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Abstract

DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication
and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming
and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the mechanism of
this important type of DNA modification. Several machine learning-based 4mC predictors have been proposed in the past
3 years, although their performance is unsatisfactory. Deep learning is a promising technique for the development of more
accurate 4mC site predictions. In this work, we propose a deep learning-based approach, called DeepTorrent, for improved
prediction of 4mC sites from DNA sequences. It combines four different feature encoding schemes to encode raw DNA
sequences and employs multi-layer convolutional neural networks with an inception module integrated with bidirectional
long short-term memory to effectively learn the higher-order feature representations. Dimension reduction and
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concatenated feature maps from the filters of different sizes are then applied to the inception module. In addition, an attention
mechanism and transfer learning techniques are also employed to train the robust predictor. Extensive benchmarking experiments
demonstrate that DeepTorrent significantly improves the performance of 4mC site prediction compared with several state-of-the-art
methods.
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Introduction
DNA methylation is an epigenetic modification that plays a sig-
nificant role in the transmission of non-coding inheritable infor-
mation into a DNA sequence [1]. DNA methylation is associated
with a myriad of biological processes, such as gene expression
regulation [2], genomic imprinting [3] and cell differentiation [4].
Moreover, alteration of the DNA methylation pattern is regarded
as a mechanism of disease [2], often leading to cancer [5] and
other diseases [6].

Common types of DNA methylation in genomes include
5-methylcytosine (5mC), N6-methyladenine (6mA) and N4-
methylcytosine (4mC) [7]. These three types of DNA methylation
are predominantly found in prokaryotes [8]. In eukaryotic
genomes, the dominant type of methylation is 5mC [9, 10]. 6mA
is more abundant in prokaryotic genomes than in eukaryotic
genomes [11]. 4mC more frequently exists in mesophilic bacteria
[12] and is very difficult to detect using traditional technologies
in the eukaryotic genomes [10].

Bisulphite treatment based on next-generation sequencing
(NGS) is a common technique for DNA methylation site detection
from the whole genome [13]. However, this experimental tech-
nique is expensive and time-consuming [14], and it is limited to
5mC detection [15]. Single-molecule real-time (SMRT) sequenc-
ing can detect various forms of DNA methylation, including 5mC,
4mC and 6mA [14]. However, SMRT sequencing is more expen-
sive than NGS for library preparation [16]. Besides, it remains a
significant challenge for conventional experimental techniques
to differentiate 4mC from 5mC. To address these problems, 4mC-
TAB-seq [16], a 4mC-specific method based on NGS, has been
proposed to distinguish 4mC from 5mC accurately. Recently, a
4mC-specific technique has been proposed to differentiate 4mC
from 5mC using engineered transcription activator-like effectors
[17]. These experimental techniques facilitate DNA methyla-
tion site detection; however, they are still labour-intensive and
expensive and are not practically suitable for high-throughput
DNA methylation site identification. Therefore, computational
methods that can predict DNA methylation sites provide a useful
and complementary strategy for large-scale identification of
DNA methylation sites and can efficiently facilitate experimen-
tal studies.

To date, several computational methods have been developed
for 5mC and 6mA prediction [18–21]. However, to the best of
our knowledge, only a few 4mC site prediction methods and
tools are available. Table 1 summarizes the existing methods
for 4mC site prediction and covers a wide range of aspects,
including the algorithm and features employed, the evaluation
strategy and the availability of webserver/software. We briefly
categorize these methods into two major groups according
to their operating algorithms: (i) the first group of methods
is based on conventional machine learning (ML) algorithms,
including iDNA4mC [22], 4mCPred [23], 4mcPred-SVM [24],
Meta-4mCpred [25] and 4mcPred-IFL [26], and (ii) the second
group of methods is based on deep learning (DL) algorithms.
To our knowledge, there is only one method belonging to
this group, called 4mCCNN [27]. All of the studies listed in
Table 1 treat 4mC site prediction as a binary classification

problem. Moreover, they were all evaluated using the same
datasets, which contain experimentally validated 4mC sites of
six species. From Table 1, we can conclude that conventional
ML-based methods apply support vector machines (SVMs) or
integrated multi-classifiers to build the ensemble prediction
models for 4mC site identification from DNA sequences. The
methods apply different feature encoding schemes to encode
the DNA sequences to feature vectors and then train the
predictive models. iDNA4mC uses the nucleotide chemical
property (NCP) and nucleotide frequency as input features
to construct a feature vector for each sample [22]. 4mCPred
applies the position-specific trinucleotide propensity and
electron–ion interaction pseudopotentials (EIIPs) to encode DNA
sequences [23]. 4mcPred-SVM employs four types of sequence-
based feature encodings and a two-step feature optimization
strategy to improve the prediction performance [20]. Meta-
4mCpred first extracts 14 feature descriptors based on seven
different feature encoding schemes and then applies four ML
algorithms to generate 56 probabilistic features [25]. Ultimately,
these 56 features are used to train the SVM-based prediction
models. 4mcPred-IFL [26] first employs eight sequence-based
features as the input of the SVM classifier and then generates the
probability for each sample as a new feature descriptor. The pro-
cess is then iterated until the performance reaches convergence.
These methods have achieved considerable success at 4mC site
prediction, and they have indeed accelerated research on 4mC
identification. However, the performance of current methods
(i.e. their predictive capability) at distinguishing 4mC sites from
non-4mC sites relies considerably on the quality of handcrafted
features and the operational algorithm. Thus, for further
performance improvement, extensive domain knowledge is
needed to design informative, handcrafted features for model
training. Due to limited research on 4mC [17], however, it is
challenging to extract effective features that have a strong
discriminative ability to predict 4mC sites.

DL has arisen as a powerful form of representation learning
and is capable of learning abstract features for multiple layers
of representations automatically [28]. In recent years, DL tech-
niques have been successfully applied in many bioinformatics
studies with competitive performance [20, 29, 30]. To our
knowledge, there is only one DL-based approach for 4mC site
prediction, 4mCCNN [27]. 4mCCNN uses convolution neural
networks (CNNs) with two one-dimensional convolutional
layers and encodes input sequences into a one-hot encoding
matrix to feed into the first convolutional layer. Compared
to conventional ML algorithms, 4mCCNN achieves better
performance with benchmark datasets. However, despite
its improved performance over previous methods, 4mCCNN
has some limitations in terms of its learning capacity, as
the framework employed by 4mCCNN is relatively shallow
and the training datasets used are relatively small. With
the rapid development of DL methods in recent years, a
variety of DL frameworks have been proposed and proven
to achieve a better performance. This is the case for hybrid
models and deep transfer learning models, even trained
with limited number of samples. In this work, it is of our
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Table 2. Statistical summary of the Lin_2017 dataset of the six
different species

Species Number of 4mC sites

C. elegans 1554
D. melanogaster 1769
A. thaliana 1978
E. coli 388
G. subterraneus 905
G. pickeringii 569

particular interest to employ DL frameworks and examine the
possibility of further improving the performance of 4mC site
predictors.

In this work, we propose DeepTorrent (Deep learning
predicTor for N4-methylcytosine sites), a DL-based computa-
tional framework for 4mC site prediction from DNA sequence
data. More specifically, DeepTorrent utilizes four different
types of feature encoding schemes to transform the raw DNA
sequences as the input to the deep networks, which consist
of CNNs with inception, bidirectional long short-term memory
(BLSTM) and an attention mechanism. It uses the deep transfer
learning strategy to address the small sample size problem.
Extensive benchmarking experiments on two different datasets
show that DeepTorrent achieves the best performance for
4mC site prediction across all the six tested species compared
with state-of-the-art methods. To facilitate high-throughput
predictions of 4mC sites, an online webserver for DeepTorrent is
implemented and made freely available at http://DeepTorrent.e
rc.monash.edu/.

Materials and methods
Datasets

All six existing ML-based 4mC site predictors, including
iDNA4mC, 4mCPred, 4mcPred-SVM, Meta-4mCpred, 4mcPred-
IFL and 4mCCNN, were trained and evaluated using the same
dataset previously constructed by Chen et al. [22]. The dataset
was originally retrieved from the MethSMRT database [9]. We
employed this dataset to train the DeepTorrent model and
compared its performance to that of the other existing methods.
The dataset contained experimentally verified 4mC sites of
six different species, including Caenorhabditis elegans, Drosophila
melanogaster, Arabidopsis thaliana, Escherichia coli, Geoalkalibacter
subterraneus and Geobacter pickeringii. All sequences of the
positive samples in the dataset had a length of 41 bp. Redundant
sequences were removed to ensure that the sequence identity
of any two sequences in the dataset was less than 80%, which
is consistent with previous studies [22–24]. The number of the
extracted positive samples of each species is listed in the second
column of Table 2. For each species, the 41 bp long sequences
with cytosine in the centre that was not detected by the SMRT
sequencing technology were regarded as the negative sample
candidates. As a result, a large number of negative sample
candidates in each species were generated. Subsequently,
the same number of negative samples for each species was
randomly extracted from the negative sample candidates. In
this way, a dataset with both positive and negative samples for
each species was constructed.

Moreover, we also collected additional 4mC sites with
sequence length of 41 bp in the above six species genomes
from the MethSMRT database [9]. As previously described

[22], a modQV score of ≥30 indicated a modified position,
we therefore retained such sequences and regarded them as
positive sample candidates. For each of the six species, we
collected a large number of non-4mC sites containing sequences
of 41 bp with cytosine in the centre that were not detected by
the SMRT sequencing technology. The non-4mC site-containing
sequences were considered as the negative sample candidates.
As the positive and negative sample candidates contained many
redundant samples with high similarity, we used the CD-HIT
program [31] to remove redundant samples with a sequence
identity cut-off of 0.7. After the above procedure, we obtained
58 396, 57 654, 75 027, 2067, 15 197 and 5724 positive samples in
C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus and
G. Pickeringii, respectively.

For each species, the procedures of constructing the addi-
tional training datasets and additional independent test dataset
are as follows: First, we chose the sequences that had modQV
scores of ≥50 as the independent test dataset from the extracted
positive sequences as described above. The reason why the sam-
ples with modQV ≥50 were selected was that a highly reliable
independent test dataset was needed to evaluate DeepTorrent
and compare it with the other state-of-the-art methods. The
remaining positive sequences were then used as the training
dataset. Second, to construct a balanced dataset, we randomly
selected the same number of negative samples as positive sam-
ples. A statistical summary of the constructed training dataset
and independent test dataset is provided in Table 3.

For the convenience of description, we renamed the two
datasets described above as follows: The dataset constructed by
Chen et al. [22] was renamed as Lin_2017, while the additional
dataset was renamed as Li_2020. In addition, we also generated
the two-sample sequence logos for these two datasets, which are
shown in Supplementary Figures S1 andS2.

DeepTorrent framework

Figure 1 illustrates an overview of the DL architecture of
DeepTorrent. In this study, the 4mC site prediction task can
be regarded as a binary classification problem. To address
this, DeepTorrent first learns the features from the sequence
using the feature extraction module (e.g. input; convolutional,
merge and pooling; attention and recurrent; and merge layers
in Figure 1) and then predicts the 4mC site using the prediction
module (fully connected and output layers in Figure 1). Deep-
Torrent first encodes the samples (represented as 41 bp DNA
sequences) using four different encoding schemes. The four
encoding matrices are input into the input layer of the feature
extraction module in parallel, and CNNs with inception, BLSTM
and an attention layer transform each encoding to the abstract
feature representations. All these abstract features are then
merged into a single feature vector. Subsequently, a two-layer
fully connected network and the output layer are used to gener-
ate the final prediction outcome, i.e. a 4mC site or non-4mC site.

Feature encoding schemes

In this study, we used seven different DNA sequence encoding
schemes provided by the iLearn package [32] to encode the
DNA sequences: one-hot encoding, composition of k-spaced
nucleic acid pairs (CKSNAP), NCP, EIIPs of nucleotides, enhanced
nucleic acid composition (ENAC), accumulated nucleotide
frequency (ANF) and position-specific trinucleotide propensity
based on single-stranded characteristics (PSTNPss). Here, we
considered four types of nucleic acids (‘A’, ‘C’, ‘G’ and ‘T’)

http://DeepTorrent.erc.monash.edu/
http://DeepTorrent.erc.monash.edu/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
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Table 3. Statistical summary of the Li_2020 dataset for the six different species

Species Training datasets Test datasets

Number of 4mC sites Number of non-4mC sites Number of 4mC sites Number of non-4mC sites

C. elegans 55 729 55 729 2667 2667
D. melanogaster 53 970 53 970 3684 3684
A. thaliana 63 720 63 720 11 307 11 307
E. coli 1941 1941 126 126
G. subterraneus 9934 9934 5263 5263
G. pickeringii 4514 4514 1210 1210

Figure 1. The overall framework of DeepTorrent. (A) The workflow of the development and assessment process of DeepTorrent. (B) The structure of the DeepTorrent

framework, including the input layer, convolutional layers, merger layers, inception module, attention layers, fully connected layers and output layer.

and the unknown character ‘-’ in DNA sequences. These
seven encoding schemes are introduced in the following
subsections.

One-hot encoding. One-hot encoding is used to describe the
nucleotide acid composition along the DNA sequence. It has
been shown that one-hot encoding is an effective encoding

scheme for predicting 4mC [24] and 6mA sites from genomic
sequences [18]. For this encoding scheme, ‘A’, ‘C’, ‘G’, ‘T’ and ‘-’
are represented by a binary vector of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0,
1, 0), (0, 0, 0, 1) and (0, 0, 0, 0), respectively. Accordingly, a DNA
sequence with n nucleotides is encoded into a 4 ×n dimensional
binary vector.
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Composition of k-spaced nucleic acid pairs. CKSNAP, also known
as nucleotide pair spectrum encoding, have been previously
used for 6mA site prediction [18]. CKSNAP transform a DNA
sequence into a numerical vector by calculating the occurrence
frequency of all possible k-spaced nucleotide pairs along the
DNA sequence. A k-spaced nucleotide pair denotes that there
are k spaces between these two nucleotides. For example, in
the sequence ‘AXXGXXXT’, ‘AG’ is a two-spaced nucleotide pair,
and ‘GT’ is a three-spaced nucleotide pair. Let knp denote the
k-spaced nucleotide pair. The frequency of knp can be defined
as:

f
(
knp

) = Count
(
knp

)
l − k − 1

(1)

where Count
(
knp

)
represents the count of knp along the DNA

sequence, l is the length of the DNA sequence and k ε
[
0, kmax

]
is

the space between nucleotide pairs. Thus,
(
l − k − 1

)
denotes the

number of all k-spaced nucleotide pairs along a DNA sequence
with length l. Therefore, the DNA sequence was encoded into a
5× 5 ×(

kmax+1
)
-dimensional vector. In this work, we set kmax = 5.

Nucleotide chemical property. Each nucleotide in a DNA sequence
has three types of chemical properties: the ring structure, func-
tionality and hydrogen bond [33]. The ring structure contains
purine with two rings and pyrimidines with one ring. ‘A’ and ‘G’
are purine and encoded as ‘1’, whereas ‘C’ and ‘T’ are pyrimidines
and encoded as ‘0’ (see the second column of Table 4). According
to the chemical functionality, ‘A’ and ‘C’ belong to the amino
group and are encoded with 1; ‘G’ and ‘T’ belong to the keto group
and are encoded with 0 (see the third column of Table 4). ‘A’ and
‘T’ form the weak hydrogen bond and are encoded as ‘1’; and ‘C’
and ‘G’ form the strong hydrogen bond and are encoded as ‘0’
(see the fourth column of Table 4). As a result, ‘A’, ‘C’, ‘G’, ‘T’ and
‘-’ are encoded as (1,1,1), (0, 1, 0), (1, 0, 0), (0, 0, 1) and (0, 0, 0),
respectively. Accordingly, a DNA sequence can be encoded as a
binary vector. For example, ‘GTTGACT’ can be encoded as (1, 0, 0,
0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1).

Electron–ion interaction pseudopotential. The EIIP [34] of nucleotides
describes the distribution of free-electron energies along the
DNA sequence. It has been previously shown that the EIIP is an
effective feature for 4mC site prediction [23]. The EIIP values of
nucleotides ‘A’, ‘G’, ‘C’, ‘T’ and ‘-’ are 0.1260, 0.0806, 0.1340, 0.1335
and 0, respectively. Accordingly, a DNA sequence can be encoded
as a numerical vector using the EIIP encoding scheme. For
example, ‘GTTGACT’ is encoded as a numerical vector composed
of (0.0806, 0.1335, 0.1335, 0.0806, 0.1260, 0.1340, 0.1335).

Enhanced nucleic acid composition. The ENAC encodes each
nucleotide into a five-dimensional vector by calculating the
density information of each nucleotide in a sequence window
of a DNA sequence. It describes the local sequence-order
information in a DNA sequence. Suppose W = si, si+1, . . . , si+w−1,
which represents a nucleotide sequence window in a DNA
sequence, wheresi denotes the ith nucleotide in the DNA

Table 4. The NCP encoding scheme

Nucleic acid Ring structure Functionality Hydrogen bond

A 1 1 1
C 0 1 0
G 1 0 0
T 0 0 1
− 0 0 0

sequence and w is the window size. Here, si is encoded by the
vector

(
f
(
A

)
, f

(
C

)
, f

(
G

)
, f

(
T

)
, f

( − ))
, and the function f represents

the frequency of the corresponding nucleotide in W. Each
nucleotide can be encoded by sliding the window along the
DNA sequence. In this study, we set w = 2.

Accumulated nucleotide frequency. The ANF describes the density
information of each nucleotide in a DNA sequence [33]. It is an
effective feature encoding scheme for 4mC site prediction [22].
We used the ANF feature descriptors for DNA sequences. Let
S = s1s2 . . . si . . . sl denote a DNA sequence, and let Sj = s1s2 . . . sj

represent the jth prefix sequence of S. Here, l is the length of S
and sj is the jth nucleotide of S. The ANF value of sj is defined as
follows:

ANFsj = f
(
sj

)
| Sj | (2)

f
(
sj

) =
j∑

t=1

T (st) , T (st) =
{

1, st = sj

0, st �= sj
(3)

where | Sj | is the length of the subsequence Sj. For example, the
sequence ‘GTTGACT’ is encoded as (1, 0.5, 0.67, 0.5, 0.2, 0.17, 0.43).

Position-specific trinucleotide propensity based on single-stranded
characteristics. The PSTNPss depicts the position-specific
trinucleotide statistical propensity based on the single-stranded
characteristics of DNA [35]. There are 43 = 64 trinucleotides
derived from the alphabet [A, C, G, T], such as ‘AAA’, ‘AAC’, . . .

‘TTT’, etc. Supposing that A ≺ C ≺ G ≺ T, the 64 trinucleotides
strings can be sorted by the defined partial order ≺ .Let L be
the sorted trinucleotide list. For a 41 bp long sequence, the
trinucleotide positional specificity can be represented by a 64×39
matrix F. fij. The value of the ith row and jth column in F is
defined as follows:

fij = F+ (Li| j
)−F− (Li| j

)
, i ∈ [1, 64] , j ∈ [1, 39] (4)

where F+(
Li

∣∣ j
)

and F−(
Li

∣∣ j
)

denote the frequency of the ith
trinucleotide in L at the jth position appearing in the positive
and negative samples, respectively. If a trinucleotide contains an
unknown nucleotide ‘-’, the value of the trinucleotide will be set
to zero. Thus, let S = s1s2 . . . sj sj+1 sj+2 . . . s41 denote a 41 bp long
DNA sequence, such that S can be encoded as a 39-dimensional
numerical vector P = (

p1, p2, . . . , pj, . . . , p39
)
, where pj is calculated

as follows:

pj = fij, if sjsj+1sj+2 = Li, i ∈ [1, 64] (5)

Four different feature encoding combinations. We further grouped
the seven encoding schemes described above into four fea-
ture encoding combinations. These four combinations and their
dimensions are shown in Table 5. For example, ‘ANF + NCP +
EIIP + One-hot’ combines ANF, NCP, EIIP and one-hot encoding
schemes and encodes a 41 bp long DNA sequence as a (41×9)-
dimensional vector.

Table 5. Four combinations of encoding schemes

Combination
ID

Encoding scheme Dimension

1 ENAC 41×5
2 ANF + NCP + EIIP + One-hot 41 ×9
3 CKSNAP+NCP + EIIP + One-hot 150×17
4 PSTNPss + NCP + EIIP + One-hot 39×25
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Convolution neural network

There are three convolutional layers in the DeepTorrent frame-
work. In the first convolutional layer, three convolution blocks
with different convolution kernel sizes are used to extract the
features from the encoding matrix in parallel. The kernel sizes
of these three convolutional blocks are 1, 3 and 5, respectively.
There are 32 filters in these three convolutional blocks, the L2
regularization value is 0.002 and ReLU is used as the activation
function.

Using the first convolutional layer’s three convolution blocks,
we obtain three different kinds of feature representations. For
an input m ×n encoding matrix, each type of feature is rep-
resented by an m ×32 matrix following the first convolutional
layer. Subsequently, a merging layer with a dropout value of 0.5
is used to merge the three m ×32 matrices into an m ×96 matrix,
which had a higher dimension and more meaningful feature
representation. Visualization of different kernel sizes is provided
as an example in Supplementary Figure S1.

The second convolutional layer, used as an inception module
in [36], also contains three convolutional blocks. The first con-
volutional block with the kernel size 1 was first used to extract
higher abstraction feature representations from the concate-
nated feature maps extracted by the first convolutional layer.
Then, the output feature representations are used as the input
to the second convolutional block with a kernel size of three and
as the input to the third convolutional block with a kernel size of
five. The number of filters in these three convolutional blocks is
136, the L2 regularization value is 0.002 and ReLU is used as the
activation function. Thus, three m ×136 matrices are generated
by the second layer of convolutional operations. Subsequently,
a merging layer is used to merge three m ×136 matrices into an
m ×408 matrix. The dropout value is set as 0.5 in the merging
layer.

Similarly, the third convolutional layer also applies the
inception module, following the same operation as that of
the second convolutional layer to obtain higher-dimensional
abstract features. The kernel size of the three convolutional
blocks in the third convolutional layer is 1, 3 and 5, respectively.
The number of filters in these three convolutional blocks is 48,
the L2 regularization value is 0.002 and ReLU is used as the
activation function. Like the first two convolutional layers, the
third convolutional layer is also followed by a merged layer with
a dropout value of 0.5.

Attention layer

The attention mechanism adaptively focuses on important posi-
tions and relevant parts and ignores irrelevant parts [37, 38]. It
has been widely used in a variety of DL applications, includ-
ing visual processing [38], kinase-specific phosphorylation site
prediction [37], speech recognition [39] and natural language
processing [40]. In this study, we were motivated by the prospect
of implementing the attention layer in DeepTorrent. The atten-
tion layer selects important features from two dimensions: the
feature dimension and the sequence dimension. This means
that the output matrix from the CNN layer and its transposed
matrix (‘transposition’ in Figure 1) are fed into the attention
layer. In this manner, the two different feature representations
can be selected by the attention layer.

Bidirectional long short-term memory

BLSTM is a special type of recurrent neural network (RNN),
consisting of two reversed unidirectional LSTM networks [41].

BLSTM can capture the interdependencies across the sequence
and integrate both forward and backward information in the
sequence [42]. According to a recent study, a good strategy for
utilizing the merits of both CNN and RNN is to use the CNN as the
pre-processing step for the RNN [43]. In addition, the combina-
tion of LSTM with CNN has been used to predict the subcellular
localization of proteins from sequence information [44] and to
quantify the function of DNA sequences [45]. In DeepTorrent,
the CNN layer is connected to two additional BLSTMs, each of
which processes the sequence dimension and feature dimension
outputs of the CNN. In this way, we obtain four feature rep-
resentations, among the two feature representations from the
attention layer and the two feature representations from BLSTM.
Subsequently, four feature representations are combined into a
more powerful feature representation by the merging layer.

Fully connected layers and output layer

We used multiple combinations of the four encoding schemes
as the input to train the DeepTorrent models in parallel. With
three convolutional layers, an attention layer and two BLSTM
networks, each feature matrix generated by each encoding com-
bination is converted into four feature vectors. As a result, 16 fea-
ture vectors are generated in total. Then, a merging layer is used
to merge these 16 feature vectors into a combined feature vector.

Subsequently, the combined feature vector is fed into a fully
connected network. The first layer of the fully connected net-
work contains 64 units. Again, the activation function is ReLU,
and the dropout value is 0.5. The second fully connected layer
has eight units and uses ReLU activation. The final output layer
is equipped with softmax loss as the classifier to generate the
prediction results.

Parameter optimization

We employed Bayesian optimization [46] to optimize the hyper-
parameters of the convolutional networks of DeepTorrent. The
Bayesian optimization method first models a learning algo-
rithm’s generalization performance as a sample from a Gaussian
process and then automatically finds better hyperparameters to
optimize the performance of the learning algorithm. Bayesian
optimization has been shown to select better hyperparameters
than human expert-level optimization for CNNs [46]. In Deep-
Torrent, the predefined value range for each hyperparameter
before optimization and its optimal value after optimization are
provided in Supplementary Table S1.

Evaluation metrics

To quantify the performance of DeepTorrent and compare with
other methods, we used six common performance evaluation
metrics [47–55]: sensitivity (Sn), specificity (Sp), precision, accu-
racy (Acc), Matthew’s correlation coefficient (MCC) and F1-score,
respectively, defined as follows:

Sn = TP
TP + FN

Sp = TN
TN + FP

Precision = TP
TP + FP

Acc = TP + TN
TP + TN + FP + FN

MCC = TP × TN − FP × FN√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

F1 − score = 1 − TP + TN
2 ∗ TP + FP + FN

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
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where TP, TN, FP and FN denote the numbers of true positives,
true negatives, false positives and false negatives, respectively. In
addition, we plotted the receiver-operating characteristic (ROC)
curves based on the output of DeepTorrent and accordingly
calculated the area-under-the-curve (AUC) values.

Results and discussion
In this section, we discuss the performance evaluation results
of DeepTorrent in detail. In particular, we conducted perfor-
mance evaluation tests on both the Lin_2017 dataset and Li_2020
dataset.

Performance evaluation on the Lin_2017 dataset

Performance evaluation on the Lin_2017 training dataset

To benchmark the performance of DeepTorrent, we performed a
test using all encoding inputs derived from all possible combina-
tions of the four encoding schemes listed in Table 5. Let m, n, p
and t (i.e. 1, 2, 3 and 4, respectively) represent the feature combi-
nation IDs (as shown in the first column of Table 5). Accordingly,
m–n denotes a di-encoding composition containing the encoding
scheme combinations m and n; m–n–p denotes a tri-encoding
composition that consists of the encoding scheme combinations
m, n and p and m–n–p–t denotes a tetra-encoding composition.
There were 15 possible encoding compositions: four individual
encoding compositions, six di-encoding compositions, four tri-
encoding compositions and one tetra-encoding composition.
Taking m–n–p–t as an example, DeepTorrent worked as follows:
first, the encoding scheme combinations m, n, p and t were
input into DeepTorrent in parallel; second, for each encoding
scheme combination, the corresponding abstract feature rep-
resentation was extracted by DeepTorrent; finally, four kinds
of abstract feature were concatenated into the feature vector
(the merged layer in Figure 1) as the feature descriptors of the
predictor.

We integrated six species-specific datasets into a large
dataset and used approximately 90% of the entries in the
datasets as the training dataset and the remaining entries
as the validation dataset. The performance results of the
DeepTorrent models trained using each encoding composition
are provided in Supplementary Table S2. In addition, we
plotted the ROC curves of DeepTorrent trained using each
encoding, as shown in Supplementary Figure S2. We then
identified the encoding compositions with the best performance
among the individual encoding compositions, di-encoding
compositions, tri-encoding compositions and tetra-encoding
compositions (Supplementary Table S2 and Figure S2). The
results indicate that the best encoding compositions were 4, 3-4,
2-3-4 and 1-2-3-4. Performance comparison of the four selected
encoding compositions is shown in Figure 2A. The results
show that DeepTorrent achieved the best overall performance
based on the model trained using the 1-2-3-4 tetra-encoding
composition.

In terms of species-specific 4mC prediction, the dataset for
each species was relatively small. As is well known, the use
of small datasets for training DL models can cause overfitting
[56]. Therefore, we used a larger dataset by combining all six
species to train a base network to avoid overfitting. For each
of the six species, we used the corresponding training dataset
to retrain the species-specific model. The procedure was as
follows: we first copied n layers of the base network as the first
n layers of the species-specific model and then froze the first n

layers of the species-specific model and merely fine-tuned the
hyperparameters of other layers to retrain the species-specific
model using species-specific training datasets. This strategy has
been shown to be effective at improving the performance of
classification problems with limited sample datasets in recent
studies on image classification [57] and kinase-specific phos-
phorylation site prediction [37]. Figure 2B shows the training loss
and accuracy of the base model with respect to the training
epochs on both the training and validation data. During the
process of training, the early stopping strategy was adopted, and
we monitor accuracy changes when testing for when to stop
training. The training process would be interrupted when the
validation accuracy was no longer improved after 20 epochs.
It is clear that the base model displayed similar training loss
and validation loss for training epochs and achieved higher
training accuracy (0.8241) and validation accuracy (0.7406) after
about 170 epochs. This indicates that the base model provides
a strong foundation for tuning the species-specific model based
on transfer learning.

To illustrate how DeepTorrent learned effective feature repre-
sentations, we used the t-SNE plot [58] to visualize feature rep-
resentations of two dimensions that were automatically learned
by DeepTorrent. The original feature representation is shown
in Figure 3A. As can be seen, it is difficult to visually distin-
guish each species with the original feature representations.
Based on the feature representations (Figure 3B) learned after
the attention layer of the model, we could identify the principal
components. Moreover, the feature representations (Figure 3C)
after the second fully connected layer could be used to bet-
ter identify and separate each species. These results suggest
that DeepTorrent is able to learn good feature representations
effectively.

Performance comparison with the existing methods on the
Lin_2017 independent test dataset

To compare the performance of DeepTorrent with existing 4mC
prediction methods, we performed comparisons with existing
methods using independent dataset. For the independent test
of 4mCPred [23], the positive and negative training datasets of
each species’ benchmark dataset were randomly divided into 15
subsets of approximately equal size, of which 14 subsets were
selected as the training datasets and the remaining one was
used to test the model. For a fair and objective comparison,
we used the same training datasets and the independent test
datasets for each of the six species. Supplementary Figure S3
shows the ROC curves of each species-specific model with deep
transfer learning. In addition, we performed an independent test
of the species-specific models without transfer learning using
the same training and independent test datasets and plotted
the ROC curves in Supplementary Figure S4, for a comparison
with models trained with transfer learning. As can be seen from
Supplementary Figure S4, each species-specific model trained
with transfer learning consistently achieved higher AUC values
than its counterpart without transfer learning, e.g. 0.893 ver-
sus 0.832 on C. elegans, 0.911 versus 0.847 on D. melanogaster,
0.815 versus 0.783 on A. thaliana, 0.935 versus 0.796 on E. coli,
0.939 versus 0.856 on G. subterraneus and 0.929 versus 0.875 on
G. pickeringii. The performance comparison results of species-
specific models with and without transfer learning in terms of
all evaluation metrics are provided in Supplementary Table S3.
As can be seen, the species-specific models trained with transfer
learning outperformed those trained without transfer learning
in terms of all major evaluation metrics.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
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Figure 2. Performance evaluations of DeepTorrent. (A) Performance comparisons of different encoding compositions. Here, IDs 1, 2, 3 and 4 denote ‘ENAC’, ‘ANF + NCP

+ EIIP + One-hot’, ‘CKSNAP + NCP+EIIP + One-hot’ and ‘PSTNPss + NCP + EIIP + One-hot’ encoding schemes, respectively. Among these, 1-2-3-4 denotes encoding

compositions 1, 2, 3 and 4. Other encoding compositions have similar implications. (B) Loss and accuracy plot of the model.

Figure 3. t-SNE plots of input encoding (A), feature representation after the attention layer (B) and feature representation of the second fully connected layer (C) for

the base models using positive samples of six different species.

We performed an independent test to compare the perfor-
mance of DeepTorrent to that of two state-of the-art meth-
ods: 4mCPred [23] and iDNA4mC [22]. The performance results
for the six species are provided in Supplementary Table S4. As
can be seen, compared to 4mCPred and iDNA4mC, DeepTorrent
achieved the best performance in terms of all performance
metrics (viz. Sn, Sp, Acc and MCC) for four species (viz. C. elegans,
D. melanogaster, A. thaliana and G. pickeringii). For E. coli and G. sub-
terraneus, DeepTorrent achieved the best performance in terms of
Sp, Acc and MCC. In terms of the two major comprehensive met-
rics (Acc and MCC), DeepTorrent achieved the best performance
on all six species. These results demonstrate that DeepTorrent is
a powerful 4mC site predictor capable of accurately identifying
potential m4C sites.

Ten-fold cross-validation test on the Lin_2017 training dataset

To evaluate the performance of DeepTorrent, we performed
10-fold cross-validation tests to compare DeepTorrent with
several existing methods, including iDNA4mC [22], 4mCPred
[23], 4mcPred-SVM [24], Meta-4mCPred [25] and 4mCCNN
[27]. The performance results of these methods for the six
species are provided in Supplementary Table S5. As shown in

Supplementary Table S5, compared with these five methods,
DeepTorrent achieved the best performance in terms of Acc and
Sp across all the six species. We have also plotted the MCC values
for the six methods with the six species, with the results shown
in Figure 4. As can be seen, DeepTorrent achieved the highest
MCC values for five out of the six species (with the exception of
A. thaliana).

Cross-species validation

To examine the potential relationships between two different
species, we further conducted cross-species validation using
data from one species to train the DeepTorrent model and
then applied the trained model to predict 4mC sites in other
species. The rationale for this is that transfer learning can
transfer the source domain knowledge (species-specific training
data) to the target domain (another species) [23]. The cross-
species performance results of DeepTorrent, iDNA4mC [22]
and 4mCPred [23] are listed in Supplementary Tables S6–
S8, respectively. Note that the results in Tables S7 and S8
were originally collected from [23]. In addition, we also
conducted cross-species validation using the 4mcPred-SVM
webserver [24]. The corresponding results of 4mcPred-SVM

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
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Figure 4. Species-specific performance comparison of DeepTorrent and other

predictors in terms of MCC values on the existing datasets of six species.

are listed in Supplementary Table S9. As can be seen from
Supplementary Tables S6–S9, in cases where two species differ
in terms of the source domain and target domain, 4mCPred
achieved the strongest transfer learning capability from A.
thaliana to D. melanogaster and G. subterraneus to G. pickeringii,
whereas DeepTorrent showed the strongest ability to transfer
knowledge in all other cases.

Performance evaluation on the Li_2020 dataset

Ten-fold cross-validation test on the Li_2020 training dataset

Similar to the performance test described in Performance
evaluation on the Lin_2017 dataset, we first trained a base
network on a large number of datasets integrated with the
training datasets of the six species shown in Table 3. We then
retrained the species-specific model for each of the six species
using the corresponding species-specific training dataset. After
that, we performed 10-fold cross-validation test and evaluated
the species-specific performance of DeepTorrent model. The

results are shown in Figure 5A and ROC curves are plotted in
Figure 5B. The detailed performance results are provided in
Supplementary Table S10. As can be seen, DeepTorrent achieved
an AUC value of higher than 0.86 across all the six species and
an average AUC value of 0.94 and Acc value of 0.87, respectively.
These results show that DeepTorrent provides a reasonable
predictive performance for species-specific 4mC prediction.

Performance comparison with other existing methods on the
Li_2020 independent test dataset

To further evaluate the predictive capability of DeepTorrent, we
performed the independent test and compared its performance
with other existing methods using the additional independent
test datasets. The performance results of all the compared meth-
ods are visualized in Figure 6, and ROC curves plotted in Figure 7.
The detailed results are provided in Supplementary Table S11.
The performance results of the other predictors were calculated
using the corresponding web servers of these methods. As the
web servers of iDNA4mC [22] and 4mCCNN [27] were unavailable,
the performance results of these two methods were not included
in the performance comparison. As can be seen from Figures 6
and 7 and Supplementary Table S11, DeepTorrent outperformed
the other methods on all seven metrics with five species, except
for E. coli, for which DeepTorrent outperformed the other meth-
ods in terms of six (of seven) performance metrics.

Webserver implementation

As an implementation of the proposed DeepTorrent method, we
developed an online webserver based on PHP, which is freely
available at http://DeepTorrent.erc.monash.edu/. The webserver
is managed by Tomcat 7 and configured in a Linux environment
on an 8-core server machine with 32 GB of memory and a
500 GB hard disk. The webserver also provides access to the
trained models and to the source code for DeepTorrent. To utilize
the webserver, users need to upload DNA sequences or paste
them in the ‘TEXT AREA’ in FASTA format (Submission of up
to 100 sequences are permitted). Step-by-step guidelines for the

Figure 5. Ten-fold cross-validation performance comparison of DeepTorrent on the additional independent test datasets.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa124#supplementary-data
http://DeepTorrent.erc.monash.edu/
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Figure 6. Performance comparison between DeepTorrent and four other existing methods on the additional independent test datasets.

Figure 7. Performance comparison of DeepTorrent and other state-of-the-art methods in terms of the AUC value on the additional independent test datasets.
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DeepTorrent webserver can be found at http://deeptorrent.erc.
monash.edu.au/help.html.

Challenges and future work
Despite the competitive predictive performance of DeepTor-
rent in 4mC site prediction, we believe there is room for
further improvement, especially in terms of algorithm learning
techniques. Herein, we discuss the challenges and potentially
useful strategies for improving 4mC site prediction methods.
The first challenge is about how to choose the appropriate ML/DL
framework for model training. The majority of existing methods
are primarily based on manual trial-and-error selection of the
optimal ML/DL framework to build the prediction model, which
is a time-consuming and laborious process as there are a variety
of ML/DL frameworks and algorithms available. Moreover, DL
frameworks often require substantial computational resources
and time to train and optimize the model. In this regard,
automated machine learning (AutoML) packages, such as
Auto-PyTorch (https://github.com/automl/Auto-PyTorch) and
AutoKeras (https://autokeras.com/), are suggested to apply
to identify the well-performing architecture of deep neural
networks. In addition, such tools can also help simplify the
model optimization process in DL model training, which can
greatly facilitate the model training and improve the robustness
of the trained models.

Conclusion
In this study, we proposed a novel DL-based approach, called
DeepTorrent, for 4mC site prediction. DeepTorrent is based on
a CNN framework with inception modules and BLSTM, and it is
integrated with an attention mechanism on both the sequence
and feature dimensions for identifying more important and rel-
evant features. Moreover, DeepTorrent combines multi-encoding
schemes to find optimal encoding inputs. As a result, four encod-
ings are input into the DL network in a parallel manner. The
model uses these encoding inputs to derive complex features,
which are concatenated into a single feature vector as the input
of fully connected layers for predicting 4mC sites. This unique
architecture has been shown to be effective through the visual-
ization of the feature representations.

To address the potential problem of overfitting from the use
of small datasets, we introduced an effective transfer learning
strategy using the datasets of six species to first learn a base
model and then transfer the base model to train species-specific
models. Compared to existing methods, the species-specific
models trained by transfer learning achieved better performance
with four species (viz. C. elegans, D. melanogaster, A. thaliana and
G. pickeringii) and a better predictive performance according to
three major metrics for the other two species (viz. E. coli and G.
subterraneus). Further, our models achieved the best performance
in terms of both accuracy and MCC for all six species.

To validate DeepTorrent, we performed cross-species valida-
tion and evaluated the performance of the different methods.
The results indicate that DeepTorrent provides a competitive
performance and knowledge transfer capability compared with
several state-of the-art methods.

Moreover, we constructed an additional dataset and further
assessed the performance of DeepTorrent relative to the other
methods on this dataset. The results demonstrate that DeepTor-
rent offers an improved predictive performance.

A user-friendly webserver and source code for DeepTorrent
are freely available at http://DeepTorrent.erc.monash.edu/.

Overall, DeepTorrent is poised to be a powerful tool for
accurate and high-throughput 4mC site prediction from DNA
sequences.

Key Points
• We reviewed existing methods for DNA N4-

methylcytosine site prediction and categorized
these methods into two major groups according to
the operating algorithms.

• We proposed DeepTorrent, a novel deep learning-
based method, for DNA N4-methylcytosine site predic-
tion.

• Experimental results on two datasets demonstrate
the superior performance of DeepTorrent compared to
existing machine learning-based methods.

• A webserver (http://DeepTorrent.erc.monash.edu/)
was developed to facilitate high-throughput
prediction of DNA N4-methylcytosine sites.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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