Table 8.
Publication reference | Target tasks | Modality (imaging sequence) | Data set | Network architecture | Performance |
---|---|---|---|---|---|
Tolpadi et al. [21] | Predict total knee replacement | MRI (3D-DESS) | OAI: 4790 subjects (3114 training, 957 validation, 719 testing) | DenseNet-121 | AUC ± SD: 0.886 ± 0.020 |
Pedoia et al. [20] | Detect and stage severity of meniscus and patellofemoral cartilage lesions | MRI (3D-FSE CUBE) | 1478 images (training : validation : testing: 65 : 20 : 15%) | 3D CNN | AUC ± SD: 0.89 (menisci), 0.88 (cartilage); SN: 89.81% (menisci), 80.0% (cartilage); SP: 81.98% (menisci), 80.27% (cartilage) |
Nunes et al. [19] | Stage severity of cartilage lesion | MRI (3D-FSE CUBE) | 1435 images (training : validation : testing: 65 : 20 : 15%) | 3D CNN | Accuracy: 86.7% |
Zhang et al. [72] | Detect anterior cruciate ligament lesion | MRI (PDW-SPAIR) | (285 training, 81 validation, 42 testing) images | 3D DenseNet | AUC: 0.960; accuracy: 0.957; SN: 0.944; SP: 0.940 |
Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), area under receiver operating characteristics curve (AUC), and standard deviation (SD).