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Abstract

Background: Mucus plugging can worsen asthma control, lead to reduced lung function 

and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and 

MUC5AC gene expression has been associated with development of airway obstruction and 

asthma exacerbations in urban children with asthma. However, the genetic determinants of 

MUC5AC expression are not established.

Objective: To assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC 
expression and relate to pulmonary functions in childhood asthma.

Methods: We used RNA-sequencing data from upper airway samples and performed cis-

expression quantitative trait loci (eQTL) and allele specific expression (ASE) analyses in two 

cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort 

and an exacerbation-prone asthma cohort. We further investigated inducible MUC5AC eQTLs 

during incipient asthma exacerbations. We tested significant eQTLs SNPs for associations with 

lung function measurements and investigated their functional consequences in DNA regulatory 

databases.

Results: We identified two independent groups of SNPs in the MUC5AC gene that were 

significantly associated with MUC5AC expression. Moreover, these SNPs showed stronger eQTL 

associations with MUC5AC expression during asthma exacerbations, consistent with inducible 

expression. SNPs in one group also showed significant association with decreased pulmonary 

functions. These SNPs included multiple EGR1 transcription factor binding sites suggesting a 

mechanism of effect.

Conclusions: These findings demonstrate the applicability of organ specific RNA-sequencing 

data to determine genetic factors contributing to a key di6sease pathway. Specifically, they suggest 

important genetic variations that may underlie propensity to mucus plugging in asthma and could 

be important in targeted asthma phenotyping and disease management strategies.

Capsule summary:

Our results add new information regarding the role of MUC5AC genotypes in childhood asthma 

pathogenesis in populations with high disease burden and suggest genetic predictors for targeted 

phenotyping and management strategies focused on mucin dysregulation.

Keywords

Asthma; Expression quantitative trait; MUC5AC

Introduction

Estimates of asthma heritability range from 35-90%, but genome-wide association studies 

(GWAS) only account for a minor fraction of the observed heritability1–4. This is likely 

due in part to the racial, phenotypic, and molecular heterogeneity of asthma, but also to the 

limitations of GWAS approaches4. Moreover, the functional consequences of many asthma 
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risk variants found by GWAS are incompletely understood5–9. Investigation of molecular 

and phenotypic consequences of genetic variation in or near genes implicated in asthma 

pathogenesis, and in targeted high-risk populations, can provide important new insights into 

the genetics of asthma with potential implications for population and personalized disease 

management.

Urban populations have increased asthma prevalence, suboptimal response to asthma 

therapies, and are more likely to have reduced lung function as they age10–13. Our previous 

studies highlighted MUC5AC overexpression as a specific characteristic in children who 

develop recurrent wheezing, high levels of allergic sensitization, and progressive loss 

of lung function during childhood14, and as a gene upregulated in the airways during 

incipient asthma exacerbations in children with exacerbation-prone disease15. Understanding 

genetic factors contributing to MUC5AC induction is critical given that overproduction can 

impair mucociliary transport and lead to mucus plugging16, 17, which is the most common 

pathologic feature in patients with fatal asthma18–20 and is a feature of severe disease in 

adult asthma21. Furthermore, genotypes in the MUC5AC region of chromosome 11 have 

recently been associated with asthma in adult European populations22, 23

We therefore hypothesized that MUC5AC genotypes could differentially regulate its 

expression in the airway, in particular during acute exacerbations of asthma. To test this 

hypothesis, we leveraged RNA-sequencing data from airway samples from two urban, 

predominantly Black and Hispanic cohorts of children to both genotype individuals and then 

perform combined expression quantitative trait loci (eQTL) and confirmatory allele specific 

expression (ASE) analyses from samples collected during disease control and during asthma 

exacerbations.

Methods

Study design and sample composition:

The URECA birth cohort study started enrollment in 2005 in urban neighborhoods with 

high rates (>20%) of poverty in Baltimore, Boston, New York City, and St. Louis as 

previously described.24 Pregnant women, whose children were at high risk for developing 

asthma due to a history of asthma, allergic rhinitis, or eczema in the mother or father, were 

recruited prenatally. Written informed consent was obtained from the families, and assent 

was obtained for children at ages 7 years and older. Asthma diagnosis was determined 

at age 10 and nasal cells were obtained at age 11 by brushing the anterior turbinate 

with a cytology brush. RNA was extracted and sequenced to analyze gene expression as 

previously described14 in 318 participants used for this analysis (Table 1); in brief total 

RNA was isolated from nasal epithelial brushes in RLT Plus lysis buffer (Qiagen) by using 

a Qiashredder column (Qiagen) and RNeasy mini kits (Qiagen). RNA-sequencing libraries 

were constructed from total RNA using SMART-Seq v4 Ultra Low Input RNA Kit (Takara) 

and single-read sequencing was carried out on a HiSeq2500 sequencer (illumina), using 

a HiSeq SBS v4 Kit to generate 58-base reads. This data is publicly available at Gene 

Expression Omnibus (GEO) accession number GSE145505.
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The MUPPITS study recruited children with established exacerbation-prone asthma between 

2015 and 2017 across urban sites in 9 U.S. cities: Boston, New York, Detroit, Denver, 

Washington D.C., Chicago, Dallas, Cincinnati, and St. Louis, as previously described15. 

In brief, a participant was eligible for enrollment if he or she: was 6 to 17 years of age; 

was diagnosed with asthma by a clinician greater than 1 year prior to recruitment; had 

at least 2 asthma exacerbations in the prior year (defined as a requirement for systemic 

corticosteroids (SCS) and/or hospitalization); was treated with at least fluticasone 250 mcg 

1 puff twice daily or its equivalent for those aged 6 to 11 years, or treated with at least 

fluticasone-salmeterol 250/50 meg 1 puff twice daily or its equivalent for those aged 12 

years and older; had peripheral blood eosinophils ≥ 150 per mm3; was a non-smoker; 

lived in a census tract with a density of ≥1000 families per square mile and at least 10% 

of families with income below the poverty level. Participants were followed prospectively 

for respiratory illnesses, during which they returned to the study site twice in the 6-day 

period after the start of symptoms for collection of nasal lavage samples and pulmonary 

function testing. An exacerbation illness was defined based on whether the participant was 

treated with SCS within 10 days following the onset of respiratory symptoms or not. RNA 

was extracted from nasal lavage samples and sequenced to analyze gene expression as 

previously described15 in 106 participants used for this analysis (Table 1); in brief, total 

RNA was isolated from nasal cell pellets in RNAprotect Saliva Reagent (Qiagen) by using 

a Qiashredder column (Qiagen) and RNeasy mini kits (Qiagen). Sequencing libraries were 

constructed from total RNA using TruSeq RNA Sample Preparation Kits v2 (illumina) and 

single-read sequencing was carried out on a HiSeq2500 sequencer (illumina), using a HiSeq 

SBS v4 Kit to generate 58-base reads. These data are publicly available at GEO accession 

number GSE115824.

SNP determination and validation:

RNA-sequencing reads were first mapped to the GRCh38.p10 reference genome using the 

STAR aligner (v2.4.2a). Base calls were made at all SNP positions listed in NCBI dbSNP 

Build 151 using samtools (v1.7) with the arguments ‘samtools mpileup -f $grch38FastaFile 

-B -C 50 -d 250 -I $dbSnp151 Bedfile -q 30 -Q 13 -g -e 20 -h 100 -L 250 -o 40 

$alignmentFile -o $bcfCallFile’. The call files were converted to VCF format and filtered 

to exclude sites where fewer than 10 reads aligned using bcftools (v1.9). SNPs were further 

filtered to select those with at least 2 different genotypes represented among cohort subjects. 

MUPPITS SNPs and libraries were filtered to require at least 75% concordance in calls 

among libraries from the same donor and any non-concordant libraries were removed from 

the analysis. For 149 participants in the URECA cohort who previously had DNA-based 

microarray genotyping using an illumina Custom 3000 platform (550,224 variants), 8,568 

overlapping SNPs were compared between RNA-based and DNA-based calls and found to 

be 99.2% concordant.

Statistical analyses:

SNPs spanning the MUC5AC gene, spanning from the transcriptional start site to the 

transcriptional end site (chr11:1157953-1201138), were used for eQTL analysis. SNPs 

were filtered to those genotyped in >50% of the URECA cohort and checked that they 

satisfied Hardy-Weinberg equilibrium by the chi square goodness-of-fit test with 2 degrees 
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of freedom (Benjaminin-Hochberg [BH] false discovery rate adjusted p-value [FDR]>0.05) 

using the HardyWeinberg R package25. MUC5AC expression was associated to SNP 

genotypes using a weighted linear model using the limma R package and empirical Bayes 

method26, 27 and considering each allele under an additive effect (0, 1, or 2 minor alleles). 

For multiallelic sites, any minor allele was counted as 1. For the URECA cohort, the 

model was adjusted for cell percentages in the sample and study site, which contributed 

to gene expression variability, as previously described14. For the MUPPITS cohort, the 

model was adjusted for cell percentages, study site, viral positivity, age, sequencing depth 

and a random effect for individual, which contributed to gene expression variability as 

previously described15. In both cohorts further adjusting for self-reported race gave very 

similar results, so race was not included in the final models. Multiple testing corrections 

were performed using the BH method and significant eQTL SNPs were defined as those 

with a FDR<0.05. Pairwise r2 measures of linkage disequilibrium (LD) were calculated 

among significant SNPs for each cohort using the LDheatmap R package28. A Euclidean 

distance matrix was constructed from the r2 values in URECA and used for hierarchical 

clustering using the average method (hclust function in R), which divided SNPs into 3 

cluster groups (called A, B, or other). Group A and B representative SNPs were selected 

from the eQTL significant SNPs as those with highest percentages of calls to avoid potential 

bias by smaller sample sizes. These SNP groups were assessed for independent eQTL 

effects by performing conditional analyses in which we included the representative SNP or 

SNPs (0, 1, or 2 minor alleles) as covariates in the eQTL linear model and investigated 

the effect on the remaining SNPs. In the MUPPITS cohort, the interaction effect between a 

representative SNP and exacerbation status was determined by adding an interaction term to 

the linear model. ASE was assessed by calculating the number of counts of the minor allele 

divided by the total counts (minor and major allele) within each individual heterozygous 

at a given SNP. Significance was determined using a binomial test and the log2 allelic 

fold change (log2-aFC) was calculated as the log2-ratio between the expression of the 

minor allele compared to the major allele in heterozygotes and reported on a non-log scale 

(aFC)29. Associations between a group-representative SNP and FEV1/FVC and FEV1 % 

predicted values were tested using a linear model adjusted for sex (URECA) or sex and age 

(MUPPITS); all URECA participants were the same age (10 years) at the time of pulmonary 

function assessment.

SNP functional assessment:

Functional consequences of the identified significant SNPs were assessed by investigating 

amino acid changes using dbSNP30, transcriptional regulatory consequences in ENCODE 

and ORegAnno using the UCSC genome browser interface31–35, and predicted protein 

functional effects in Meta-SNP36 and Polyphen-237.

Comparison to DNA genotyping data:

LD between the group A or group B representative SNP to previously published non-coding 

SNPs was performed by examining DNA-sequencing based genotypes of those published 

SNPs in a subset of 243 (76.4%) individuals in the URECA cohort. LD was computed 

between these SNPs as described above using the LDheatmap R package28.
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Results

MUC5AC SNPs associated with its expression in a high asthma risk birth cohort

The URECA cohort consists of urban children who are predominantly Black and Hispanic 

with high rates of poverty. By age 10 years, 29.5% of these children had a diagnosis 

of asthma (Table 1). 86 SNPs within the MUC5AC gene were identified from nasal 

brush RNA-sequencing data for eQTL analysis. 43 of these showed a significant eQTL 

association with MUC5AC expression (FDRs<0.05) (Figure 1a, Table 2). Clustering of 

SNPs by LD (r2), as well as conditional eQTL analyses demonstrated that there were 

at least two groups of SNPs each independently associated with MUC5AC expression 

(Figure 1b, Supplementary Figure 1, Supplementary Table 1). Group A contained 10 

SNPs; at each group A SNP, individuals homozygous for the major allele showed the 

lowest MUC5AC expression levels, with an increase according to number of minor 

alleles (eQTL β-coefficients=0.12 to 0.21). Representative of group A, rs1132436 (eQTL 

β-coefficient=0.20; FDR=−1.63E-4), had a minor allele frequency of 35.6% and explained 

5.4% of variance of MUC5AC expression in this population (Figure 1c). ASE, assessed 

by RNA copy number in heterozygotes, confirmed significantly higher expression of the 

minor allele with an allelic fold change (aFC)=2.25 at rs1132436 (p<2E-16) (Figure 1d). 

Group B contained 29 SNPs and at each SNP the minor allele was associated with decreased 

MUC5AC expression (eQTL β-coefficients = −0.13 to −0.31). Representative of group B, 

rs1292198170 (β-coefficient=−0.28, FDR=1.9E-3), had a minor allele frequency of 13.0% 

and accounted for 3.1 % of variance of MUC5AC expression (Figure 1e). ASE confirmed 

lower expression of the minor allele with an aFC=0.42 (p<2E-16) (Figure 1f). rs1132436 

in group A and rs1292198170 in group B showed an additive effect and together accounted 

for 7.9% of variance of MUC5AC expression (Figure 1g). The remaining 4 significant SNPs 

had low LD with the group A or B SNPs and with one another, and all had relatively low 

minor allele frequencies (<2.8%) so were not investigated further.

MUC5AC SNPs showed an inducible effect on its expression during asthma exacerbations

To validate these results and assess their relevance to asthma exacerbations, we conducted 

eQTL and ASE analyses in the MUPPITS cohort, a demographically similar population 

to URECA, but consisting entirely of children with established, exacerbation-prone asthma 

(Table 1)15. Participants had nasal lavage samples collected during respiratory illnesses, 

which were used for RNA-sequencing. 24 MUC5AC SNPs were detected in this dataset, 

predominantly near the 3’ end of the gene. Among the group A SNPs, 7 of 10 were detected, 

5 of which were significantly associated with MUC5AC expression (FDR<0.05); the other 

two showed similar trends (FDRs=0.07 and 0.12) (Figure 2a). eQTL effect sizes were larger 

in this dataset (rs1132436, β-coefficient=0.57; FDR=8.9E-3) compared to those estimated 

in URECA (Table 2). Conditional eQTL analysis and LD assessment demonstrated similar 

co-dependence among group A SNPs in this population (Supplemental Figure 2, Figure 2b, 

Supplementary Table 2).

Because the MUPPITS samples were collected during respiratory illnesses, we could test the 

effects of asthma exacerbations on the observed eQTLs. The MUC5AC eQTL association 

at group A SNP rs1132436 was significantly greater during respiratory illnesses that led 
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to asthma exacerbations relative to uncomplicated upper respiratory illnesses (ΔFC=2.42, 

p=5.7E-6) (Figure 2c), which accounted for the overall larger effect sizes observed in 

this population. During exacerbations, rs1132436 explained 20.3% of variance in gene 

expression as compared to 1.0% of variance during limited upper respiratory illnesses. ASE 

confirmed significantly higher expression of the minor allele in heterozygotes (p=4.0E-5) 

(Figure 2d), and the aFC was higher during exacerbations (aFC=2.4) compared to limited 

upper respiratory illnesses (aFC=1.4).

Identification of group B SNPs, which are closer to the 5’ end of the gene, was limited in the 

MUPPITS cohort because of library preparation method. We were able to identify genotypes 

at the group B SNP rs1292198170 in only 31.4% of the population. Likely due in part to 

the small sample size, neither this SNP nor other group B SNPs reached an eQTL FDR 

cutoff <0.05, but similar to URECA rs1292198170 showed a trend towards lower expression 

in heterozygotes (β-coefficient=−0.90, FDR=0.24). Despite the small sample size, we did 

observe a statistically significant inducible eQTL effect at this SNP during respiratory 

illnesses that led to asthma exacerbations relative to uncomplicated upper respiratory 

illnesses (ΔFC=0.27, p=3.9E-3) (Figure 2e). During exacerbations, rs1292198170 explained 

5.2% of variance as compared to <1% of variance during limited upper respiratory illnesses. 

Similarly, ASE was significant in heterozygotes (p=8.0E-3) and the overall aFC was 0.32 

(Figure 2f).

Together these two SNPs showed an additive inducible eQTL effect (Figure 2g) and 

explained 42.4% of variance during exacerbations as compared to 9.7% of variance during 

limited upper respiratory illnesses in the subset of the population with identifiable SNPs at 

both positions (30.4% of the population).

MUC5AC SNPs associated with pulmonary functions

We investigated the relationship of these SNPs with pulmonary function measures in 

each cohort. In the URECA cohort, the minor allele at rs1132436 (group A) was 

significantly associated with lower FEV1/FVC values (β-coefficient−1.33, p=1.8E-2) 

(Figure 3a) and showed a non-significant trend towards lower FEV1 % predicted (β-

coefficient=−1.74, p=0.13). The minor allele at rs1292198170 (group B) showed a non-

significant trend towards higher values of FEV1/FVC (β-coefficient=1.45, p=0.10) and 

FEV1 % predicted (β-coefficient=2.58, p=0.16). In the MUPPITS cohort, rs1132436 

(group A) was also associated with lower lung function as measured by both FEV1/FVC 

(β-coefficient=−1.64, p=4.0E-2) and FEV1 % predicted (β-coefficient=−5.71, p=2.2E-2) 

(Figure 3b). rs1292198170 (group B) did not show a relationship with pulmonary functions 

in the MUPPITS cohort (p-values>0.75), perhaps due in part to the small sample size 

genotyped at this SNP.

Functional inference of MUC5AC eQTL SNPs

To investigate potential functional consequences of the identified SNPs, we examined 

nucleotide and amino acid changes in dbSNP, DNA regulatory elements in ENCODE and 

ORegAnno through the UCSC genome browser, and predicted mutational consequences in 

Meta-SNP and Polyphen-2 (Table 2)30–37. DNA binding and regulatory elements spanning 
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these SNPs revealed 4 Early Growth Response 1 (EGR1) transcription factor binding sites, 

2 in group A and 2 in group B, as well as 3 CpG islands in group A. 16 of the significant 

SNPs lead to missense mutations, 4 in group A and 12 in group B. Predictions of functional 

consequences varied across tools with one missense mutation in block A and 3 in block B 

predicted as deleterious by at least one of the tools (Table 2).

LD of MUC5AC eQTL SNPs with prior disease associated SNPs

Using DNA genotype data from a subset of the URECA population (243 individuals, 76.4% 

of the population), we examined the LD between the SNPs identified in our study and non-

coding MUC5AC SNPs previously associated with asthma or cystic fibrosis (CF) severity. 

rs11602802, which was previously associated with moderate-severe asthma in European 

ancestry22, was not in LD with either group of SNPs (rs1132436 r2 = 0.08, rs1292198170 r2 

= 0.004) in our sample. rs12788104, which was significantly associated with adult asthma in 

British white individuals23, was in weak LD with group A but not group B SNPs (rs1132436 

r2 = 0.37, rs1292198170 r2 = 0.008). rs28514396, a MUC5AC intronic variant associated 

with CF severity38 was in LD with group A but not group B SNPs (rs1132436 r2 = 1, 

rs1292198170 r2 = 0.09).

Discussion

MUC5AC hypersecretion plays a pathogenic role in asthma through its relation to airway 

hyperresponsiveness and mucus plugging. In this study, we used RNA-sequencing data 

from airway samples to derive genotyping information and perform combined eQTL and 

ASE analyses focused on the MUC5AC region in two cohorts of predominantly African-

American and Hispanic children using samples when children were well, and during 

incipient asthma exacerbations. We report two distinct groups of genetic polymorphisms 

in MUC5AC that independently relate to its expression, at least one of which is also 

significantly associated with decreased lung function. Moreover, we show that the effects 

of these SNPs on MUC5AC expression are increased during respiratory illnesses that result 

in asthma exacerbation, suggesting that inducible overexpression during exacerbations could 

contribute to exacerbation pathophysiology in genetically susceptible individuals. Functional 

assessment of these SNPs suggests potential causal effects, most notably they may alter 

EGR1 transcription factor binding.

Interestingly, despite long standing recognition of the role of mucus hypersecretion in 

asthma, GWAS studies have only recently linked specific MUC5AC polymorphisms, 

rs1160280222 and rs1278810423, to asthma. These studies were restricted to individuals 

of European ancestry and the observed associations were with moderate-to-severe and adult-

onset asthma. This relatively recent discovery of MUC5AC as an asthma risk locus may be 

due in part to the specificity of this finding to moderate-severe asthma, but may also be due 

in part to incomplete mapping of the MUC5AC gene until 201439.

There was previously a large gap in the MUC5AC sequence including its large central exon, 

which spanned nearly all of the SNPs identified in the current study. These SNPs were 

missing from the data used in each of these prior GWAS studies. Since rs11602802 is not in 

LD with either group of our identified eQTL SNPs, it presumably has an independent effect 

Altman et al. Page 8

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in relation to asthma risk or may be specific to European populations. rs12788104 was in 

weak LD with group A SNPs in our URECA population, so may represent an overlapping 

genetic risk to that identified in our study. However, since the URECA cohort includes 

children with and without asthma, our results suggest that the identified group A and B 

SNPs are MUC5AC eQTLs independent of a diagnosis of asthma. Hence these SNPs may 

be more relevant to the pathophysiologic endotype of asthma than the risk of developing 

asthma. Consistent with our results, two prior targeted gene association studies have linked 

SNPs in LD with group A with pulmonary diseases: the non-synonymous coding SNP, 

rs1132440 in group A was modestly associated with bronchitis, wheeze, and asthma in a 

British cohort40, and the intronic SNP, rs28514396 (r2=1 with rs1132436 in URECA) was 

associated with severity of lung disease in CF38.

Prior work has shown EGR1 is an essential transcription factor for the expression of 

MUC5AC in airway epithelium41, 42, and it is upregulated in airway epithelium in a 

model of respiratory virus infection43. These lead us to hypothesize that the MUC5AC 
eQTLs in known EGR1 binding sites disrupt its binding as the most likely mechanism 

for the eQTL effects. Alternatively, given the number of missense mutations among the 

identified MUC5AC SNPs, it is also plausible that these altered codons could affect gene 

expression, protein function or both44 and may thereby contribute to the observed eQTLs 

and/or associations with pulmonary function. Interestingly, the group A SNPs have been 

shown to be in high LD with an insertion in the central exon encoding tandem repeats of 

an eight-amino-acid repeat rich in proline, threonine, and serine (PTS-TR domains)38, 39. 

These domains are characteristic of mucin proteins and are heavily glycosylated. The group 

A SNPs are thus indicative of a higher molecular weight and highly glycosylated protein 

that may play an important role in mucus plug formation38, 39, 45, which may functionally 

contribute to the associations observed with pulmonary function.

An important limitation of our study is that it assessed links between genotype, 

mRNA expression in the upper airway, and pulmonary physiology. Linking these genetic 

polymorphisms to lower airway MUC5AC protein expression and/or lung imaging 

consistent with mucus plugging16, 21 will help validate the pathogenic importance of these 

SNPs. Additionally, in vitro studies will be necessary to further investigate the functional 

effects of these SNPs to prove their mechanisms of effect. Our results suggest these as 

important next studies that can fully define the relevance of MUC5AC genotypes in the 

pathology of asthma, as well as potentially in other “muco-obstructive” lung diseases46.

An important technical strength of our work is demonstration of the synergistic value of 

utilizing RNA-sequencing derived genotypes, organ specific gene expression, and sampling 

during disease exacerbation to gain novel insights into genetic contributions to a disease. 

These allowed for combined eQTL, ASE, and induction analyses to determine genetic 

factors contributing to a key pathway in asthma. We anticipate that the insights described 

in this study can lead to a more personalized understanding of asthma pathogenesis. 

Ideally, this will lead to strategies targeting mucus hypersecretion in genetically at-risk 

individuals as a way to reduce risk of disease inception and progression as well as risk of 

exacerbation47.
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In conclusion, our results add important new and detailed information regarding the role of 

MUC5AC genotypes in childhood asthma pathogenesis, demonstrating their direct effect on 

gene expression, relationships to pulmonary physiology, and identifying etiologies of their 

effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FEV1 Forced Expiratory Volume in one second

FVC Forced Vital Capacity
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Key Messages:

• Multiple MUC5AC SNPs associated with its expression and two independent 

groups of SNPs showed additive eQTL effects.

• By examining MUC5AC expression during respiratory illnesses, we showed 

an inducible increase in expression during asthma exacerbations according to 

genotype.

• By investigating DNA regulatory elements, we identified possible 

mechanisms for the observed associations of these SNPs.
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Figure 1. 
MUC5AC SNPs showed an eQTL effect in the URECA cohort

a, The locus zoom plot for the URECA cohort showing eQTLs. Among the 86 cis SNPs 

detected, 43 showed significant association with MUC5AC expression (FDR< 0.05). Points 

are colored according to the minor allele frequency of the SNP and the point size reflects 

the percent of study subjects with a call at that SNP. b, An LD matrix shows the pairwise r2 

values among these 86 SNPs. c, For the block A representative SNP, rs1132436, MUC5AC 
gene expression was increased according to the number of minor alleles. d, ASE of 
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heterozygotes at rs1132436 showed an increased proportion of minor allele reads. e, For 

the block B representative SNP, rs1292198170, MUC5AC gene expression was decreased 

in heterozygotes. f, ASE of heterozygotes at rs1292198170 showed a decreased proportion 

of minor allele reads. g, Genotypes at rs1132436 and rs1292198170 showed an additive 

effect on MUC5AC expression. Boxplots show mean values, interquartile ranges, and 1.5 

interquartile ranges.
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Figure 2. 
MUC5AC SNPs showed an inducible eQTL effect during asthma exacerbations in the 

MUPPITS cohort

a, The locus zoom plot for the MUPPITS cohort showing eQTLs. Among the 24 cis SNPs 

detected, 5 showed significant association with MUC5AC expression (FDR<0.05). Points 

are colored according to the minor allele frequency of the SNP and the point size reflects 

the percent of study subjects with a call at that SNP. b, An LD matrix shows the pairwise r2 

values among these 24 SNPs. c, For the block A representative SNP rs1132436, MUC5AC 
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gene expression was increased according to the number of minor alleles and showed an 

inducible eQTL effect during exacerbations compared to non-exacerbation samples. d, ASE 

of heterozygotes at rs1132436 showed an increased proportion of minor allele reads. e, 

For the block B representative SNP, rs1292198170, MUC5AC gene expression showed a 

non-significant (FDR=0.24) decrease in heterozygotes relative to homozygotes and showed 

an inducible eQTL effect during exacerbations compared to non-exacerbation samples 

(p=3.9E-3). f, ASE of heterozygotes at rs1292198170 showed a decreased proportion of 

minor allele reads. g, Genotypes at rs1132436 and rs1292198170 showed an additive 

effect on MUC5AC expression. Boxplots show mean values, interquartile ranges, and 1.5 

interquartile ranges.
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Figure 3. 
MUC5AC SNP rs1132436 showed a significant association with pulmonary function in both 

URECA and MUPPITS.

a, The FEV1/FVC ratio was significantly associated with the genotype at the block A 

representative SNP rs1132426 in the URECA cohort. b, Both the FEV1/FVC ratio and FEV1 

% predicted were significantly associated with the genotype at the block A representative 

SNP rs1132426 in the MUPPITS cohort. Boxplots show mean values, interquartile ranges, 

and 1.5 interquartile ranges.
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Table 1.

Demographics of URECA and MUPPITS cohorts.

Cohort population characteristics

URECA MUPPITS

Sex

Female 151 (47.5%) 52 (49%)

Male 167 (52.5%) 54 (51%)

Race

African-American, non-Hispanic 233 (73.3%) 57 (53.8%)

Hispanic 59 (18.5%) 36 (33.9%)

Other, non-Hispanic 26 (8.2%) 13 (12.3%)

Age in years, mean 10* 10.8 [6-17]

Diagnosis

Asthma 94 (29.5%) 106 (100%)

No asthma 224 (70.5%) -

ICS use 64 (20.1%) 106 (100%)

Pulmonary function

FEV1/FVC, mean 82.7% [59.7% - 98.2%] 76.0% [57.2-96.0%]

FEV1 percent predicted 99.2% [62.2% - 139.1%] 91.7% [42.3-136.9%]

Gestational age in weeks 38.8 [34 - 42] Not collected

BMI percentage 69.2% [0.8% - 99.8%] 78.2% [0.9% - 99.9%]

Number of allergen sensitizations 3.2 [0 - 13] 4.7 [0 - 15]

City of residence

Baltimore 92 (28.9%) -

Boston 74 (23.2%) 14 (13.2%)

Chicago - 7 (6.6%)

Cincinnati - 7 (6.6%)

Dallas - 8 (7.5%)

Denver - 13 (12.3%)

Detroit - 14 (13.2%)

New York 57 (17.9%) 23 (21.7%)

St. Louis 95 (32.6%) 13 (12.3%)

Washington DC - 6 (5.7%)

Shown are the population characteristics of the URECA and MUPPITS cohorts. Shown are counts of mean values. () indicate percentage of the 
population. [ ] indicate ranges of values in the population.

*
URECA children were all age 10 at the time of pulmonary function assessment and asthma diagnosis, and were age 11 at time of nasal brush 

collection. BMI is body mass index; ICS is inhaled corticosteroid.

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Altman et al. Page 22

Ta
b

le
 2

.

Tw
o 

in
de

pe
nd

en
t b

lo
ck

s 
of

 S
N

Ps
 s

ho
w

 a
n 

eQ
T

L
 e

ff
ec

t o
n 

M
U

C
5A

C

SN
P

U
R

E
C

A
 c

oh
or

t 
re

su
lt

s
M

U
P

P
IT

S 
co

ho
rt

 r
es

ul
ts

SN
P

 d
et

ai
ls

R
si

d
C

hr
om

os
om

al
 

po
si

ti
on

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

12
92

19
81

70
 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
12

92
19

81
70

F
D

R
, 

rs
11

32
43

6 
co

nd
it

io
ne

d

L
D

 R
2 

vs
 

rs
11

32
43

6
F

D
R

, d
ua

l 
co

nd
it

io
ne

d 
rs

11
32

43
6 

+ 
rs

12
92

19
81

70

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

11
32

43
6 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
11

32
43

6
B

as
e 

ch
ng

C
od

on
 c

ha
ng

e
M

ut
at

io
na

l 
co

ns
eq

ue
nc

e
A

m
in

o 
ac

ed
 

ch
an

ge

M
et

a-
SN

P
 

pr
ed

ic
ti

on

P
ol

yp
he

 
n-

2
D

N
A

 
el

em
en

ts
 

in
 r

eg
io

n

G
ro

up
 A

rs
11

32
43

6
11

99
74

1
95

.9
%

35
.6

%
1.

48
E

-0
4

0.
19

9
9.

87
E

-0
3

0.
08

6
N

A
N

A
N

A
71

.7
%

36
.8

%
8.

89
E

-0
3

0.
57

4
N

A
N

A
C

>
T

[C
C

G
]>

[C
T

G
]

M
is

se
ns

e
P5

52
1L

N
eu

tr
al

N
eu

tr
al

no
ne

rs
11

32
44

0
12

00
59

1
98

.4
%

35
.3

%
2.

80
E

-0
4

0.
20

7
9.

87
E

-0
3

0.
08

2
2.

26
E

-0
1

0.
98

6
8.

10
E

-0
1

70
.8

%
38

.2
%

1.
42

E
-0

2
0.

54
9

N
A

1.
00

0
G

>
C

[C
G

G
]>

[C
G

C
]

Sy
no

ny
m

ou
s

C
pG

 is
la

nd
 

C
pG

 
da

ta
ba

se

rs
28

63
32

54
11

99
37

3
98

.1
%

35
.4

%
1.

75
E

-0
4

0.
21

2
9.

87
E

-0
3

0.
08

9
5.

66
E

-0
1

0.
97

2
8.

99
E

-0
1

69
.8

%
36

.5
%

3.
04

E
-0

3
0.

66
5

4.
95

E
-0

1
0.

97
7

C
>

T
[C

C
C

]>
[C

C
T

]
Sy

no
ny

m
ou

s
E

G
R

1 
T

F 
bi

nd
in

gs
ite

, 
O

R
eg

A
nn

o

rs
11

32
43

4
11

95
26

5
96

.2
%

35
.8

%
4.

37
E

-0
4

0.
18

3
2.

79
E

-0
2

0.
09

8
9.

08
E

-0
1

0.
97

2
8.

99
E

-0
1

50
.0

%
34

.9
%

1.
42

E
-0

2
0.

63
6

1.
00

E
+

00
1.

00
0

G
>

C
[C

A
G

]>
[C

A
C

]
M

is
se

ns
e

Q
51

48
H

N
eu

tr
al

N
eu

tr
al

no
ne

rs
13

79
99

77
65

11
88

91
4

97
.2

%
35

.9
%

3.
48

E
-0

4
0.

20
0

2.
79

E
-0

2
0.

09
6

8.
28

E
-0

1
0.

96
4

9.
65

E
-0

1
-

-
-

-
-

-
G

>
A

[C
G

C
]>

[C
A

C
]

M
is

se
ns

e
R

35
90

H
N

eu
tr

al
D

el
et

er
io

us
no

ne

rs
28

41
51

93
11

95
21

4
96

.2
%

35
.6

%
2.

86
E

-0
4

0.
19

4
1.

07
E

-0
2

0.
08

1
3.

81
E

-0
1

0.
95

0
8.

10
E

-0
1

43
.4

%
41

.3
%

6.
77

E
-0

2
0.

50
9

1.
00

E
+

00
1.

00
0

G
>

A
[A

C
G

]>
[A

C
A

]
Sy

no
ny

m
ou

s
C

pG
 

is
la

nd
, 

C
pG

 
da

ta
ba

se

rs
11

32
43

3
11

94
35

4
96

.2
%

36
.3

%
1.

22
E

-0
3

0.
16

0
6.

29
E

-0
2

0.
08

3
2.

64
E

-0
1

0.
93

8
8.

10
E

-0
1

31
.1

%
48

.5
%

2.
21

E
-0

2
0.

68
0

4.
95

E
-0

1
0.

95
8

G
>

A
[A

C
G

]>
[A

C
A

]
Sy

no
ny

m
ou

s
C

pG
 

is
la

nd
, 

E
G

R
1 

T
F 

bi
nd

in
g 

si
te

rs
87

89
89

39
2

11
82

58
3

58
.2

%
43

.2
%

1.
07

E
-0

2
0.

11
3

6.
29

E
-0

2
0.

08
2

7.
45

E
-0

1
0.

89
4

8.
99

E
-0

1
-

-
-

-
-

-
C

>
G

, 
T

[C
C

C
]>

[G
C

C
],

 
[C

C
C

]>
[T

C
C

]
M

is
se

ns
e

P1
48

0A
, 

P1
48

0S
N

eu
tr

al
, 

N
eu

tr
al

N
o 

pr
ed

ic
tio

n
no

ne

rs
28

50
38

75
11

96
90

2
96

.2
%

44
.4

%
1.

84
E

-0
2

0.
12

1
4.

05
E

-0
1

0.
11

2
7.

96
E

-0
1

0.
69

0
9.

65
E

-0
1

51
.9

%
46

.4
%

1.
20

E
-0

1
0.

35
1

5.
50

E
-0

1
0.

62
3

A
>

G
[C

C
A

]>
[C

C
G

]
Sy

no
ny

m
ou

s
no

ne

rs
99

63
72

48
7

11
72

51
1

66
.0

%
28

.8
%

1.
48

E
-0

4
0.

19
3

3.
28

E
-0

3
0.

05
8

1.
39

E
-0

1
0.

49
4

8.
10

E
-0

1
-

-
-

-
-

-
C

>
A

[G
G

C
]>

[G
G

A
]

Sy
no

ny
m

ou
s

no
ne

G
ro

up
 B

rs
12

92
19

81
70

11
91

33
3

99
.4

%
13

.0
%

1.
68

E
-0

3
−

0.
28

1
N

A
N

A
1.

30
E

-0
2

0.
08

6
N

A
31

.1
%

9.
1%

2.
45

E
-0

1
−

0.
90

5
4.

95
E

-0
1

0.
18

6
C

>
A

[G
C

C
]>

[G
C

A
]

Sy
no

ny
m

ou
s

no
ne

rs
11

99
86

97
54

11
85

03
3

94
.7

%
14

.6
%

1.
22

E
-0

3
−

0.
21

4
9.

02
E

-0
1

0.
88

8
8.

96
E

-0
3

0.
10

9
9.

55
E

-0
1

-
-

-
-

-
-

T
>

A
[T

C
T

]>
[T

C
A

]
Sy

no
ny

m
ou

s
no

ne

rs
14

66
01

22
70

11
88

35
7

81
.8

%
14

.0
%

2.
56

E
-0

3
−

0.
18

6
4.

79
E

-0
1

0.
87

9
6.

46
E

-0
2

0.
11

5
8.

10
E

-0
1

-
-

-
-

-
-

C
>

T
[A

C
C

]>
[A

C
T

]
Sy

no
ny

m
ou

s
no

ne

rs
14

69
47

09
21

11
85

76
7

95
.9

%
13

.8
%

6.
02

E
-0

4
−

0.
26

0
5.

19
E

-0
1

0.
84

3
8.

44
E

-0
3

0.
09

5
8.

10
E

-0
1

-
-

-
-

-
-

C
>

A
[A

C
C

]>
[A

A
C

]
M

is
se

ns
e

T
25

41
N

N
eu

tr
al

N
o 

pr
ed

ic
tio

n
no

ne

rs
12

48
95

89
55

11
90

66
6

98
.7

%
15

.4
%

2.
60

E
-0

4
−

0.
27

8
2.

32
E

-0
1

0.
83

0
8.

96
E

-0
3

0.
11

1
8.

25
E

-0
1

18
.9

%
7.

5%
7.

16
E

-0
1

−
0.

31
9

4.
95

E
-0

1
0.

24
2

C
>

T
[A

C
A

]>
[A

TA
]

M
is

se
ns

e
T

41
74

I
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Altman et al. Page 23

SN
P

U
R

E
C

A
 c

oh
or

t 
re

su
lt

s
M

U
P

P
IT

S 
co

ho
rt

 r
es

ul
ts

SN
P

 d
et

ai
ls

R
si

d
C

hr
om

os
om

al
 

po
si

ti
on

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

12
92

19
81

70
 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
12

92
19

81
70

F
D

R
, 

rs
11

32
43

6 
co

nd
it

io
ne

d

L
D

 R
2 

vs
 

rs
11

32
43

6
F

D
R

, d
ua

l 
co

nd
it

io
ne

d 
rs

11
32

43
6 

+ 
rs

12
92

19
81

70

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

11
32

43
6 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
11

32
43

6
B

as
e 

ch
ng

C
od

on
 c

ha
ng

e
M

ut
at

io
na

l 
co

ns
eq

ue
nc

e
A

m
in

o 
ac

ed
 

ch
an

ge

M
et

a-
SN

P
 

pr
ed

ic
ti

on

P
ol

yp
he

 
n-

2
D

N
A

 
el

em
en

ts
 

in
 r

eg
io

n

rs
12

22
08

04
19

11
87

32
0

95
.9

%
15

.1
%

6.
09

E
-0

4
−

0.
22

9
9.

02
E

-0
1

0.
82

7
8.

96
E

-0
3

0.
11

4
8.

99
E

-0
1

-
-

-
-

-
-

A
>

G
[A

G
C

]>
[G

G
C

]
M

is
se

ns
e

S3
05

9G
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

rs
13

30
73

59
19

11
90

68
4

98
.7

%
15

.3
%

7.
37

E
-0

4
−

0.
24

9
2.

28
E

-0
1

0.
82

3
1.

24
E

-0
2

0.
11

0
8.

25
E

-0
1

22
.6

%
16

.7
%

1.
20

E
-0

1
−

0.
84

5
4.

95
E

-0
1

0.
36

9
C

>
T

[G
C

C
]>

[G
T

C
]

M
is

se
ns

e
A

41
80

V
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

rs
12

69
24

32
87

11
88

44
6

97
.2

%
14

.6
%

8.
65

E
-0

4
−

0.
22

9
6.

29
E

-0
1

0.
82

3
8.

96
E

-0
3

0.
11

6
8.

99
E

-0
1

-
-

-
-

-
-

C
>

T
[C

C
T

]>
[C

T
T

]
M

is
se

ns
e

P3
43

4L
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

rs
13

65
38

87
25

11
84

48
8

96
.5

%
14

.8
%

1.
24

E
-0

3
−

0.
22

4
8.

22
E

-0
1

0.
82

0
8.

96
E

-0
3

0.
11

8
8.

25
E

-0
1

-
-

-
-

-
-

A
>

G
[A

A
C

]>
[G

A
C

]
M

is
se

ns
e

N
21

15
D

N
eu

tr
al

N
eu

tr
al

no
ne

rs
14

62
65

11
35

11
88

93
5

95
.0

%
15

.4
%

1.
48

E
-0

4
−

0.
27

0
8.

22
E

-0
2

0.
81

9
7.

03
E

-0
3

0.
11

6
8.

10
E

-0
1

-
-

-
-

-
-

G
>

A
[C

G
G

]>
[C

A
G

]
M

is
se

ns
e

R
35

97
Q

N
eu

tr
al

D
el

et
er

io
us

no
ne

rs
14

03
45

28
53

11
85

58
4

96
.2

%
15

.2
%

2.
60

E
-0

4
−

0.
25

0
5.

18
E

-0
1

0.
81

6
7.

03
E

-0
3

0.
12

6
8.

25
E

-0
1

-
-

-
-

-
-

C
>

T
[G

C
T

]>
[G

T
T

]
Sy

no
ny

m
ou

s
no

ne

rs
13

91
78

07
61

11
88

42
2

97
.8

%
14

.3
%

9.
20

E
-0

3
−

0.
18

7
9.

39
E

-0
1

0.
80

9
6.

16
E

-0
2

0.
11

5
8.

44
E

-0
1

-
-

-
-

-
-

G
>

C
[C

G
T

]>
[C

C
T

]
M

is
se

ns
e

R
34

26
P

N
eu

tr
al

N
o 

pr
ed

ic
tio

n
no

ne

rs
35

77
98

73
11

97
48

2
93

.1
%

13
.9

%
6.

28
E

-0
3

−
0.

18
4

5.
55

E
-0

1
0.

75
0

9.
57

E
-0

2
0.

09
6

8.
10

E
-0

1
45

.3
%

13
.5

%
4.

41
E

-0
1

−
0.

35
1

4.
95

E
-0

1
0.

22
1

C
>

T
[G

T
C

]>
[G

T
T

]
Sy

no
ny

m
ou

s
no

ne

rs
14

44
69

37
15

11
88

65
3

78
.6

%
13

.0
%

1.
48

E
-0

4
−

0.
31

1
8.

47
E

-0
1

0.
74

4
7.

03
E

-0
3

0.
14

4
8.

99
E

-0
1

-
-

-
-

-
-

G
>

A
[A

G
C

]>
[A

A
C

]
M

is
se

ns
e

S3
50

3N
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

rs
13

68
70

43
31

11
90

02
5

98
.4

%
11

.2
%

1.
90

E
-0

3
−

0.
27

5
6.

29
E

-0
1

0.
73

2
1.

30
E

-0
2

0.
10

5
8.

99
E

-0
1

-
-

-
-

-
-

C
>

A
[A

C
C

]>
[A

C
A

]
Sy

no
ny

m
ou

s
no

ne

rs
35

91
56

89
11

97
92

5
87

.4
%

16
.0

%
7.

04
E

-0
4

−
0.

20
5

8.
17

E
-0

1
0.

72
8

1.
80

E
-0

2
0.

13
3

9.
92

E
-0

1
52

.8
%

16
.1

%
1.

49
E

-0
1

-0
.5

17
4.

95
E

-0
1

0.
24

7
C

>
G

[C
C

C
]>

[C
C

G
]

Sy
no

ny
m

ou
s

no
ne

rs
34

83
16

88
11

98
94

5
97

.5
%

16
.6

%
7.

32
E

-0
4

−
0.

22
6

5.
40

E
-0

1
0.

70
2

4.
14

E
-0

2
0.

11
9

8.
31

E
-0

1
63

.2
%

14
.2

%
7.

05
E

-0
1

−
0.

11
3

4.
95

E
-0

1
0.

17
0

C
>

T
[G

A
C

]>
[G

A
T

]
Sy

no
ny

m
ou

s
E

G
R

1 
T

F 
bi

nd
in

g 
si

te
, 

O
R

eg
A

nn
o

rs
35

78
36

51
11

63
02

9
80

.5
%

15
.2

%
2.

79
E

-0
3

−
0.

18
2

6.
29

E
-0

1
0.

69
1

6.
16

E
-0

2
0.

09
4

8.
99

E
-0

1
-

-
-

-
-

-
C

>
G

[A
G

C
]>

[A
G

G
]

M
is

se
ns

e
S2

21
R

D
is

ea
se

N
o 

pr
ed

ic
tio

n
E

G
R

1 
T

F 
bi

nd
in

g 
si

te
, 

O
R

eg
A

nn
o

rs
28

69
12

31
11

64
45

6
76

.7
%

16
.2

%
2.

27
E

-0
3

−
0.

18
0

8.
47

E
-0

1
0.

68
8

8.
91

E
-0

2
0.

11
9

8.
99

E
-0

1
-

-
-

-
-

-
C

>
T

[T
G

C
]>

[T
G

T
]

Sy
no

ny
m

ou
s

no
ne

rs
13

38
0

12
01

10
5

98
.7

%
13

.9
%

8.
65

E
-0

4
−

0.
25

1
3.

39
E

-0
1

0.
67

2
1.

20
E

-0
2

0.
10

8
8.

44
E

-0
1

73
.6

%
11

.5
%

5.
26

E
-0

1
−

0.
18

9
4.

95
E

-0
1

0.
17

7
A

>
C

3 
Pr

im
e 

U
T

R
 V

ar
ia

nt
no

ne

rs
87

91
85

39
1

11
76

63
3

81
.4

%
16

.0
%

1.
13

E
-0

3
−

0.
19

1
7.

70
E

-0
1

0.
62

8
4.

09
E

-0
2

0.
15

1
9.

87
E

-0
1

-
-

-
-

-
-

C
>

T
[G

C
C

]>
[G

C
T

]
Sy

no
ny

m
ou

s
no

ne

rs
87

91
22

88
2

11
76

54
0

82
.1

%
13

.6
%

3.
57

E
-0

2
−

0.
13

4
9.

02
E

-0
1

0.
62

7
2.

26
E

-0
1

0.
10

9
8.

99
E

-0
1

-
-

-
-

-
-

C
>

T
[T

G
C

]>
[T

G
T

]
Sy

no
ny

m
ou

s
no

ne

rs
36

13
22

81
11

77
26

9
78

.3
%

15
.3

%
1.

12
E

-0
2

−
0.

15
0

6.
60

E
-0

1
0.

62
7

1.
39

E
-0

1
0.

12
6

8.
99

E
-0

1
-

-
-

-
-

-
T

>
C

[T
T

T
]>

[T
T

C
]

Sy
no

ny
m

ou
s

no
ne

rs
36

14
21

59
11

76
98

2
82

.1
%

16
.1

%
2.

15
E

-0
2

−
0.

13
7

8.
22

E
-0

1
0.

61
8

2.
21

E
-0

1
0.

16
1

8.
25

E
-0

1
-

-
-

-
-

-
C

>
T

[T
G

C
]>

[T
G

T
]

Sy
no

ny
m

ou
s

no
ne

rs
13

01
0

12
01

05
1

99
.4

%
20

.7
%

1.
24

E
-0

3
−

0.
21

6
4.

20
E

-0
1

0.
53

6
1.

39
E

-0
1

0.
15

0
8.

99
E

-0
1

84
.9

%
17

.8
%

4.
67

E
-0

1
−

0.
19

1
6.

08
E

-0
1

0.
22

4
A

>
C

3 
Pr

im
e 

U
T

R
 V

ar
ia

nt
no

ne

rs
30

87
56

2
12

00
75

9
98

.4
%

20
.4

%
7.

55
E

-0
3

™
0.

17
1

6.
70

E
-0

1
0.

51
8

9.
57

E
-0

2
0.

15
3

8.
99

E
-0

1
70

.8
%

16
.7

%
4.

83
E

-0
1

−
0.

20
0

4.
95

E
-0

1
0.

23
6

C
>

T
3 

Pr
im

e 
U

T
R

 V
ar

ia
nt

no
ne

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Altman et al. Page 24

SN
P

U
R

E
C

A
 c

oh
or

t 
re

su
lt

s
M

U
P

P
IT

S 
co

ho
rt

 r
es

ul
ts

SN
P

 d
et

ai
ls

R
si

d
C

hr
om

os
om

al
 

po
si

ti
on

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

12
92

19
81

70
 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
12

92
19

81
70

F
D

R
, 

rs
11

32
43

6 
co

nd
it

io
ne

d

L
D

 R
2 

vs
 

rs
11

32
43

6
F

D
R

, d
ua

l 
co

nd
it

io
ne

d 
rs

11
32

43
6 

+ 
rs

12
92

19
81

70

%
 

su
bj

s 
w

it
h 

ca
ll

M
in

or
 

A
lle

le
 

F
re

q

F
D

R
E

ff
ec

t 
si

ze
F

D
R

, 
rs

11
32

43
6 

co
nd

it
io

ne
d

L
D

 R
2 

vs
 

rs
11

32
43

6
B

as
e 

ch
ng

C
od

on
 c

ha
ng

e
M

ut
at

io
na

l 
co

ns
eq

ue
nc

e
A

m
in

o 
ac

ed
 

ch
an

ge

M
et

a-
SN

P
 

pr
ed

ic
ti

on

P
ol

yp
he

 
n-

2
D

N
A

 
el

em
en

ts
 

in
 r

eg
io

n

rs
11

34
7

12
01

09
9

99
.1

%
20

.2
%

1.
33

E
-0

3
−

0.
21

1
4.

90
E

-0
1

0.
48

7
1.

43
E

-0
1

0.
15

5
8.

99
E

-0
1

77
.4

%
15

.2
%

4.
69

E
-0

1
−

0.
20

6
4.

95
E

-0
1

0.
22

8
C

>
T

3 
Pr

im
e 

U
T

R
 V

ar
ia

nt
no

ne

rs
55

86
13

05
11

61
52

9
67

.3
%

9.
1%

1.
24

E
-0

3
−

0.
26

6
4.

56
E

-0
1

0.
40

5
3.

05
E

-0
2

0.
06

4
8.

10
E

-0
1

-
-

-
-

-
-

G
>

T
[G

T
C

]>
[T

T
C

]
M

is
se

ns
e

V
52

F
N

eu
tr

al
D

el
et

er
io

us
no

ne

rs
12

22
88

62
76

11
90

06
4

94
.0

%
6.

0%
3.

60
E

-0
2

−
0.

22
9

7.
70

E
-0

1
0.

31
7

2.
47

E
-0

1
0.

08
8

9.
65

E
-0

1
-

-
-

-
-

-
C

>
A

, 
T

[C
A

C
]>

[C
A

A
],

 
[C

A
C

]>
[C

A
T

]
M

is
se

ns
e,

 
Sy

no
ny

m
ou

s
H

39
73

Q
N

eu
tr

al
N

o 
pr

ed
ic

tio
n

no
ne

O
th

er

rs
12

04
27

98
23

11
91

30
5

96
.9

%
2.

8%
7.

71
E

-0
4

−
0.

52
9

8.
22

E
-0

2
0.

14
1

3.
00

E
-0

2
0.

01
9

8.
10

E
-0

1
19

.8
%

9.
5%

2.
45

E
-0

1
−

1.
14

7
5.

50
E

-0
1

0.
20

3
C

>
T

[T
C

T
]>

[T
T

T
]

M
is

se
ns

e
S4

38
7F

N
eu

tr
al

D
el

et
er

io
us

no
ne

rs
34

81
58

53
11

97
92

7
87

.1
%

1.
3%

3.
13

E
-0

2
0.

43
9

2.
19

E
-0

1
0.

00
9

1.
48

E
-0

1
0.

02
7

8.
10

E
-0

1
-

-
-

-
-

-
C

>
A

[G
C

G
]>

[G
A

G
]

M
is

se
ns

e
A

53
53

E
N

eu
tr

al
D

el
et

er
io

us
no

ne

rs
34

47
42

33
11

97
92

6
86

.8
%

1.
3%

3.
16

E
-0

2
0.

43
7

2.
19

E
-0

1
0.

00
9

1.
48

E
-0

1
0.

02
7

8.
10

E
-0

1
-

-
-

-
-

-
G

>
A

[G
C

G
]>

[A
C

G
]

M
is

se
ns

e
A

53
53

T
N

eu
tr

al
N

eu
tr

al
no

ne

rs
28

40
35

37
11

67
98

0
83

.0
%

1.
3%

4.
25

E
-0

2
0.

40
5

2.
32

E
-0

1
0.

00
9

1.
86

E
-0

1
0.

02
7

8.
10

E
-0

1
-

-
-

-
-

-
C

>
T

[G
C

G
]>

[G
T

G
]

M
is

se
ns

e
A

49
7V

N
eu

tr
al

N
eu

tr
al

no
ne

T
he

 4
3 

si
gn

if
ic

an
t e

Q
T

L
 S

N
Ps

 f
ro

m
 th

e 
U

R
E

C
A

 c
oh

or
t a

re
 li

st
ed

, d
iv

id
ed

 in
to

 2
 in

de
pe

nd
en

t g
ro

up
s,

 A
 a

nd
 B

, b
as

ed
 o

n 
L

D
 a

nd
 c

on
di

tio
na

l a
na

ly
se

s.
 F

or
 e

ac
h 

SN
P 

w
e 

lis
t t

he
 c

hr
om

os
om

al
 p

os
iti

on
, 

pe
rc

en
t o

f 
su

bj
ec

ts
 c

al
le

d 
at

 th
at

 S
N

P,
 a

nd
 m

in
or

 a
lle

le
 f

re
qu

en
cy

 in
 th

e 
po

pu
la

tio
n.

 T
he

 β
-c

oe
ff

ic
ie

nt
 a

nd
 F

D
R

 v
al

ue
s 

ar
e 

sh
ow

n,
 a

s 
w

el
l a

s 
th

e 
FD

R
 a

ft
er

 e
ac

h 
co

nd
iti

on
al

 a
na

ly
si

s 
an

d 
th

e 
r2

 w
ith

 th
e 

SN
P 

us
ed

 to
 r

ep
re

se
nt

 th
e 

gr
ou

p.
 T

he
 a

na
lo

go
us

 r
es

ul
ts

 a
re

 p
re

se
nt

ed
 w

ith
 th

es
e 

SN
Ps

 in
 th

e 
M

U
PP

IT
S 

co
ho

rt
 w

ith
 b

la
nk

s 
in

di
ca

tin
g 

SN
Ps

 th
at

 c
ou

ld
 n

ot
 b

e 
ca

lle
d 

in
 th

e 
M

U
PP

IT
S 

co
ho

rt
. T

he
 b

as
e 

an
d 

am
in

o 
ac

id
 c

ha
ng

es
 a

re
 s

ho
w

n,
 a

s 
w

el
l a

s 
th

e 
id

en
tif

ie
d 

D
N

A
 r

eg
ul

at
or

y 
el

em
en

ts
 a

t t
ha

t p
os

iti
on

, a
nd

 f
un

ct
io

na
l p

re
di

ct
io

ns
 o

f 
am

in
o 

ac
id

 c
ha

ng
es

.

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 December 01.


	Abstract
	Capsule summary:
	Introduction
	Methods
	Study design and sample composition:
	SNP determination and validation:
	Statistical analyses:
	SNP functional assessment:
	Comparison to DNA genotyping data:

	Results
	MUC5AC SNPs associated with its expression in a high asthma risk birth cohort
	MUC5AC SNPs showed an inducible effect on its expression during asthma exacerbations
	MUC5AC SNPs associated with pulmonary functions
	Functional inference of MUC5AC eQTL SNPs
	LD of MUC5AC eQTL SNPs with prior disease associated SNPs

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

