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Abstract

Motivation: Quality control (QC) is a critical step in single-cell RNA-seq (scRNA-seq) data analysis. Low-quality cells
are removed from the analysis during the QC process to avoid misinterpretation of the data. An important QC metric
is the mitochondrial proportion (mtDNA%), which is used as a threshold to filter out low-quality cells. Early publica-
tions in the field established a threshold of 5% and since then, it has been used as a default in several software pack-
ages for scRNA-seq data analysis, and adopted as a standard in many scRNA-seq studies. However, the validity of
using a uniform threshold across different species, single-cell technologies, tissues and cell types has not been ad-
equately assessed.

Results: We systematically analyzed 5 530 106 cells reported in 1349 annotated datasets available in the PanglaoDB
database and found that the average mtDNA% in scRNA-seq data across human tissues is significantly higher than
in mouse tissues. This difference is not confounded by the platform used to generate the data. Based on this finding,
we propose new reference values of the mtDNA% for 121 tissues of mouse and 44 tissues of humans. In general, for
mouse tissues, the 5% threshold performs well to distinguish between healthy and low-quality cells. However, for
human tissues, the 5% threshold should be reconsidered as it fails to accurately discriminate between healthy and
low-quality cells in 29.5% (13 of 44) tissues analyzed. We conclude that omitting the mtDNA% QC filter or adopting a
suboptimal mtDNA% threshold may lead to erroneous biological interpretations of scRNA-seq data.

Availabilityand implementation: The code used to download datasets, perform the analyzes and produce the figures
is available at https://github.com/dosorio/mtProportion.

Contact: dcosorioh@tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-seq (scRNA-seq) experiments have improved the
resolution of our knowledge about cellular composition and cellular
behavior in complex tissues (Sandberg, 2014). A critical step during
scRNA-seq data processing is to perform quality control (QC) over
the cells sequenced transcriptomes (Hwang et al., 2018). The QC
process usually involves applying user-defined thresholds for differ-
ent metrics computed for each individual cell to filter out doublets
and ‘low-quality’ cells (Luecken and Theis, 2019). Commonly used
QC metrics include the total transcript counts (also known as the li-
brary size), the number of expressed genes and the mitochondrial
proportion (mtDNA%, i.e. the ratio of reads mapped to mitochon-
drial DNA-encoded genes to the total number of reads mapped).

Defining the proper thresholds of QC metrics is a complex task that
requires a vast knowledge of the cellular diversity in the tissue under
study. Thresholds may be uniquely set for each sample, as they are
dependent on the cells or tissue being processed (Ji and Sadreyev,
2019).

This study focuses on the systematic determination of a thresh-
old for mtDNA%—the fraction of mitochondrial counts per cell—
in scRNA-seq QC. Mitochondrial content is known to interact with
the nuclear genome, drive alternative splicing and regulate nuclear
gene expression and is also associated with cancer, degenerative dis-
eases and aging (Guantes et al., 2015; Muir et al., 2016). High num-
bers of mitochondrial transcripts are indicators of cell stress, and
therefore mtDNA% is a measurement associated with apoptotic,
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stressed and low-quality cells (Ilicic et al., 2016; Lun et al., 2016;
Zhao et al., 2002). However, mtDNA% threshold depends highly
on the tissue type and the questions being investigated (AlJanahi
et al., 2018). The mtDNA% threshold is of economic and biological
importance. A wrongly defined, very stringent mtDNA% threshold
may cause bias in the recovered cellular composition of the tissue
under study. This bias may force the researchers to increase the sam-
ple size to capture enough cells (which may not have the normal bio-
logical behavior of the cell type) under the threshold, and thus
increase the cost of the experiment. Inversely, a relaxed threshold of
mtDNA% may allow apoptotic, low-quality cells to remain in the
analysis, resulting in the identification of wrong biological patterns.

To reduce the bias caused by the use of arbitrary mtDNA%
thresholds, Ma et al. (2019) proposed an unsupervised method to
optimize the threshold for each given input data. This computation-
ally expensive data-driven procedure, which defines the threshold as
a function of the distribution of the data, due to the lack of reference
values, is not able to identify bias induced during the library prepar-
ation. Without such standard references, the values of mtDNA%
thresholds fluctuate with different input datasets. For example, a
largely failed experiment may generate a dataset, in which most cells
have an inflated mtDNA%. Accordingly, the optimized threshold
based on these inflated values may be unreasonably high. Therefore,
having a uniform and standardized threshold for scRNA-seq data
analysis is essential. It improves the reproducibility of experiments
and simplifies the automatization of bioinformatic pipelines
(McCarthy et al., 2017).

Through analysis of bulk RNA-seq data produced by the
Illumina Body Tissue Atlas, Mercer et al. (2011) reported the
mtDNA% for 16 human tissues. They found that the mtDNA%
ranges from 5% or less in tissues with low energy requirements up
to �30% in the heart due to the high energy demand of cardiomyo-
cytes. Based on that study, early publications of scRNA-seq datasets
used the 5% threshold reported for tissues with low energy demands
(e.g. adrenal, ovary, thyroid, prostate, testes, lung, lymph and white
blood cells) as default for data QC (Lukassen et al., 2018).
Furthermore, the 5% threshold has been adapted as the default par-
ameter by Seurat—one of the most popular software packages for
scRNA-seq data analysis (Satija et al., 2015). These have made a
5% practical standard for scRNA-seq data analyses. Nevertheless,
due to the lack of reference values for mtDNA% in different species,
technologies, tissues and cell types, the optimal value for a standar-
dized threshold is still an open question in the field.

PanglaoDB is a scRNA-seq database providing uniformly proc-
essed, annotated count matrices for thousands of cells from hun-
dreds of scRNA-seq experiments. The data source of PanglaoDB is
the sequence read archive (SRA) database of the National Center for
Biotechnology Information (NCBI). With the datasets from
PanglaoDB, it is possible to systematically evaluate the optimal
threshold of mtDNA% for different experimental settings that may
vary across platforms, technologies, species, tissues or cell types
(Franzen et al., 2019; Svensson et al., 2019). Here, we present a sys-
tematic analysis of the mtDNA% in more than 5 million cells
reported in over one thousand datasets in PanglaoDB (Franzen
et al., 2019). We compared the mtDNA% reported for different
technologies, species, tissues and cell types. By analyzing the data
provided by hundreds of experiments together, we reach the consen-
sus reference values for more than 40 human tissues and more than
120 mouse tissues. Furthermore, we evaluated the validity of using
the 5% threshold in different humans and mice tissues and showed
that omitting the mtDNA% as a QC filter led to erroneous biologic-
al interpretations of the data.

2 Materials and methods

Datasets in the PanglaoDB database, available at the time of analysis
(in January 2020), were downloaded and processed using R 3.6.2 (R
Core Team, 2013) through an ‘in-house’ script using the XML
(Lang and CRAN Team, 2012) and xml2 (Wickham et al., 2018)
packages. The library size (total number of counts), the total number
of detected genes and the total number of counts that match with

the mitochondrial genes (mitochondrial counts) were estimated for
all cells in each of downloaded datasets. The SRA/SRS identifiers,
species, protocol, tissue, cell type and barcode of each experiment
were obtained and associated with each cell.

Only the cells with more than 1000 counts and with the total
number of counts greater than two times the average library size in
the same sample were retained for analysis. In addition, a polynomic
regression of degree 2 (to account for saturation) was applied to es-
tablish the 95% confidence intervals of the predicted total number
of genes as a function of the library size per cell. Cells with an
observed total number of genes below or above expectation limits
were removed from the analysis. The same procedure was applied a
second time to establish the 95% confidence intervals of the pre-
dicted mitochondrial counts as a function of library size. An ordin-
ary least squares (OLS) regression model was used to fit the data
and cells with exceptionally high or low mitochondrial counts were
removed from the analysis.

Subsequently, the mtDNA% value was computed for each cell as
the ratio between the mitochondrial counts and the library size of
the cell. The mtDNA% values were then compared between cells
from different settings: species, technologies, tissues and cell types.
To compare the mtDNA% between humans and mice cells, we used
the Welch two-sample t-test and used the Wilcoxon sum-rank test to
cross-validate the results. To evaluate the reliability of the 5%
threshold, a comparison to evaluate whether the mean was <0:05
threshold value was performed using the t-test for each tissue and
cell type independently using the data generated by the 10�
Genomics Chromium system, after filtering out groups with less
than 1000 cells.

Example datasets (SRS3703557, SRS3545826 and SRS2397417)
were downloaded from the PanglaoDB along with cell clustering
results and cell type information. Count matrices were processed
using the ‘Seurat’ R package to generate low-dimensional represen-
tations. Differential expression analysis was performed using
‘MAST’ (Finak et al., 2015) to compare the transcriptome profile of
clusters exhibiting a median mtDNA% higher than 5% against that
of other clusters with the same cell type but with a median
mtDNA% lower than 5%. Using the sorted list of fold-changes
reported by MAST, we performed Gene Set Enrichment Analysis
(GSEA) to test the enrichment of the ‘Apoptosis’ pathway from the
KEGG database (Kanehisa and Goto, 2000) in the clusters with
increased mtDNA%. To run the GSEA analysis efficiently, we used
the multilevel function included in the ‘fgsea’ R package
(Korotkevich et al., 2019).

3 Results

We downloaded a total of 5 530 106 cells reported in 1349 datasets
from the PanglaoDB database. From those, we removed 278 607
cells with a total number of counts smaller than 1000 or above two
times the average library size in the sample where it was sequenced.
Also, 80 225 cells with no mitochondrial counts were removed. The
remaining 5 171 274 cells were used to establish the 95% confi-
dence intervals of the predicted total number of genes as a function
of the library size per cell (Supplementary Fig. S1). We found that
the relationship between the number of genes and the library size is
monotonically positive (q ¼ 0:89; P < 2:2� 10�16), which is
consistent with that previously reported (Svensson et al., 2019). We
also found that the expected total number of genes reaches satur-
ation at a point close to the 1� 105 library size counts. In this step,
we removed 157 960 cells because they have a total number of
quantified genes above (n ¼ 5509) or below (n ¼ 152 451) the 95%
confidence interval limit defined from the prediction.

Next, we accounted for outliers in the mitochondrial counts in
relative to the library size. This procedure has been shown to be crit-
ical to differentiate apoptotic cells of preapoptotic and healthy cells
in a supervised experiment (Ordonez-Rueda et al., 2020). To do so,
we used the OLS regression and computed the confidence interval of
prediction between the mitochondrial counts and the library size
with data from all 5 013 314 cells. We found that the relationship is
noisy but positive and linear (Supplementary Fig. S2;
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r ¼ 0:65; P < 2:2� 10�16). Following this procedure, we iden-
tified 333 712 cells with mitochondrial counts above (n ¼ 178 671)
or below (n ¼ 155 041) the computed confidence interval limits,
which were also removed. After this step, 4 679 602 cells were
retained for the study.

With the cleaned dataset, we estimated that the mtDNA% per
cell is distributed between the minimum of 0.17% and the max-
imum of 14.64%, considerably lower than the upper limit previous-
ly reported (up to 30% in heart) using the bulk RNA-seq generated
by the Illumina Body Tissue Atlas (Mercer et al., 2011). Next, we
performed a comparison to evaluate whether there is a difference in
the average mtDNA% cross different species. The PanglaoDB data-
base contains human and mouse datasets; therefore, our comparison
was between human and mouse. We performed the Welch two-
sample t-test and use the Wilcoxon-sum rank test to validate the
results. Both tests converged to the same conclusion, that is, the
average mtDNA% in human cells is significative higher than that in
mice cells (P < 2:2� 10�16, in both cases) as is displayed
inFigure 1A.

Then, we compared the mitochondrial content between human
and mouse data, stratified by the type of scRNA-seq technologies,
by which the data are obtained. These technologies include drop-

seq, C1 Fluidigm and 10� Genomics. Our results confirm our previ-
ous finding. In all cases wherever data allowed, no matter which
technology is used, the same pattern was recovered. That is, human
cells have significantly larger mtDNA% than mice cells (Fig. 1B).
Most importantly, for all cases where mitochondrial content in
humans was evaluated, the 75th percentile was located above the
threshold, suggesting that the early defined 5% is not appropriate
for human cells. Note that 91.3% (n ¼ 4 271 613) of cells analyzed
here were processed using the 10� Genomics chromium system.
Next, we decided to perform the comparison of the mitochondrial
content between tissues and cell types using only the data generated
using the 10� Genomics technology.

For humans, we identified 44 tissues, for which more than 1000
cells are available in the database. From those 44 tissues, 13
(29.5%) showed an average mtDNA% significantly higher than
5%. The 13 human tissues are nasal airway epithelium, monocyte-
derived macrophages, testicle, colon (ulcerative colitis), liver, colon,
melanoma, mammary gland, ES-derived kidney organoid, pancreat-
ic progenitor cells, adipose, Kaposi’s sarcoma and brain. However,
as displayed in Figure 1C, 18 of the 44 human tissues (40%) have a
portion of the interquartile range over the 5% threshold. Only two
of them, monocyte-derived macrophages and adipose, have an

Fig 1. Boxplots showing the differences in mtDNA% across species, technologies and tissues. Each dot represents a cell; the red line is the early established 5% threshold, and

the blue line is the 10% threshold for human cells proposed here. In parenthesis (C and D), the number of cells in the stated tissue. (A) The difference in mtDNA% between

human and mice cells. (B) The differences in mtDNA% between human and mice cells by the technology used to generate the data. (C) Boxplots of mtDNA% across 44 human

tissues. (D) Boxplots of mtDNA% across 121 mouse tissues
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average mtDNA% higher than 10%. This result supports our obser-
vation that the early defined 5% is not appropriate for human tis-
sues. We conclude that the new standardized threshold for human
tissues should be 10% instead. At the cell-type level, we found simi-
lar patterns. From 37 different cell types with more than 1000 cells
derived from human samples, 13 of them (35.1%) have an average
mtDNA% greater than 5%, but none of them have an average
mtDNA% greater than 10% (Supplementary Fig. S3). The 13 cell
types are hepatocytes, epithelial cells, neutrophils, cholangiocytes,
smooth muscle cells, keratinocytes, Langerhans cells, spermatocytes,
ductal cells, beta cells, luminal epithelial cells, macrophages and em-
bryonic stem cells. Furthermore, only 4 of them (epithelial cells,
Langerhans cells, spermatocytes and macrophages) have a portion
of the interquartile range above the 10% threshold. For mice, when
the mtDNA% was compared across the cell types with at least 1000
cells reported in the database, 7 of 74 cell types showed an average
mtDNA% greater than 5%. The 7 cell types are proximal tubule
cells, distal tubule cells, hepatocyte, cardiomyocytes, Leydig cells,
intercalated cells and choroid plexus cell (Supplementary Fig. S4). In
contrast to the identified 44 human tissues, there are many more
mouse tissues (121) with more than 1000 cells reported in the data-
base. Among them, only 3 (2.5%) showed an average mtDNA% sig-
nificantly higher than 5% (whole kidney, whole heart and distal
small intestine). Furthermore, only 6 mouse tissues (whole kidney,
intestinal epithelium, whole heart, nerve, distal small intestine and
submandibular gland) have a portion of the interquartile range over
the 5% threshold (Fig. 1D). These findings indicate that the 5%
threshold early proposed in the field is an appropriate standardized
threshold for mouse tissues.

To evaluate the effect of mtDNA% in the analysis of single-cell
RNA-seq data, we downloaded three datasets from the PanglaoDB
database using accessions: SRS3703557, SRS3545826 and
SRS2397417. The first dataset contains 9238 cells from the mouse
heart, the second 7448 cells from mouse lung and the third 9057
cells from the human umbilical vein.

First, we evaluated the effect of genes encoded in the mitochon-
drial genome (for short, mtGenes) on the cell clustering results. We
compared the low-dimensional representations generated by t-SNE
using the PCA result as a prior with and without the mtGenes. We
found that, in all three examples, the mitochondrial content does
not affect significantly the structure of the data in low dimensional
representation, allowing to recover clearly in both cases (with and
without mtGenes) the clusters reported by the PanglaoDB database
(Fig. 2 and Supplementary Fig. S5). These results confirm findings
previously reported in an evaluation study of different computation-
al pipelines for scRNA-seq data preprocessing (Germain et al.,
2020). We also found that even without considering the mtGenes
for the generation of the low-dimensional representation, low-
quality cells with high mtDNA% tend to cluster together (Fig. 2B;
Clusters 19, 0, 9, 7 and 11 in SRS3703557; cluster 5 in SRS3545826
and cluster 11 in SRS2397417).

Next, we evaluated the significance of the threshold to identify
low-quality cells. For each example, after identifying the clusters
containing cells with high mtDNA% of a cell type, we used MAST
to compare their expression profiles against other clusters with most
of the cells below the threshold. The fold-change values reported by
MAST were used as the input of GSEA analysis to test for the signifi-
cance of the Apoptosis pathway in the KEGG database.

For the first example, we focused on cardiomyocytes, a cell type
associated with high mtDNA% with nine clusters reported by the
PanglaoDB database (Fig. 2C) for this dataset. We compared cells
with a higher mtDNA% level in clusters 19, 0, 9, 7 and 11, which
form a larger cluster, against cells with a lower mtDNA% level in
cluster 4. We found that the number of genes with detectable expres-
sion decreases with the increase of mtDNA% in cells (as shown by
the x-axes of the first two rows of subplots in Fig. 2D). This anticorre-
lation is expected as the increased mtDNA% is likely to be associated
with cell breakout events. When a breakout occurs (due to the differ-
ences in copy numbers given by a single nucleus and several mito-
chondria by cell), generate an increase in the abundance of

Fig 2. Case examples showing the effect of omitting the mtDNA% QC filter in the analysis of scRNA-seq data. (A) t-SNE representation of all the cell populations included in

the dataset generated by excluding the mitochondrial genes from the list of highly variable genes before principal component analysis (PCA). Each dot represents a cell and

they are colored by cell type. (B) t-SNE representation of cell type used as an example colored in the function of the mtDNA% in each cell. Clusters reported by the PanglaoDB

are labeled. (C) Boxplot showing the distribution of the mtDNA% across clusters. The red line is the early established 5% threshold. (D) GSEA analysis of the Apoptosis path-

way between clusters with a high proportion of low-quality cells and others containing high-quality cells
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mitochondrial content, and reducing the reads that will be mapped to
nuclear genes, resulting in fewer genes’ expression detected. Indeed,
we found even a small increase of the mitochondrial content (compar-
ing cluster 19 and cluster 0 versus cluster 4) led to a huge decrease in
the number of expressed genes (>6000 genes versus �5000 genes, see
the first row of subplots in Fig. 2D). The number of genes included in
the GSEA analysis, in turn, influences the value of Normalized
Enrichment Score (NES), which is used to assess the significance of
the apoptosis pathway. Despite this influence, a positive NES value
was recovered in all the cases for the tested cardiomyocytes clusters,
as well as in the other two examples of mouse alveolar macrophages
(cluster 5 against others) and human endothelial cells (cluster 11
against others), suggesting a consistently higher expression (positive
log2 fold-change) of apoptotic pathway genes among cells with
mtDNA% above the threshold (Fig. 2D).

In summary, we reported a new set of mtDNA% reference values
across human and mice tissues and cell types for scRNA-seq QC
(Supplementary Tables S1–S4). Based on our analytical results, we sug-
gest a standardized mtDNA% threshold of 10% for scRNA-seq QC of
human samples. For mouse samples, we found that the early defined
threshold of 5% accurately discriminates between healthy and low-
quality cells, bringing to evidence that under a well-performed scRNA-
seq QC, clusters containing cells with high mtDNA% exhibiting signa-
tures of apoptosis, like those shown in the example datasets, should be
excluded from being used to make biological interpretations. Thus, we
suggest that all published mouse studies, in which scRNA-seq QC was
based on the mtDNA% value greater than 5%, should be re-evaluated
because the use of any mtDNA% higher than 5% is likely to be an
overshoot over the threshold, resulting in apoptotic cells being utilized
in the subsequent analyses.
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