 7).

3.3 Landscape Variables Explaining Variability in Surface-Water

For DCW SWCV, when independent variables were assessed individually using Spearman’s 

rank correlation, the SWCV was greater in locations with fewer streams (R = −0.64, 

p<0.05), lower slope gradient (R = −0.59, p<0.05), higher wetland density (R = 0.52, 

p<0.05) and total wetland area (R = 0.51, p<0.05), deeper minimum depth to water table (R 

= 0.59, p<0.05) and where a greater proportion of the total surface water was disconnected 

from the stream network (R = 0.42, p<0.05) (Table 8). When the relative importance of the 

variables was tested using random forest, variables found to be the most important included, 

wetland density, stream density, annual minimum depth to water table and the slope gradient 

(Table 8). However, after accounting for the spatial autocorrelation in the DCW SWCV and 

the significance of the variables, the DCW SWCV increased in the final feasible generalized 

least-squares model (adjusted R2 = 0.66, F-statistic = 73.6) with (1) greater wetland density, 

(2) deeper depth to groundwater, and (3) less anthropogenic drainage (Table 9). The variable 

most consistent identified across statistical approaches was wetland density.

For CCW SWCV, fewer independent variables showed a significant Spearman rank 

correlation. The SWCV for stream-connected water increased in locations with a greater 

total wetland area (R = 0.48, p<0.05) and less average precipitation (R = −0.33, p<0.05) 

(Table 8). Using random forest, the total wetland area and proportion of total water from 

large features were found to be the most important variables in explaining variation. The 

final feasible generalized least-squares model (adjusted R2 = 0.54, F-statistic = 37.4) also 

found the relationship between CCW and surface-water availability (i.e., SWCV) was 

stronger with greater total wetland area, but also found that it decreased with greater wetland 

density (Table 9).

4. Discussion

Surface-water extent, and in particular surface water within well-studied portions of the 

PPR, has been previously shown to exhibit seasonal and interannual patterns (Poff et 

al., 1997; Beeri and Phillips, 2007; Vanderhoof et al., 2016) that can, in turn, influence 

the cumulative hydrologic response of a watershed (Golden et al. 2016; Evenson et al. 

2016; Ali and Creed 2017). What has been less commonly quantified is how surface-water 

dynamics vary across diverse landscapes. This is particularly relevant when we consider 

the need for communities and local agencies to plan ahead for expected changes in the 

precipitation regime associated with climate change (Dore, 2005; Johnson et al., 2005; 

Millett et al., 2009). Our results demonstrated that the relationship between surface-water 

extent and water availability (SWCV) is a function of both climate and landscape variables 
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and that the density of depressional wetlands, in particular, played a key explanatory role 

in the observed landscape response to increased climate inputs. Given our findings, we 

expect that changes in net precipitation from climate change or other climatic forcings will 

disproportionately affect surface-water extent across the PPR relative to the adjacent NP, 

and that these effects will be most evident in disconnected wetland systems (DCWs).Surface 

waters that are disconnected from the stream network showed a larger change in extent 

in response to wetter conditions in landscapes with higher wetland densities. That is to 

say that landscapes with a larger number of depressional features were found to show 

a greater increase in surface-water extent in response to a wetter climate, relative to 

landscapes with fewer depressional features. In landscapes with greater total wetland area, 

on the other hand. surface waters connected to the stream network showed more substantial 

expansion with increased water availability. This finding suggests that the presence of 

stream-connected lakes within large flat basins may be an important factor influencing 

surface-water expansion. Previous research found lakes within the PPR to be important 

features that commonly experience extensive surface-water expansion, subsuming adjacent 

wetlands during wet periods (Vanderhoof and Alexander, 2016). These findings suggest that 

if climate conditions within the U.S. portion of the PPR continue to get wetter, as predicted 

(e.g., Millett et al. 2009), then both small wetland depressions and larger features, such as 

lakes and floodplains, will both serve critical roles in storing increased inputs of surface 

water, which could prevent downstream flooding.

Our study area was intentionally selected to encompass a large area with a wide range of 

landscape conditions in regards to wetland and stream density and capacity for infiltration. 

Across the study area, variation in the values of many of the variables (e.g., stream density, 

wetland density) can be attributed to landscape age or the time since the last glacial retreat, 

and corresponding variability in drainage development across the region (Ahnert, 1996). The 

Wisconsin glacier retreated from the PPR by 11,300 BP, meaning the drainage system is still 

developing and surface water is being stored in glacially formed depressions (Winter and 

Rosenberry, 1998; Stokes et al., 2007). In contrast, west and south of the PPR, the landscape 

is much older (>20,000 BP) with a well-developed drainage network (Clayton and Moran, 

1982).

In addition to extensive human-induced wetland loss across the region (Miller et al., 2009; 

Van Meter et al., 2015), the drainage network across the region is also increasingly modified 

with the expansion of ditch networks and tile drainage in association with agricultural 

activities (McCauley et al., 2015). Ditches, pipes and field tiles on the glacial till can 

hasten the speed with which water leaves a location and lower the water table through 

increased water withdrawal (De Laney, 1995; Blann et al., 2009; McCauley et al., 2015). We 

found in the FGLS model, the expansion of disconnected water was inversely related to the 

abundance of estimated anthropogenic drainage. Because anthropogenic drainage increases 

the rate at which water leaves a location, it results in the loss or reduction of landscape-scale 

functions of wetlands and other natural water storage features in the PPR (McCauley et 

al. 2015), and shifts the hydrologic behaviors of watersheds towards those more commonly 

seen in the NP.
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Evapotranspiration is known to be a primary mechanism for water loss in the PPR (Winter 

and Rosenberry, 1998). By explicitly incorporating this value into the SWCV, we could 

better isolate the effects of landscape-based components such as surface storage, stream 

density, and topography. One challenging component to characterize was the capacity for 

water to infiltrate through soil horizons. Depth to bedrock SSURGO data was found to be 

too patchy (i.e., too much missing data) to be useful. A variable that instead was found 

to correlate significantly with the expansion of disconnected water was annual minimum 

depth to groundwater. The PPR tended to have a deeper minimum depth while the NP 

had a shallower minimum depth, on average. A reduction in infiltration due to the low 

permeability of glacial till (Sloan, 1972; Winter and Rosenberry, 1995), would reduce the 

potential for increased water table elevations. Concomitantly, with less infiltration, pulses of 

snowmelt or precipitation in the PPR would instead be transported as overland flow and fill 

wetlands with available storage.

We must also consider that we may be missing key landscape variables that could explain 

variability in the spatial response of surface-water extent to climate inputs. For example, 

major landscape characteristics required for stream-connected surface water to expand 

include (1) large, stream-connected water bodies such as lakes and (2) hydrologically­

connected floodplains. The influence of large water bodies was considered by including 

total wetland area and the portion of water from larger (>8 ha) features, however we 

did not explicitly consider the presence/absence of active floodplains beyond including 

stream density as a variable. Floodplain activity typically exhibits strong seasonal patterns; 

however, the goal of our analysis was to focus on patterns of surface-water extent that 

occurred on longer-time scales (i.e., interannual variability). Because of this, we excluded 

two Landsat path/rows from the analysis that were originally included because strong 

seasonal flooding outweighed interannual patterns in climate as evidenced by a lack of a 

relationship between climate indices (e.g., Standardized Precipitation Index (12 months) 

and Palmer Hydrologic Drought Index) and surface-water extent. These path/rows included 

p30r27 which straddles North Dakota and Minnesota and exhibits strong seasonal flooding 

of the Red River and p28r32 in the southeastern corner of Nebraska, which exhibits strong 

seasonal flooding of the Missouri River. However, even with the exclusion of these two 

path/rows, the importance of floodplains is still evident in Figure 6B where we observed 

higher slopes in areas with an abundance of lakes or floodplain systems. Because complete 

floodplain maps across the study area are lacking, we were not able to explicitly identify the 

role of floodplains in the CCW models.

In addition to decision points regarding study area extent, other decision points may have 

influenced our findings. For example, the period of time for which the greatest number 

of HUC8s showed a significant slope was used as the climate accumulation period. This 

logic was meant to avoid, to the extent possible, a HUC8 showing a zero slope because 

surface water responded at a time period different than the one selected. However, its usage 

meant that the study results are limited to interpreting the relationship of surface-water 

extent to same year climate inputs (or the previous 9 months) and may be less applicable 

to understanding the relationship of surface-water extent to shorter (seasonal) or longer 

(multi-year) time periods. In addition, decisions regarding image inclusion may have also 

influenced the analysis. Although the Landsat images used in the analysis were selected 
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strategically to represent historically dry, average, and wet conditions, because the Landsat 

images were processed individually we were ultimately limited in the number of Landsat 

images we could process. As more remotely sensed products become available, such as the 

U.S. Geological Survey’s Dynamic Surface Water Extent (DSWE) Product, which plans 

to utilize the entire Landsat archive (1984 to present) (Jones, 2015), we could utilize 

many more images and reduce the uncertainty in estimates of the slope value or watershed­

specific response to available water. Although decision points regarding the data included 

or excluded from the analysis are important to consider, this study provides an improved 

understanding of how the relationship between surface-water extent and climate may vary 

spatially across different landscapes.

5. Conclusion

Shifts in climate patterns and the frequency of extreme climate events will influence surface­

water extent. This has implications for habitat availability (Boschilia et al., 2008; Calhoun 

et al., 2017), agricultural productivity (Mokrech et al., 2008; Gornall et al., 2010) and 

hydrologic connectivity (Golden et al. 2016; Ali and Creed 2017). This study demonstrated 

that not only is surface-water extent variable across landscapes, but shifts in climate patterns 

will have an uneven effect on surface-water extent across these different landscapes. The 

PPR experienced a 2.6 fold greater surface-water extent than the adjacent NP under average 

conditions and a 3.4 fold larger range in surface-water extent between drought and deluge 

conditions. To move from ecoregion boundaries to a clearer characterization of the spatial 

distribution of surface water on the landscape, we used a statistical approach to explore 

potentially significant landscape variables that could explain the spatially variable change 

in surface water to climate inputs (precipitation minus evapotranspiration). Landscapes 

with higher wetland density and less anthropogenic drainage showed a greater expansion 

of disconnected (from the stream network) surface water (e.g., depressional wetlands) 

and wetter climatic conditions relative to landscapes with fewer wetlands and more 

anthropogenic drainage. Landscapes with fewer wetlands but more total surface water area 

(e.g., lakes, large river systems) showed a greater expansion of stream-connected surface 

water and wetter climatic conditions relative to landscapes with less total surface water area. 

Enhancing our knowledge of spatial and temporal variability in the relationship between 

surface-water extent and climate inputs can advance efforts to predict the hydrological 

effects of climate change, including drought and floods, on water resources and improve 

hydrological modeling in low gradient landscapes.
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Appendix

Table 1.

A complete list of Landsat TM images used in the analysis and the corresponding Palmer 

Hydrological Drought Index (PHDI).

Landsat 
path/row Date PHDI Landsat 

path/row Date PHDI Landsat 
path/row Date PHDI

p26r30 1989 170 −4.29 p30r30 1990 121 −4.70 p31r29 1989 109 −1.62

p26r30 1989 186 −4.29 p30r30 1989 294 −4.66 p31r29 2003 196 −1.22

p26r30 1988 296 −4.15 p30r30 1989 110 −3.47 p31r29 2004 279 2.52

p26r30 1996 222 −0.24 p30r30 1991 236 −2.79 p31r29 1999 121 5.19

p26r30 1987 117 0.06 p30r30 1988 148 −1.23 p31r29 2011 154 6.55

p26r30 1996 142 0.30 p30r30 2002 122 −1.12 p31r29 2010 167 6.94

p26r30 2010 148 1.10 p30r30 2013 184 −0.94 p31r29 2010 279 8.63

p26r30 2006 153 1.17 p30r30 2003 141 0.26 p33r28 1988 249 −5.68

p26r30 2008 95 2.82 p30r30 2003 285 0.88 p33r28 1990 254 −3.87

p26r30 1993 133 3.95 p30r30 1993 161 5.40 p33r28 2008 112 −2.86

p26r30 1993 277 6.92 p30r30 2011 211 6.49 p33r28 1988 137 −2.47

p26r32 1988 264 −4.18 p30r30 2011 179 6.87 p33r28 2005 135 −2.35

p26r32 2000 105 −3.03 p30r30 2010 288 8.93 p33r28 2003 146 −1.78

p26r32 2003 145 −2.98 p30r31 2002 250 −4.62 p33r28 2005 263 −0.62

p26r32 1989 266 −2.92 p30r31 2000 269 −3.75 p33r28 1998 148 0.22

p26r32 1991 288 −1.88 p30r31 2000 173 −2.66 p33r28 2006 106 0.36

p26r32 1991 96 0.55 p30r31 1990 105 −2.63 p33r28 1998 260 0.70

p26r32 2007 108 0.74 p30r31 2003 141 −2.46 p33r28 1995 188 4.09

p26r32 2002 158 1.59 p30r31 1990 297 −2.45 p33r28 1997 129 5.11

p26r32 1994 136 2.76 p30r31 1990 137 −2.43 p33r28 2015 67 5.37

p26r32 1993 133 3.66 p30r31 2003 221 −2.41 p33r28 2014 160 5.61

p26r32 1994 104 3.79 p30r31 2000 221 −2.38 p33r28 2014 256 9.15

p26r32 2010 100 4.06 p30r31 2000 125 −2.05 p36r28 1988 222 −6.07

p26r32 2008 271 5.07 p30r31 2002 122 −1.84 p36r28 2002 212 −5.14

p26r32 2010 228 5.90 p30r31 2005 178 1.58 p36r28 2004 154 −4.72

p27r30 1988 239 −4.52 p30r31 1986 174 2.19 p36r28 2004 282 −4.29

p27r30 1989 161 −4.34 p30r31 1994 148 3.63 p36r28 2003 135 −2.38

p27r30 2003 280 −1.32 p30r31 1994 260 4.12 p36r28 1985 149 −2.04

p27r30 2002 141 −1.25 p30r31 2011 179 5.22 p36r28 1989 112 −1.94

p27r30 2003 104 1.44 p30r31 2009 173 5.29 p36r28 2013 178 −0.91

p27r30 2008 182 3.03 p31r27 1990 160 −4.12 p36r28 1993 91 −0.89

p27r30 1992 266 3.22 p31r27 2006 252 −3.32 p36r28 2013 242 −0.42

p27r30 1992 122 4.29 p31r27 1991 163 −2.45 p36r28 1998 121 1.67

p27r30 1993 172 6.52 p31r27 1992 118 −1.93 p36r28 2008 181 1.70

p29r29 1990 130 −3.55 p31r27 1999 121 2.01 p36r28 1996 244 2.06

p29r29 2003 118 −2.01 p31r27 2007 255 2.41 p36r28 1996 100 3.81

p29r29 2002 323 −1.69 p31r27 1997 195 2.72 p36r28 1993 235 5.17
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Landsat 
path/row Date PHDI Landsat 

path/row Date PHDI Landsat 
path/row Date PHDI

p29r29 1991 133 −0.69 p31r27 2005 169 3.06 p36r28 1994 142

p29r29 1992 136 1.35 p31r27 2009 244 3.28 p37r26 1988 213 −5.70

p29r29 2006 286 2.30 p31r27 2004 279 4.38 p37r26 2006 246 −3.41

p29r29 1998 120 2.77 p31r27 2001 190 4.46 p37r26 1994 261 −2.54

p29r29 2005 91 3.15 p31r27 1995 270 5.97 p37r26 2008 108 −2.37

p29r29 2006 94 4.20 p31r27 2010 279 6.43 p37r26 2002 171 −1.85

p29r29 2001 128 4.47 p31r27 2011 186 6.61 p37r26 1991 141 0.14

p29r29 1997 165 5.05 p31r27 1994 299 7.03 p37r26 2009 142 0.26

p29r29 1995 288 5.71 p31r27 2011 266 8.92 p37r26 1995 168 1.35

p29r29 2011 284 5.88 p31r29 2006 172 −3.49 p37r26 1995 264 1.68

p29r29 2010 105 6.19 p31r29 1989 189 −3.38 p37r26 1987 162 2.15

p29r29 1993 266 6.86 p31r29 2004 135 −2.66 p37r26 1991 269 2.26

p29r29 2011 156 8.37 p31r29 1989 269 −2.31 p37r26 1994 101 2.76

p29r29 2010 281 9.63 p31r29 2003 100 −2.24 p37r26 2013 169 3.40

p31r29 2003 132 −1.84 p37r26 2011 276 7.32

p31r29 1990 96 −1.65 p37r26 2011 212 9.14
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Figure 1. 
Distribution of Landsat path/rows used to map surface-water extent and corresponding 

8-digit Hydrological Units (HUC8s) used for further analysis in relation to the boundary 

of the Prairie Pothole Region (PPR). The p37r26 behaved dissimilarly from the PPR and 

similarly to the adjacent Northern Prairie (NP) in all regards and was therefore included with 

the NP for analyses organized by PPR and NP.
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Figure 2. 
Theoretical figure showing the derived dependent variable defined as the slope of the 

statistical relationship between accumulated water and surface-water extent. Some areas 

show a steep slope or substantial increase in surface-water extent as more water becomes 

available via precipitation minus potential evapotranspiration (PET), while other areas show 

little to no change in surface-water extent, presumably as excess water leaves the system 

through runoff or infiltration.
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Figure 3. 
Standard errors of the slope tended to increase as slopes increased for both A) discontinuous 

surface water (DCW) or surface water disconnected from the stream network and B) 

continuously connected water (CCW) or surface water connected to the stream network.
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Figure 4. 
Mean surface-water abundance and the amount of “wetting up” varied substantially between 

different Landsat path/rows. Portions of the Northern Prairie (e.g., p26r30) showed relatively 

less surface-water extent and expansion (A and B) while portions of the Prairie Pothole 

Region (e.g., p29r29) showed relatively more surface-water extent and expansion (C and D). 

Note: not all water is visible at this zoomed-out scale. PHDI: Palmer Hydrological Drought 

Index
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Figure 5. 
Examples of minor and substantial expansion of surface-water extent between historically 

dry and historically wet points in time. PHDI: Palmer Hydrological Drought Index.
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Figure 6. 
The spatial distribution of the Surface Water Climate Variable (SWCV) values from the 

statistical relationships between available water, defined as precipitation minus potential 

evapotranspiration accumulated over the previous 9 months, and surface-water extent. 

Greater SWCV values indicate greater change in surface-water extent with increased 

available water. Surface-water extent was divided between A) disconnected surface water 

(DCW), or surface-water extent disconnected from the stream network, and B) continuously 

connected water (CCW), or surface-water extent connected to the stream network.
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Figure 7. 
Distribution of slope and standard error values organized by Landsat path/row and primary 

path/row location, i.e., the Northern Prairie or the Prairie Pothole Region (PPR) for A) 

surface water that is disconnected from the stream network (DCW), and B) surface water 

that is connected to the stream network (CCW). HUC8: 8-digit Hydrological Units
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