Skip to main content
. 2021 Nov 10;2021:1194565. doi: 10.1155/2021/1194565

Table 3.

Identification result of the risk level in comparative methods.

Models Accuracy (%) Model parameters (megabyte)
Architecture-1 Architecture-2 Architecture-1 Architecture-2
Logistic regression [19] 59.21 69.35 41.31 43.25
K-nearest neighbour [35] 66.32 69.01 50.65 61.36
Support vector machine [20] 66.70 72.60 47.33 58.97
Extra trees [18] 71.88 72.83 63.57 70.65
Gradient boosting [22] 78.94 81.29 61.37 66.91
Random forest [26] 80.51 83.93 70.18 81.32
Decision tree [17] 83.97 85.45 72.34 79.25
AlexNet [26] 70.62 71.32 218.96 223.54
VGG [28] 72.88 73.94 320.78 365.12
GoogLeNet [27] 85.18 87.98 425.89 478.23
ResNet [29] 87.26 89.68 507.34 528.67
Deep forests [32] 90.73 92.47 385.32 419.11
Proposed DSN 94.88 97.62 202.53 211.26