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ICHs. In particular, oxidative stress has been impli-
cated in activation of MMP-9, which is known to be 
involved in the degradation of the extracellular matrix 
and cleavage of collagen IV, a key constituent of the 
basal membrane of cerebral vessels. To determine 
the role of MMP-9 activation in the genesis of ICHs, 
we induced hypertension in 20-month-old MMP-9 
null and age-matched control mice by angiotensin 
II and L-NAME treatment. Contrary to our hypoth-
esis, MMP-9 deficiency did not delay the onset or 
incidence of neurological consequences of hyperten-
sion-induced ICHs. Our results indicate that MMP-9 

Abstract  Clinical and experimental studies show 
that hypertension induces intracerebral hemorrhages 
(ICH), including cerebral microhemorrhages in the 
aged brain, which contribute to the pathogenesis of 
vascular cognitive impairment (VCI). Previous stud-
ies showed that aging increased oxidative stress-medi-
ated activation of matrix metalloproteinases (MMPs) 
that importantly contributes to the pathogenesis of 
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activation does not play a role in the age-related exac-
erbation of hypertension-induced ICH.

Keywords  Microbleed · Artery · Arteriole · 
Cerebral microhemorrhage · Stroke · Oxidative 
stress · Aging

Introduction

Stroke is the second most common cause of death 
in the European Union, the fourth leading cause of 
death in the USA, and one of the leading causes of 
long-term disability in both continents [1, 2]. Intrac-
erebral hemorrhages (ICH) account for approximately 
10–15% of all strokes, and mortality rates range from 
35 to 52% [3, 4]. Significant advances in magnetic 
resonance imaging (MRI) techniques (including T2* 
gradient-recall echo, susceptibility-weighted imaging 
MRI sequences) have allowed the detection of previ-
ously undetectable small ICH, termed cerebral micro-
hemorrhages, in elderly patients [5]. Cerebral micro-
hemorrhages are small (< 5  mm) vascular lesions 
associated with rupture of small intracerebral vessels, 
which contribute to cognitive decline [6, 7].

Advanced age and hypertension are the primary 
risk factors for the development of both larger ICH 
[8–10] and cerebral microhemorrhages [5, 11]. Inci-
dence of ICH increases in persons older than 55 years 
and doubles with each decade until age 80 years. The 
prevalence of cerebral microhemorrhages also sig-
nificantly increases with advanced age, from ~ 6.5% in 
persons aged 45 to 50  years to ~ 35 to 50% or more 
in older adults [11]. Recent data from rodent models 
extend the clinical observations, showing that aging 
and high blood pressure synergistically interact to 
exacerbate the genesis of ICHs [12]. Preclinical stud-
ies suggest that in addition to stiffening of the conduit 
arteries [13–17] and increased penetration of high 
pressure waves into the vulnerable distal portion of 
the cerebral microcirculation [18–29], aging likely 
promotes the development of ICHs and cerebral 
microhemorrhages by exacerbating vascular oxida-
tive stress and activation of matrix metalloproteinases 
(MMPs), which compromise the structural integrity 
of the cerebral vasculature [12]. Yet, the role of spe-
cific MMPs in increased susceptibility of the aged 
cerebral vasculature to rupture remains elusive.

MMP-9, also known as type IV collagenase or 
gelatinase B, is a collagenase enzyme involved in 
the degradation of the extracellular matrix [30, 31]. 
Aging associates with increased MMP-9 expression 
in many tissues, including the heart [32, 33] and the 
human aorta [34]. Increased MMP-9 activation has 
been causally linked to the genesis of ICH in various 
experimental murine models, including ICH associ-
ated with chronic hypertension and cerebral amyloid 
angiopathy [35–38]. Importantly, MMP-9 deletion 
and inhibition have been shown to confer protective 
effects in a range of animal models of cardiovascular 
disease [30].

The present study was designed to test the hypoth-
esis that MMP-9 contributes to the development of 
hypertension-induced ICH in aging mice. To test this 
hypothesis, we induced hypertension in aged mice 
with genetic depletion of MMP-9 and respective con-
trols (by treatment with angiotensin II [Ang-II] and 
the NO synthesis inhibitor L-NAME) and compared 
the incidence of neurological manifestations of ICH. 
Our previous studies demonstrate that the approach 
used in the present study, longitudinal analysis of 
hypertension-induced changes in the mouse neuro-
score, closely predict the incidence of histologically 
verified ICH in the mouse brain [12, 39, 40]. In aging, 
the activity of the vascular renin-angiotensin system 
is elevated. Moreover, hypertension in older adults 
can be successfully treated with angiotensin con-
verting enzyme inhibitors and angiotensin II recep-
tor blockers. Thus, aged mice with Ang-II-induced 
hypertension is a clinically highly relevant animal 
model to investigate hypertension-related cerebrovas-
cular alterations in the context of aging [21]. Previous 
studies by the Heistad laboratory [35, 41] and sub-
sequent investigations by our investigative team [12, 
39] showed that co-administration of L-NAME and 
Ang-II results in an ~ 15-mmHg additional increase 
in blood pressure, which associates with a significant 
increase in the incidence of ICH in the presence of 
underlying microvascular fragility.

Methods

Experimental animals

Male MMP-9 null mice were used from a breeding 
colony that originated with mice generated by Zena 
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Werb’s laboratory and backcrossed by Lynn Mat-
risian’s laboratory [42, 43]. Male C57BL/6  J mice 
purchased from Jackson Laboratories were used as 
the control group (n = 17).

Animals were identically housed in the Rodent 
Barrier Facility at OUHSC under specific pathogen-
free barrier conditions, on a 12-h light/12-h dark 
cycle, with access to standard rodent chow (Purina 
Mills, Richmond, IN) and water ad  libitum. Ani-
mals were randomized to groups, and investigators 
were blinded to group throughout the protocol.

Induction of spontaneous ICH

To study the effects of MMP-9 on hypertension-
induced intracerebral hemorrhages, we used a pre-
viously well-characterized mouse model [12, 35, 
41]. Briefly, in 20-month-old male MMP-9 deficient 
mice (n = 22) and respective age-matched control 
mice (n = 17), hypertension was induced by a com-
bination treatment with ω-nitro-L-arginine-methyl 
ether (L-NAME, 100 mg/kg/day, in drinking water) 
and administration of angiotensin II (Ang-II; s.c. via 
osmotic mini-pumps [Alzet Model 2006, 0.15 µl/h, 
42 days; Durect Co, Cupertino, CA]). Pumps were 
filled either with saline vehicle or solutions of angi-
otensin II (Sigma Chemical Co., St. Louis, Missouri, 
USA) delivered subcutaneously at 1  µg/min/kg of 
angiotensin II, thus generating two experimental 
groups: (1) wild type control + Ang-II + L-NAME 
and (2) MMP9−/− + Ang-II + L-NAME. Pumps 
were placed into the subcutaneous space of isoflu-
rane anesthetized mice through a small incision in 
the back of the neck that was closed with surgical 
sutures. All incision sites healed rapidly without 
the need for additional medication. Since aging is 
associated with increased activity of the vascular 
renin-angiotensin system and Ang-II-dependent 
hypertension is common among older individuals 
[44], Ang-II-dependent hypertension is a clinically 
highly relevant model to study aging-related cere-
brovascular alterations [21].

Blood pressure of the animals was recorded 
before the treatment and every second day during 
the treatment period using a tail-cuff blood pres-
sure machine (CODA Non-Invasive Blood Pres-
sure System, Kent Scientific Co., Torrington, CT), 

as described [12, 19, 21]. Each experimental group 
was closely monitored, and mice were sacrificed 
upon the occurrence of clinical signs of intracere-
bral hemorrhages.

All procedures were approved by the Institutional 
Animal Use and Care Committees of the University 
of Oklahoma Health Sciences Center.

Standardized neurological examination of mice

To assess the occurrence of clinical features of hem-
orrhages, daily neurological examination was per-
formed by assessing each animal’s spontaneous activ-
ity, symmetry in the movement of the four limbs, 
forelimb outstretching, climbing ability, body propri-
oception, response to vibrissae touch, and gait coor-
dination. Each examined animal was provided with a 
daily score calculated by the summation of all indi-
vidual test scores. When a consistent decline in the 
neurological score was observed or on day 11 of the 
study, mice were euthanized by CO2 asphyxiation.

Statistical analysis

Cumulative incidence of neurological signs of ICH 
was evaluated using a Kaplan–Meier test, and the dif-
ference among groups was analyzed by log-rank test 
(Mantel-Cox). A p value less than 0.05 was consid-
ered statistically significant.

Results

Incidence of neurological signs of 
hypertension‑induced ICHs in MMP‑9 null mice

Treatment with Ang-II plus L-NAME resulted in 
comparable increases in blood pressure both in 
MMP-9 null (149 ± 6 mmHg) and age-matched con-
trol wild-type mice (150 ± 5 mmHg).

We found that during the experimental period, 
35% of control mice and 77% of MMP-9 null mice 
developed clinically manifest signs of hypertension-
induced ICH, as assessed by neurological examina-
tion. The cumulative distribution curves for time-to-
event in the two groups were statistically different 
(log rank [Mantel-Cox] test; χ2 = 5.701; P = 0.017).
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Discussion

This is the first study to demonstrate that genetic 
MMP-9 deficiency does not ameliorate the incidence 
of neurological manifestations of hypertension-
induced ICHs in aged mice (Fig. 1).

Several lines of evidence suggest that both aging 
and hypertension upregulate MMP-9 in the vascu-
lature. First, increased expression of MMP-9 was 
reported in aorta samples derived from older adults 
[34]. Older patients with small vessel vascular demen-
tia also present with elevated levels of MMP-9 in the 
cerebrospinal fluid [45]. Interestingly, no increase in 
MMP-9 expression was found in smooth muscle cells 
derived from aged mice [46]. Second, Ang-II-induced 
hypertension in mice also increases MMP-9 activity 
in the cerebral vasculature due to increased levels of 
oxidative stress, which could potentially be linked 
to the genesis of ICHs [35, 41]. Finally, MMP-9 is 
upregulated in the brain after development of ICH, 
which has been linked to disruption of the blood brain 
barrier [47–51].

Contrary to the prediction based on our hypoth-
esis, our findings show that genetic depletion of 
MMP-9 does not prevent/delay neurological manifes-
tations of hypertension-induced ICHs in aged mice. 

These results are consistent with the concept that the 
cellular and molecular mechanisms responsible for 
increased susceptibility of aged cerebral microves-
sels to rupture are not dependent on the presence of 
MMP-9 and likely involve other MMPs. Genetic 
MMP-9 deficiency was also reported to enhance, 
rather than attenuate, collagenase-induced ICHs, 
brain injury, and mortality in mice [52]. This obser-
vation is also in line with our findings and refutes the 
idea that increased MMP-9 is a cause for increased 
incidence and mortality of ICH in aging.

In addition to MMP-9, a wide range of other 
MMPs are expressed in the cerebral arteries and the 
brain, which likely play complex roles in the patho-
genesis of ICHs. They are known to degrade collagen 
and elastin and other components of the basal lamina 
and extracellular matrix, compromising the struc-
tural integrity of the cerebral vasculature. Cerebral 
arteries express MMP-1 (collagens, types I, II, and 
III), MMP-2 (collagens I, II, III, IV, VII, X), MMP-3 
(collagens II, IV, IX, X, X), MMP-8 (collagens I, II, 
III, VII, VIII, X), MMP-12 (elastin, fibronectin, col-
lagen IV), and MMP-13 (collagens I, II, III, IV, IX, 
X, XIV). Previous studies demonstrate that aging is 
associated with MMP-2 expression in the human 
aorta [34, 53], mammary artery [54], and aortas of 
non-human primates [55] and rodent models [56–58]. 
MMP-3 and MMP-12 are also upregulated in the car-
diovascular system [59] and the brain [60] of aged 
mice. MMP-3 has also been linked to aging-induced 
vascular remodeling in humans [61]. Aging is also 
associated with the accumulation of senescent cells 
in the cerebral circulation [62]. Senescent cells can 
affect the surrounding tissue microenvironment, one 
of these effects is the senescence-associated secre-
tory phenotype (SASP), characterized by up-reg-
ulation and local the release of elastase and various 
MMPs (including MMP-1, MMP-3 and MMP-13), 
whose proteolytic activity can lead to focal weaken-
ing of the vascular wall, potentially creating loci of 
least resistance, promoting the genesis of ICHs and 
cerebral microhemorrhages. Further, in response to 
ICH, several MMPs were reported to be upregulated 
in the brain, which likely plays an important role in 
blood–brain barrier dysfunction, and thereby affect 
the extent of the neuronal damage and survival [52, 
63, 64]. At present, it is unclear how age-related 
changes in MMP expression alter susceptibility of 
cerebral vessels to pressure-induced rupture. There is 

Fig. 1   Genetic MMP-9 deficiency does not ameliorate, rather 
increases, the incidence of hypertension-induced intracerebral 
hemorrhages in aged mice. Shown are cumulative incidence 
curves for neurological signs of hypertension-induced intrac-
erebral hemorrhages in 20-month-old control (n = 17) and 
age-matched MMP-9 null mice (n = 22). In MMP-9 deficient 
mice, the incidence of ICHs was higher to that in control mice 
after induction of hypertension (log-rank test; Mantel-Cox; 
p = 0.017)

2614 GeroScience (2021) 43:2611–2619



1 3

strong evidence that in MMP-9 null mice, the expres-
sion of other MMPs is dysregulated [52], which may 
overcompensate the loss of MMP-9, altering micro-
vascular fragility and influencing bleeding and brain 
injury. In MMP-9 null mice, increased expression of 
MMP-2, MMP-3, MMP-8, and/or MMP-13 as well 
as TIMP-1 has been documented in various tissues, 
including cardiomyocyte s [65, 66].

Previously, advanced aging was found to exacer-
bate hypertension-induced generation of reactive oxy-
gen species (ROS) in cerebral vessels, suggesting that 
redox-sensitive MMP activation [35, 67] may poten-
tially contribute to the observed phenotype. This con-
cept is supported by the observations that increased 
hypertension-related MMP activation in the aged 
cerebral vasculature can be attenuated by antioxida-
tive treatments [12]. Increased hypertension-induced 
oxidative stress in aged arteries in murine models has 
been attributed to increased activation/expression of 
NAD(P)H oxidases (NOX enzymes), increased ROS 
production by mitochondrial sources, and age-related 
impairment of Nrf2-dependent cellular antioxidant 
defense pathways [12, 68–70]. Growing evidence 
suggests that inhibition of ROS generation by these 
sources can prevent/delay development of ICHs in 
models of aging, hypertension, [12, 35] and even Alz-
heimer’s disease [71].

The present study has important limitations. Sev-
eral animal models of hypertension have been used to 
investigate the effects of high blood pressure on the 
brain [72–79]. Although none of the aforementioned 
models can fully recapitulate the hemodynamic alter-
ations, vascular pathologies, and long-tern neurologi-
cal consequences associated with chronic presence 
of “essential” hypertension in humans, these experi-
mental models have proved to be valuable tools to 
elucidate the potential mechanisms underlying the 
susceptibility of the brain to hypertension-induced 
injury. The mouse model used in the present study 
(Ang-II plus L-NAME to induce hypertension), 
along with similar murine models, has been specifi-
cally developed to study the pathogenesis of hyper-
tension-induced ICHs [35, 41, 80]. It is an advantage 
of the model that due to the “aggressive” regimen of 
hypertension induction, the development of ICHs can 
be studied in a short time window. Although in the 
present study histological evaluation of ICHs has not 
been performed, previous studies demonstrated that 
the incidence of the neurological manifestations of 

ICHs closely correlates with the susceptibility of the 
cerebral microvasculature to rupture and the actual 
ICH burden 12, 40, 39].

In conclusion, our results do not support a key 
role for MMP-9 in the pathogenesis of hypertension-
induced ICHs in the aged mouse brain. Future stud-
ies should determine the role of specific MMPs in 
the genesis of ICHs using selective pharmacological 
inhibitors and inducible knockout mouse models. 
The causal link between increased oxidative stress, 
MMP activation and genesis of ICHs should also be 
determined.
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