Skip to main content
. 2021 Nov 10;2021:4931437. doi: 10.1155/2021/4931437

Table 4.

Summary of 2DCNN classification approaches on progression of osteoarthritis diagnosis.

Publication reference Target tasks Modality (imaging sequence) Data set Network architecture Performance
Guan et al. [53] Predict OA progression X-ray (plain radiography) OAI: 600 subjects (450 training, 50 validation, 100 testing) Vgg16 and DenseNet Vgg16: AUC: 0.717; SN: 80.0%; SP: 56.1%
DenseNet: AUC: 0.744; SN: 94.1%; SP: 48.0%

Tiulpin et al. [54] Predict OA progression X-ray (plain radiography) OAI: 5139 images (training) CNN AUC: 0.71
MOST: 2,491 images (testing)

Guan et al. [11] Predicting progression of radiographic medial joint space loss X-ray (plain radiography) OAI: (1400 training, 150 validation, 400 testing) images YOLO + DenseNet AUC: 0.799; SN: 78.0%; SP: 75.5%
Razmjoo et al. [7] Predict OA incidence MRI OAI: 1805 subjects Topological data analysis (TDA) + graph convolutional network (GCN model) Accuracy (F1): 0.91; SN: 0.84; SP: 0.99
Li et al. [55] Predict OA progression by assessing severity X-ray (plain radiography) MOST: 3021 subjects (training : validation : testing; 80 : 10 : 10%) Siamese neural network AUC: 0.90

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), and area under receiver operating characteristics curve (AUC).