Skip to main content
. 2021 Nov 10;2021:4931437. doi: 10.1155/2021/4931437

Table 5.

Summary of 2D CNN classification approaches on onset of symptomatic osteoarthritis.

Publication reference Target tasks Modality (imaging sequence) Data set Network architecture Performance
Pierson et al. [56] Predict knee pain X-ray (plain radiography) OAI: 4,172 subjects (2877 training, 1295 validation) CNN AUC: 0.69
Guan et al. [22] Predict knee pain X-ray (plain radiography) OAI: 2000 subjects (1500 testing, 200 validation, 300 testing) YOLO + DenseNet AUC: 0.753; SN: 65.77; SP: 73.51
Chang et al. [14] Predict knee pain MRI (SAG-IW-TSE) OAI: 1505 subjects (training : testing; 90% : 10%) Siamese network AUC: 0.808

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), and area under receiver operating characteristics curve (AUC).