Skip to main content
. 2021 Nov 10;2021:4931437. doi: 10.1155/2021/4931437

Table 8.

Summary of 3D CNN classification approaches.

Publication reference Target tasks Modality (imaging sequence) Data set Network architecture Performance
Tolpadi et al. [21] Predict total knee replacement MRI (3D-DESS) OAI: 4790 subjects (3114 training, 957 validation, 719 testing) DenseNet-121 AUC ± SD: 0.886 ± 0.020
Pedoia et al. [20] Detect and stage severity of meniscus and patellofemoral cartilage lesions MRI (3D-FSE CUBE) 1478 images (training : validation : testing: 65 : 20 : 15%) 3D CNN AUC ± SD: 0.89 (menisci), 0.88 (cartilage); SN: 89.81% (menisci), 80.0% (cartilage); SP: 81.98% (menisci), 80.27% (cartilage)
Nunes et al. [19] Stage severity of cartilage lesion MRI (3D-FSE CUBE) 1435 images (training : validation : testing: 65 : 20 : 15%) 3D CNN Accuracy: 86.7%
Zhang et al. [72] Detect anterior cruciate ligament lesion MRI (PDW-SPAIR) (285 training, 81 validation, 42 testing) images 3D DenseNet AUC: 0.960; accuracy: 0.957; SN: 0.944; SP: 0.940

Note. Modality (imaging sequence): magnetic resonance imaging (MRI); data set: Osteoarthritis Initiative (OAI); network architecture: convolutional neural network (CNN); performance: specificity (SP), sensitivity (SN), area under receiver operating characteristics curve (AUC), and standard deviation (SD).