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C O M P U T E R  S C I E N C E

Re-identification of individuals in genomic datasets 
using public face images
Rajagopal Venkatesaramani1*, Bradley A. Malin2,3,4, Yevgeniy Vorobeychik1

Recent studies suggest that genomic data can be matched to images of human faces, raising the concern that 
genomic data can be re-identified with relative ease. However, such investigations assume access to well-curated 
images, which are rarely available in practice and challenging to derive from photos not generated in a controlled 
laboratory setting. In this study, we reconsider re-identification risk and find that, for most individuals, the actual 
risk posed by linkage attacks to typical face images is substantially smaller than claimed in prior investigations. 
Moreover, we show that only a small amount of well-calibrated noise, imperceptible to humans, can be added to 
images to markedly reduce such risk. The results of this investigation create an opportunity to create image filters 
that enable individuals to have better control over re-identification risk based on linkage.

INTRODUCTION
Direct-to-consumer DNA testing has made it possible for people to 
gain information about their ancestry, traits, and susceptibility to 
various health conditions and diseases. The simplicity of testing 
services by companies such as 23andMe, AncestryDNA, and 
FamilyTreeDNA has drawn a consumer base of tens of millions of 
individuals. These sequenced genomes are of great use to the medical 
research community, providing more data for genome-phenome 
association studies, aiding in early disease diagnoses, and personal-
ized medicine.

While genome sequencing data gathered in medical settings are 
anonymized and their use is often restricted, individuals may also 
choose to share their sequenced genomes in the public domain 
via services such as OpenSNP (1) and Personal Genome Project (2). 
Moreover, even the sharing of de-identified data for medical re-
search typically faces tension between open sharing within the 
research community and exposure to privacy risks. These risks gen-
erally stem from the ability of some data recipients to link the ge-
nomic data to the identities of the corresponding individuals. One 
particularly acute concern raised in recent literature is in the ability 
to link a genome to the photograph of an individual’s face (3–6). 
Specifically, these studies have shown that one can effectively match 
high-quality three-dimensional (3D) face maps of individuals with 
their associated low-noise sequencing data, leveraging known asso-
ciations between phenotypes, such as eye color, and genotypes, 
which, for the purposes of this study, correspond to the variations 
in our genes that affect physical traits. However, for a number of 
reasons, it is unclear whether these demonstrations translate into 
practical privacy concerns. First, the studies to date have relied on 
high-quality, often proprietary, data that are not publicly available. 
This is a concern because such high-quality data are quite difficult 
to obtain in practice. While many people post images of their face in 
public, these are generally 2D, with quality that varies considerably 

depending on a variety of factors, such as resolution, lighting condi-
tions, camera angle, and background objects. Phenotype associa-
tion studies, in contrast, typically use high-resolution 3D face maps 
captured by dedicated hardware (3–5) or photographs captured in 
laboratory-controlled lighting conditions to ensure minimal impact 
on visible features such as eye color (6). From a computer vision 
perspective, ideal datasets would have subjects directly facing the 
camera, with a plain background (7); however, this is rarely the case 
with images in the wild. In addition, observed phenotypes in real 
photographs need not match actual phenotypes, thereby making it 
challenging to correctly infer one’s genotype and vice versa. For ex-
ample, people may color their hair or eyes (through contact lenses). 
Last, increasing population size poses a considerable challenge to 
the performance of genome-photograph linkage: Given a target in-
dividual and a fixed collection of features (the predicted phenotypes 
in our case), the chances of encountering others who are similar to 
the target individual in this feature space increase with population 
size. Another related study by Humbert et al. (8) investigates the 
re-identification risk of OpenSNP data but assumes complete 
knowledge of a collection of phenotypes, including many that are 
not observable from photographs, such as asthma and lactose in-
tolerance. We consider this approach to be a theoretical upper 
bound in our study, that is, matching performance when ground-
truth phenotypes are known a priori, as opposed to when predicted 
from face images.

Given these potential confounders in the real world, we study 
the risk of re-identification of shared genomic data when it can po-
tentially be linked to publicly posted face images. To this end, we 
use the OpenSNP (1) database, along with a newly curated dataset of 
face images collected from an online setting and paired with a select 
subset of 126 genomes. We develop a re-identification method that 
integrates deep neural networks for face-to-phenotype prediction (e.g., 
eye color) with probabilistic information about the relationship 
between these phenotypes and single-nucleotide polymorphisms 
(SNPs), which are nucleotide variations distributed across the ge-
nome, to score potential image-genome matches. The first purpose 
of our study is to assess how substantial the average risk is, as a func-
tion of population size, given the nature of available data as well as 
current technology. Our second purpose is to introduce a practical 
tool to manage individual risk that enables those who post face im-
ages online as well as social media platforms that manage these 

1Department of Computer Science and Engineering, Washington University in 
St. Louis, 1 Brookings Dr., St. Louis, MO 63108, USA. 2Department of Biomedical 
Informatics, Vanderbilt University Medical Center, Suite 1475, 2525 West End Ave-
nue, Nashville, TN 37203, USA. 3Department of Biostatistics, Vanderbilt University 
Medical Center, Suite 1475, 2525 West End Avenue, Nashville, TN 37203, USA. 4De-
partment of Electrical Engineering and Computer Science, Vanderbilt University, 
2201 West End Ave, Nashville, TN 37235, USA.
*Corresponding author. Email: rajagopal@wustl.edu

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY).

mailto:rajagopal@wustl.edu


Venkatesaramani, Sci. Adv. 7, eabg3296 (2021)     17 November 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 9

data, to trade off risk and utility from posted images according to 
their preferences. We emphasize that, in the threat model invoked 
in this research, we consider only face images posted by individual 
users on social media. In this respect, the utility is implicit, as it is 
natural to assume that, when a user uploads a photograph to a web-
site, they would prefer to retain as much of the original detail as 
possible, and visible distortions would be unwelcome in such a set-
ting. We find that the overall effectiveness of re-identification and, 
thus, privacy risk is substantially lower than suggested by the cur-
rent literature that relies upon high-quality SNPs and 3D face map 
data. While some of this discrepancy can be attributed to the diffi-
culty of inferring certain phenotypes—eye color, in particular—from 
images, we also observe that the risk is relatively low, especially in 
larger populations, even when we know the true phenotypes that 
can be observed from commonly posted face images. Even using 
synthetically generated data that make optimistic assumptions about 
the nature of SNP-to-phenotype relationships, we find that the aver-
age re-identification success rate is relatively low.

Our second contribution is a method for adding small perturba-
tions to face images before posting them, which aims to minimize 
the likelihood of the correct match (that is, to minimize individual 
risk). This framework is tunable in the sense that the user can spec-
ify the amount of noise they can tolerate, with greater noise added 
having greater deleterious effect on re-identification success. We 
show that, even using imperceptible noise, we can often successful-
ly reduce privacy risk, even if we specifically train deep neural 
networks to be robust to such noise. Furthermore, adding noise 
that is mildly perceptible further reduces the success rate of re- 
identification to be no better than random guessing. We note that 
our privacy model here differs from common conventional models, 
such as k-anonymity (9–13) and l-diversity (14). Rather, our priva-
cy assessment is closely tied to our risk analysis framework that 
combines phenotype inference from face images using machine 
learning with the particular approach to quantifying re-identification 
risk that we describe.

RESULTS
We investigate the risk of re-identification in genomic datasets “in 
the wild” based on linkage with publicly posted photos. Using the 
public OpenSNP dataset, we identified 126 individual genotypes for 
which we were able to successfully find publicly posted photographs 
(e.g., some were posted along with genomic data on OpenSNP it-
self). We used a holistic approach to associate genomes to images as 
follows. If a user’s picture was posted on OpenSNP, higher-quality 
pictures could often be found under the same username on a differ-
ent website. When no picture was posted for a certain user on 
OpenSNP, we found pictures posted on different websites under the 
same username and used self-reported phenotypes on OpenSNP to 
ensure with a reasonable degree of certainty that the image corre-
sponds to the genome. This resulted in a dataset of SNPs with the 
corresponding photos of individuals, which we refer to as the Real 
dataset. To characterize the error rate in phenotype prediction from 
images, we constructed two synthetic datasets, leveraging a subset 
of the CelebA face image dataset (15) and OpenSNP. In this study, 
synthetic data refer to image-genome pairs that are generated by 
combining these two unrelated datasets, where the genome in a giv-
en pair does not correspond to the individual in the image (taken 
from CelebA) but comes instead from an individual with the same 

set of phenotypes (taken from OpenSNP). We created artificial gen-
otypes for each image (here, genotype refers only to the small subset 
of SNPs we are interested in; see table S1 for the full list) using all 
available data from OpenSNP, where self-reported phenotypes are 
present. First, we consider an idealized setting where, for each indi-
vidual, we select a genotype from the OpenSNP dataset that corre-
sponds to an individual with the same phenotypes, such that the 
probability of the selected phenotypes is maximized, given the gen-
otype. In other words, we pick the genotype from the OpenSNP 
data that is most representative of an individual with a given set of 
phenotypes. We refer to this dataset as Synthetic-Ideal. Second, we 
consider a more realistic scenario where, for each individual, we se-
lect a genotype from the OpenSNP dataset that also corresponds to 
an individual with the same phenotypes but, this time, at random 
according to the empirical distribution of phenotypes for particular 
SNPs in our data. Because CelebA does not have labels for all con-
sidered phenotypes, 1000 images from this dataset were manually 
labeled by one of the authors. After cleaning and removing ambig-
uous cases, the resulting dataset consisted of 456 records. We refer 
to this dataset as Synthetic-Realistic.

Our re-identification method works as follows. First, we learn 
deep neural network models to predict visible phenotypes from face 
images, leveraging the CelebA public face image dataset, in the form 
of (i) sex, (ii) hair color, (iii) eye color, and (iv) skin color. We learn 
a model separately for each phenotype by fine-tuning the VGGFace 
architecture for face classification (16). The result of each such 
model is a predicted probability distribution over phenotypes for an 
input face image. Second, for each input face image xi and for each 
phenotype p, we use the associated deep neural network to predict 
the phenotype zi,p, which is the most likely phenotype in the pre-
dicted distribution. Third, for each image xi and genotype yj corre-
sponding to individual j, we assign a log-likelihood score to each 
image-genotype pair (xi, yj) as follows

   p  ij   =   ∑ 
 z  i,p  

  
p∈{sex,hair,skin,eye}

  log P( z  i,p  ∣ y  j  )  (1)

This approach is similar to the one introduced by Humbert et al. 
(8) but differs in that we predict phenotypes from face images as 
opposed to assuming complete knowledge. Last, armed with the 
predicted log-likelihood scores pij for genotype-image pairs, we 
select the top k-scored genotypes for each face image, where k is a 
tunable parameter that allows a precision-recall trade-off in the 
matching predictions.

The effectiveness of re-identification is strongly related to both 
the choice of k above, as well as the size of the population that one 
is trying to match against. More specifically, as we increase k, one 
would naturally expect recall (and, thus, the number of successful 
re-identifications) to increase. On the other hand, a larger popula-
tion raises the difficulty of the task by increasing the likelihood of 
spurious matches. We therefore evaluate the impact of both of these 
factors empirically.

Average re-identification risk is low in practice
We evaluate the effectiveness of re-identification attacks using two 
complementary measures: (i) the fraction of successful matches and 
(ii) the area under the receiver operating characteristic (ROC) curve 
(AUC). The former enables us to study re-identification success 
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(while focusing on recall) as a function of population size, while the 
latter paints a more complete picture of the trade-off between 
true-positive and false-positive rates.

First, we consider the proportion of successful matches as a 
function of population size, i.e., the number of individuals in the 
genomic database. To do this, we consider several fixed values of 
k, where a match from a face image xi to a genome yj is considered 
successful if the associated log-likelihood score pij is among the top 
k for the image xi.

The results for the Real dataset for k = 1 and k = 5 are shown in 
Fig. 1 (A and B, respectively). We compare the success of our 
re-identification approach to two baselines: (i) when matches are 
made randomly (a lower bound) and (ii) when matches use actual, 
rather than predicted, phenotypes (an upper bound). We can see 
from Fig. 1A that matching success (where we solely take the top- 
scoring match) is relatively low even for the upper bound, where we 
actually know the phenotypes (and, consequently, do not need the 
images). Nevertheless, the top 1 matching success rate is close to the 
upper bound (which assumes perfect knowledge of phenotypes) 
and is considerably better than random. As expected (3), prediction 
efficacy declines as population size grows. Figure 1C shows that, in 

an idealized setting, re-identification accuracy can be considerably 
higher; however, effectively predicting eye color is crucial, and this 
appears to be a major limitation of existing techniques. Figure 1D 
shows that, when we treat matching as a binary prediction problem, 
the effectiveness is well above that achieved by randomly guessing. 
Nevertheless, re-identification risk in the wild does not appear to be 
especially high. While we observe a success rate as high as 25%, this 
is only achieved when the genomic dataset is extremely small, on 
the order of 10 individuals. In contrast, success rate for top 1 match-
ing drops quickly and is negligible for populations of more than 
100 individuals. Moreover, it should be kept in mind that this result 
assumes that we can predict the phenotypes perfectly.

The overall pattern does not substantially change when k = 5. 
However, in this case, the matching success rates naturally increase, 
approaching 80% for small populations and slightly below 20% for 
populations of more than 100 individuals. In this case, we do ob-
serve that our re-identification approach, while significantly better 
than random, is also considerably below the theoretical upper 
bound. This suggests that, when more than a single re-identification 
claim is permitted for each image, the error in phenotype prediction 
from face images has a greater influence.

Fig. 1. Effectiveness of matching individuals’ photos to their DNA sequences in OpenSNP. (A) Success rate for top 1 matching for the Real dataset. (B) Success rate 
for top 5 matching for the Real dataset. (C) Success rate for top 1 matching in the Synthetic-Ideal dataset. (D) ROC curve for 126 individuals. (A) to (C) present matching 
success results as a function of the population size (the number of individual genomes to match a face image to) for a fixed k.
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Next, we delve more deeply into the nature of re-identification 
risk using the larger synthetic datasets. We present the results for 
Synthetic-Ideal in Fig. 1C. Additional results for both the Synthetic- 
Ideal and Synthetic-Real datasets when the top 1,3, and 5 matches 
are predicted to be true matches are provided in fig. S7 (A to F). 
These results offer two insights. First, if an attacker has access to 
particularly high-quality data, re-identification risk can be relatively 
high for small populations. For example, the upper bound is now 
more than 60% in some cases. However, it can also be seen that, of 
the phenotypes we aim to predict, eye color is both the most difficult 
and highly influential in matching. If we assume that we know this 
phenotype, and we only have to predict the others, re-identification 
risk is near its upper bound (which assumes that we know the true 
phenotypes). This is even more notable in the case of the Synthetic- 
Real data, as shown in fig. S10 (A to D). To determine whether this 
result was an artifact of the specific method we selected for eye color 
prediction, we considered several alternative methods for eye color 
prediction (17), ranging from traditional computer vision tech-
niques to deep learning [see fig. S10 (E to G)]. None of these meth-
ods were particularly efficacious.

Next, we turn our attention to a different manner of evaluating 
prediction efficacy: the trade-off between false-positive and false- 
negative rates obtained as we vary k. The results, shown in Fig. 1D 
for a population size of 126 individuals, suggest that the overall 
re-identification method is relatively effective (AUC > 70%) when 
viewed as a binary predictor (match versus non match) for given 
genome-image pairs, particularly when compared to random match-
ing. ROC curves when thresholding on k for various population 
sizes are presented in fig. S1 (A to L), while, in fig. S1 (M to X), we 
also consider a common alternative where we use a tunable thresh-
old  on the predicted log-likelihood to claim when a match occurs.

Overall, our results suggest that it is sometimes possible to link 
public face images and public genomic data, but the success rates 
are well below what prior literature appears to suggest, even in ide-
alized settings. We believe that there are several contributing factors 
behind this observation. First, the quality of face images in the wild 
is much lower than the high-definition 3D images obtained in high-
ly controlled settings in prior studies (3–6). Second, there is a rela-
tive scarcity of high-quality training and validation data for this 
particular task. While there are large, well-labeled datasets for face 
classification (16, 18–22), the data needed for re-identification re-
quire paired instances of genomes and images, which are far more 
challenging to obtain at scale. Third, visible phenotypes are influ-
enced by factors other than just the SNPs that are known to have a 
relationship with them, particularly when you add artificial factors, 
such as dyeing one’s hair or wearing tinted contact lenses, which 
introduce considerable noise in the matching. Last, our analysis as-
sumed (as did all prior studies) that we already know that there is a 
match in the genomic dataset corresponding to each face. In reality, 
success rates would be even lower, because a malicious actor is un-
likely to be certain about this (23).

Achieving privacy through small image perturbations
While the assessment above suggests that the re-identification risk to 
an average individual is likely lower than what has been suggested 
in the literature, it is nevertheless evident that some individuals are 
at risk. Moreover, if the attacker has sufficient prior knowledge to 
narrow down the size of the population to which a face can be matched, 
our results do show that, even on average, the re-identification risk 

becomes non-negligible. This led us to investigate the natural ques-
tion: How can we most effectively mitigate re-identification risks 
associated with the joint public release of both genomic data and 
face images? Our specific goal is to provide tools that can reduce 
re-identification risks to individuals who publicly post their photos. 
Such tools can be used directly either by individuals to manage their 
own risks or by platforms where photos are posted to manage risks 
to their subscribers. In particular, we show that this can be accom-
plished by adding small image perturbations to reduce the effective-
ness of genomic linkage attacks.

Our approach is closely related to adversarial perturbations in 
computer vision (24, 26). The idea behind adversarial perturbations 
is to inject a small amount of noise into an image to cause a mispre-
diction, where “small” is quantified using an lp norm with the max-
imum allowable perturbation controlled by a parameter ϵ ranging 
from 0 to 1. Examples of the visual impact of increasing ϵ are shown 
in Fig. 2C and fig. S3. In our case, however, we do not have a single 
deep neural network making predictions, but rather a collection of 
independent phenotype predictors using the same image as input. 
One direct application of adversarial perturbations in our setting 
would be to arbitrarily choose a phenotype (say, sex, which is the 
most informative) and target this phenotype for misprediction, 
with the anticipation that this would cause re-identification to fail. 
However, we can actually do much better at protecting privacy by 
tailoring perturbations to our specific task. This is because our ulti-
mate goal is not to cause mispredictions of phenotypes per se but, 
rather, to cause an attacker to fail to link the image with the cor-
rect genome.

Specifically, we leverage the scoring function in Eq. 1 to mini-
mize the score pij for image xi and the correct corresponding ge-
nome yj. However, this is a nontrivial task because the scoring 
function has a discontinuous dependence on predicted phenotypes 
(because we use only the most likely phenotype, given an image, 
in computing it). To address this issue, we augment the score with 
the log of the predicted probabilities. More precisely, let gp(vp, xi) 
denote the probability that the neural network predicts a variant vp 
for a phenotype p (e.g., eye color) given the input face image xi. Our 
objective is to find a small perturbation to the input image * that 
solves the following problem

    min  
−ϵ≤≤ϵ

     ∑ 
p
  

p∈{sex,hair,skin,eye}
   ∑ 
 v  p  

    log  g  p  ( v  p  ,  x  i   + δ ) log P( v  p  ∣ y  j  )  (2)

where ϵ refers to the maximum allowed perturbation to each pixel, 
as is common in prior approaches for finding adversarial perturba-
tions (24, 25). Because this expression is differentiable with respect 
to the adversarial noise , we can solve it using standard gradi-
ent-based methods (see Materials and Methods for further details).

Our first evaluation, shown in Fig. 2, presents the effectiveness of 
our method for preserving privacy in public face images. Figure 2A, 
in particular, demonstrates that when we take deep neural net-
works for phenotype prediction as given, the effectiveness of the 
re-identification attack described above declines considerably even 
for very small levels of noise added to images. For sufficiently large 
noise (e.g., ϵ = 0.01), the success rate is close to zero, which is con-
siderably lower than random matching. Moreover, by comparing 
Fig. 2A to Fig. 2B, it can be seen that our approach is also more effec-
tive than designing small perturbations that target a single sex pheno-
type. The effectiveness of targeting other phenotypes is provided in 
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fig. S2 (D to F), where it can be seen that perturbations that target 
only hair color, eye color, or skin color predictions are insufficient 
to induce a substantial level of re-identification risk reduction. While 
the presented results are only for k = 1 (i.e., the attacker only consid-
ers the top-scoring match), results for k = 3 and k = 5 offer similar 
qualitative insights (as shown in fig. S4).

The visual effect of the designed image perturbations is illustrated 
in Fig. 2C using images drawn from the public celebrity face image 
dataset. As can be seen, most of the levels of added noise have neg-
ligible visual impact. It is only when we add noise at ϵ = 0.025 that 
we begin to clearly discern the perturbations. However, it appears that 
perturbations of magnitude no greater than ϵ = 0.01 are sufficient to 
achieve a high degree of privacy, with success rates of re-identification 
attacks nearing zero.

While introducing small perturbations appears to sufficiently 
reduce the risk of re-identification introduced by publicly shared 
photographs, this still supposes that re-identification makes use of 

deep neural network models trained in the regular fashion, such as 
on the CelebA dataset. However, a variety of techniques allow one 
to boost neural network robustness to such perturbations, the most 
effective of which is adversarial training (25, 26). The adversarial 
training approach improves robustness by augmenting each itera-
tion with training images that actually embed the small perturba-
tions we have designed, using the model from the previous iteration 
as a reference for devising the perturbations. The main limitation of 
adversarial training is that it also results in lower accuracy on data 
that have not been perturbed. Given the relatively limited effective-
ness of the re-identification approach above and all of the practical 
limitations of that exercise, we now investigate whether, in practice, 
adversarial training helps the attacker deflect the small perturba-
tions we introduce to protect privacy.

To evaluate the effect of adversarial training on re-identification, 
we run further training iterations on the phenotype-prediction models 
with small perturbations generated over subsets of the original 

Fig. 2. Evaluating small image perturbations as a defense. (A) Effectiveness of perturbations as a defense against re-identification for k = 1 (i.e., the attacker considers 
only the top match). Pixel values are normalized to a [0,1] interval, and perturbation strengths ϵ are with respect to these normalized pixel values. It can be seen that 
prediction accuracy is near zero at a perturbation strength ϵ ≥ 0.01. Moreover, even for very small amounts of adversarial noise, such as ϵ = 0.001, matching success is 
nearly indistinguishable from random matching if we have at least 20 individuals in a consideration pool. (B) Effectiveness of perturbations that only target sex prediction 
from a face image. The effect of larger perturbations (ϵ ≥ 0.01) is similar to (A). However, smaller perturbations are considerably less effective. (C) Example images [photo 
credit: The CelebA Face Dataset (15)] illustrate the visible effect of introducing small perturbations to images. The perturbations are essentially imperceptible to a human 
until ϵ > 0.01, when the effect becomes clearly visible.
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training sets. We make five passes over the perturbed data, each 
time using the model from the previous iteration to generate these 
small perturbations to the images. Because the matching score 
depends on images and corresponding genomes, we use paired 
genome-image datasets for adversarial training (the most optimistic 
setting from the re-identification perspective). Specifically, we use a 
random subset of 77 image-DNA pairs (approximately 60%) from 
our OpenSNP dataset for training, and the remaining 49 for testing 
the matching accuracy. We construct five sets of adversarially robust 
phenotype prediction models using this procedure, each set adver-
sarially trained using a different amount of added adversarial noise, 
from ϵ = 0.001 to ϵ = 0.05.

Figure 3A illustrates that baseline prediction accuracy (i.e., using 
original face images without perturbations) declines as strength of 
the perturbation used for adversarial training increases. Once ϵ > 0.01, 
the effectiveness of matching is essentially equivalent to random, 
suggesting that the most robust model that holds any utility is the 
one with ϵ = 0.01.

Next, we consider how robust this model is to images that now 
include small perturbations of varying magnitudes generated us-
ing the procedure we describe above. The results are shown in 
Fig. 3B. Notably, noise with ϵ = 0.025 again yields near-zero match-
ing success, even for robust models. A smaller amount of noise that 
preserves imperceptibility, such as ϵ = 0.01, is still effective at re-
ducing the accuracy of the robust model, although the resulting 
re-identification success rate is now above random matching. Nev-
ertheless, re-identification success in this case is ∼20% even in the 
most optimistic case. Moreover, our framework is sufficiently flexi-
ble that a particularly risk-averse individual may simply raise the 
noise level to 0.025, accepting some visible corruption to the image 
but effectively eliminating privacy risk.

DISCUSSION
Our findings suggest that the concerns about privacy risks to shared 
genomic data stemming from the attacks matching genomes to 

publicly published face photographs are low and relatively easy to 
manage to allay even the diverse privacy concerns of individuals. 
Our results do not imply that shared genomic data are free of con-
cern. There are certainly other potential privacy risks, such as mem-
bership attacks on genomic summary statistics (27–35), which 
would allow the recipient of the data to determine the presence of 
an individual in the underlying dataset. This type of attack is of con-
cern because it would allow an attacker to associate the targeted in-
dividual with the semantics inherent in the dataset. For instance, if 
the dataset was solely composed of individuals diagnosed with a 
sexually transmitted disease, then membership detection would 
permit the attacker to learn that the target had the disease in ques-
tion. Moreover, we emphasize that our results are based on current 
technology; it is possible that improvements in either the quality of 
data, such as broad availability of high-definition 3D photography, 
or the quality of artificial intelligence, such as highly effective ap-
proaches for inferring eye color from images, will substantially 
elevate risks of re-identification. In recent literature, approaches to 
certify robustness against adversarial examples using various mech-
anisms, such as randomized smoothing (36–38), have been leveraged 
to further boost the robustness of neural networks to adversarial 
perturbations and could further contribute to increased risks of 
re-identification. However, through several studies that include 
synthetic variants controlling for the quality of data, as well as eval-
uations that assume that we can infer observable face phenotypes 
with perfect accuracy (see, for example, the results in Fig. 1A and in 
the figs. S7 and S10), we show that, even with advances in technology, 
the risk is likely to remain limited.

MATERIALS AND METHODS
Re-identification attack with public face images
In our attack, we consider the following phenotypes to be readily 
visible in face images: eye color, hair color, sex, and skin color. To 
this end, we first collected genomes uploaded to OpenSNP that 
were sequenced by 23andMe. We then filtered the users who have 

Fig. 3. Evaluation of models that are trained to increase robustness to small perturbations through adversarial training when only the top match is considered 
in re-identification. (A) Matching accuracy of “robust” models trained by adding perturbations with varying levels of ϵ when unperturbed face images are used as inputs. 
Using ϵ > 0.01 causes matching accuracy to be effectively equivalent to random. (B) Matching accuracy of robust models trained by adding perturbations with ϵ = 0.01 
when input face images are perturbed with varying levels of adversarial noise. Using ϵ > 0.01 is sufficient to cause sub-random matching accuracy. For noise with ϵ = 0.01, 
matching accuracy degrades from original but remains higher than random.
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self-reported all four phenotypes we are interested in. Some of these 
users also uploaded their face images directly on OpenSNP. For 
others, we found their faces through a Google reverse search using 
their OpenSNP usernames, which we then manually verified using 
the self-reported phenotypes. This process yielded 126 pairs of 
face images and DNA profiles of individuals that were carefully 
curated. The full study was approved by the Washington University in 
St. Louis Institutional Review Board, with the condition that we will 
not publicly release this curated dataset to mitigate any possible 
harm to these individuals. However, we are able to share it privately 
with other researchers for validation purposes, subject to an agree-
ment preventing public release.

Predicting phenotypes from images
To predict phenotypes from facial images, we leveraged the VGGFace 
(16) convolutional neural network architecture. Because of the 
relative scarcity of labeled training data for phenotypes of interest, 
we used transfer learning (39), which has been extensively and suc-
cessfully used for various classification tasks where labeled data are 
scarce (40–47). Specifically, we started with a model previously 
trained on the CelebA dataset (15) for a face recognition task. We 
then fine-tuned these models on subsets of the CelebA dataset. For 
sex and hair color, the CelebA dataset already contains labels for all 
∼200,000 images, and we thus used the entire dataset to fine-tune 
the sex prediction classifier. For hair color, we found that fine- 
tuning on a subset of 10,000 images with equal number of blonde, 
brown, and black hair color images outperforms a model trained on 
the entire dataset; we thus used the latter. For skin color, 1000 im-
ages were labeled on a five-point scale by Amazon Mechanical Turk 
(AMT) workers and then manually sorted into three classes. For eye 
color prediction, 1000 images were labeled by AMT workers; how-
ever, after manual verification of these labels, we retained ∼850 im-
ages, dropping the rest because the eye color was indeterminate.

Matching faces to DNA
To match faces to genomic records, we use the following procedure. 
After learning phenotype classifiers for each visible phenotype, we 
predict the most likely variant (i.e., the one with the largest predict-
ed probability) for each face image in test data. We then use this 
prediction for matching the face image to a DNA record as follows. 
Let an image be denoted by xi and a genome by yj. We use the fol-
lowing matching score, where phenotype variant zi,p is the most 
likely predicted variant

   P  ij   =   ∏ 
p
  

p∈{sex,hair,skin,eye}
  P( z  i,p   ∣  y  j   ) .  (3)

To ensure numerical stability, we transform it into log space, 
resulting in

   p  ij   = log  P  ij   =   ∑ 
p
  

p∈{sex,hair,skin,eye}
  log P( z  i,p   ∣  y  j  )  (4)

The variant zi,p is predicted from {F, M} for sex, {blue, brown, 
intermediate} for eye color, {black, blonde, brown} for hair color, 
and {pale, intermediate, dark} for skin color. The probability of 
each phenotype variant given a genome P(zi,p∣yj) is, in turn, ex-
pressed as a product of probabilities over relevant SNPs (see table 
S1 for these lists). The probability of a specific phenotypic variant 

given a certain SNP is calculated empirically from all OpenSNP data 
for which the corresponding individuals self-reported all four phe-
notypes considered in the study. There were 367 such individuals, 
including the 126 individuals from the Real dataset to ensure a suf-
ficient amount of data.

Having calculated the likelihood of a match between image xi 
and DNA sequence yj for all images, for all DNA sequences, we rank 
the DNA sequences in decreasing order of matching likelihood for 
each image. The presented results correspond to when the correct 
match resides in the top-scored 1,3, or 5 entries in this sorted list.

Protecting privacy by adding noise to face images
Recall that our goal is to minimize the score pij, where xi is the image 
and yj is the correct corresponding genome. Because the score func-
tion has a discontinuous dependence on phenotype predictions, we 
augment the score with the log of the predicted phenotype proba-
bilities. Specifically, let gp(vp, xi) denote the probability that the neu-
ral network predicts a variant vp for a phenotype p (e.g., eye color) 
given the input face image xi; these are just the outputs of the corre-
sponding softmax layers of the neural networks. The problem we 
aim to solve is to find a small (at most ϵ in the l∞ norm ) perturba-
tion to the input image * that solves the following problem

    min  
−ϵ≤≤ϵ

     ∑ 
p
  

p∈{sex,hair,skin,eye}
    ∑ 
 v  p  

     log  g  p  ( v  p  ,  x  i   +  ) log P( v  p   ∣  y  j  )  (5)

We use projected gradient descent to solve this problem, invok-
ing a combination of automated differentiation in PyTorch (48) 
and the Adam optimizer (49). After each gradient descent step, we 
simply clip the noise to be in the [−ϵ, ϵ] range and also clip pixel 
values to ensure that these remain in a valid pixel value range. We 
use the original image as the starting point of this procedure (i.e., 
initializing  = 0).

Training robust phenotype classification models
While the idea of adding small noise as a privacy protection mech-
anism works well when we use regularly trained phenotype predic-
tion models, one can make such models more robust, albeit at a cost 
to accuracy on noise-free data. As such, we investigate how effective 
adversarial training, a state-of-the-art approach for making predic-
tions robust to adversarial noise, is at overcoming our noise injec-
tion approach.

The main premise of adversarial training is as follows. The broad 
goal is to solve the following optimization problem

   min  

      ∑ 

x,y∈D
    L(, x +     * ( ) , y)  (6)

where *() is the adversarially induced noise aimed at the model 
with parameters , and L( · ) is the loss function. In practice, computing 
an optimal noise to add is difficult, and we instead use the ap-
proaches such as projected gradient descent described above. How-
ever, adversarial training proceeds like regular training (using gradient 
descent), except that each training input is x + *() rather than x, 
that is, we use perturbed inputs in place of regular inputs.

A standard way of achieving empirically robust models is to 
simply augment training data with perturbations generated over a 
subset of the training data. In generating these instances, we use 
random starting points for generating such perturbations. The 
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downside of adversarial training, however, is that robustness to ad-
versarial inputs often comes at the cost of accuracy on unaltered 
inputs, and a careful balance must be achieved between adversarial 
robustness and baseline accuracy.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abg3296

View/request a protocol for this paper from Bio-protocol.
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