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Abstract

Motivation: Associated with genomic features like gene expression, methylation and genotypes, used in statistical
modeling of health outcomes, there is a rich set of meta-features like functional annotations, pathway information
and knowledge from previous studies, that can be used post hoc to facilitate the interpretation of a model. However,
using this meta-feature information a priori rather than post hoc can yield improved prediction performance as well
as enhanced model interpretation.

Results: We propose a new penalized regression approach that allows a priori integration of external meta-features.
The method extends LASSO regression by incorporating individualized penalty parameters for each regression coeffi-
cient. The penalty parameters are, in turn, modeled as a log-linear function of the meta-features and are estimated from
the data using an approximate empirical Bayes approach. Optimization of the marginal likelihood on which the empiric-
al Bayes estimation is performed using a fast and stable majorization–minimization procedure. Through simulations,
we show that the proposed regression with individualized penalties can outperform the standard LASSO in terms of
both parameters estimation and prediction performance when the external data is informative. We further demonstrate
our approach with applications to gene expression studies of bone density and breast cancer.

Availability and implementation: The methods have been implemented in the R package xtune freely available for
download from https://cran.r-project.org/web/packages/xtune/index.html.

Contact: lewinger@usc.edu

1 Introduction

Predicting outcomes based on genomic biomarkers, such as gene ex-
pression, methylation and genotypes, are becoming increasingly im-
portant for individualized risk assessment and treatment (Kamel and
Al-Amodi, 2017). As an example, consider predicting mortality
from breast cancer after surgical treatment based on gene expression
profiles (Nuyten et al., 2006). Since genomic studies typically have
more available features than subjects, a common approach to de-
velop prediction models based on genomic features is to use regular-
ized regression methods, which can handle high-dimensional data.
In addition to regularization, sparsity inducing regression
approaches, such as the LASSO can also perform feature selection.
In the context of genomic studies, feature selection is critical for
yielding interpretable models that provide insight into potential bio-
logical mechanisms and which can, in turn, facilitate adoption by
practitioners. To enhance model interpretability, it is common to
examine features selected in a model in relation to available infor-
mation about gene function and previous studies. For example, anal-
yses can be conducted to formally assess whether the selected
features are enriched in particular metabolic pathways or gene
ontology annotations. This kind of post hoc analysis relating

genomic features to existing knowledge about them, hereafter
referred to as genomic meta-features, can provide valuable biologic-
al insight and validation for a prediction model. In this article, we
propose a new approach that exploits genomic meta-features a pri-
ori rather than post hoc, to improve prediction performance and fea-
ture selection, and to enhance the interpretability of models
developed using penalized regression.

To incorporate meta-features into the model building process,
our main idea is to use the penalty parameters in penalized regres-
sion as the instrument. Commonly, most regularized regression
methods apply a single global penalty parameter to all regression
coefficients, effectively treating all features or predictors equally in
the model building process. This may result in over-shrinking of im-
portant coefficients and under-shrinking of unimportant ones, with
a corresponding loss in prediction ability. We extend the standard
LASSO regression to allow for penalty terms that depend on exter-
nal meta-features. Specifically, rather than using a single penalty
parameter to control the amount of shrinkage for all regression coef-
ficients, our model allows each coefficient to have its own individual
penalty parameter, which is, in turn, modeled as a log linear func-
tion of the meta-features. Some examples of prior knowledge
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include (i) gene function annotation from databases like the Gene
Ontology Project (Ashburner et al., 2000); (ii) gene–disease
co-occurrence scores from text-mining biomedical abstracts
(Pletscher-Frankild et al., 2014; Rouillard et al., 2016); (iii) deleteri-
ous somatic mutations in the Catalogue of Somatic Mutations in
Cancer (COSMIC) (Forbes et al., 2011). We focus on the LASSO
penalty because of its widespread use but address potential exten-
sions to other penalties in the discussion.

Previously, other variants of LASSO regression have been intro-
duced to allow either coefficient-specific penalties or multiple tuning
parameters. Yuan and Lin (2006) proposes group LASSO that extends
LASSO to grouped predictors. The adaptive LASSO proposed by Zou
(2006) also adjusts the penalty individually for each coefficient by
using a vector of adaptive weights. The group LASSO applies only to
grouping variables, and the adaptive LASSO uses pre-specified weights
obtained from the initial estimate of the coefficients using the same
data as the data used for regression. Neither of these approaches incor-
porates a general set of meta-features. Boulesteix et al. (2017) pro-
posed the integrative LASSO with penalty factors method that assigns
different penalty factors to different data modalities such as gene ex-
pression, methylation and copy number. They use cross-validation to
choose the penalty parameters based on prediction performance. In
practice, the number of different modalities they can allow is up to
four, due to computational bottle-neck.

In addition to those above, several other methods have been pro-
posed previously to make use of prior knowledge of the features.
Tharmaratnam et al. (2016) suggests using biologic knowledge to
derive a set of features that could replace the gene set by chosen by
LASSO with minimal loss in predictive power. However, ‘experts’
are required to assess the importance of each gene. Tai and Pan
(2007) partitions the features into groups and shrink the features of
different groups by different magnitudes. Shrinkage for groups is
considered fixed and arbitrary but is not data-dependent, and the
use of an external dataset only provides information on the grouping
of predictors. van de Wiel et al. (2016) proposes an adaptive group-
regularized ridge regression that accounts for group structure as the
group LASSO and allows group-specific penalties. However, the
method requires partitioning of the features into different groups,
and the external information is only used for guiding the partition.
The approach proposed by Bergersen et al. (2011) is also in the form
of the adaptive LASSO. Instead of constructing weights from the
same data X and Y, they use the Spearman correlation coefficients
or the ridge regression coefficients between the features X and exter-
nal information as the penalty weights.

Our approach is distinguished from these methods in that (i) we
adopt an empirical Bayes approach to estimate the hyperparameters
instead of cross-validation, which allows us to estimate feature-
specific tuning parameters; (ii) the magnitude of the penalty terms
are modeled as a log-linear function of the external information and
are estimated from a ‘second-level’ regression; (iii) our approach is
not restricted to meta-features that define feature groupings but can
handle meta-features of any type including quantitative ones.

2 Materials and methods

2.1 Model specification
We start by considering a standard linear regression model
Y ¼ Xbþ�, where Y is the vector of observed responses for n sub-
jects, X is an n�p matrix of genomic features, and � represents in-
dependent errors with zero expectation and a common variance r2.
The LASSO regression shrinks the regression coefficients by impos-
ing a L1 penalty on the sum of absolute value of regression coeffi-
cients (Tibshirani, 1996). The objective function of LASSO is:

minb2RpfjjY �Xbjj22 þ k
Xp

j¼1

jbjjg: (1)

The tuning parameter k controls the strength of regularization:
with a larger value of k, more regression coefficients b are shrunk

toward zero. The choice of k determines feature selection and is key
to achieve good model performance.

Our method extends the objective function of LASSO to allow
each coefficient bj to have its own individual penalty parameter kj,
which is in turn modeled as a log-linear function of the meta-
features. The objective function of external information tuned
(xtune) LASSO is:

minb2RpfjjY �Xbjj22 þ
X

kj

p

j¼1

jbjjg

k ¼ eZa;

(2)

where k ¼ ðk1; . . . ; kpÞ is a vector of tuning parameters, Z is the
meta-feature data of dimension p�q, a is the second level coeffi-
cients of dimension q� 1 that links external information Z to indi-
vidual penalties k. Note that the standard LASSO and the adaptive
LASSO are two special cases of our model, corresponding to the
case where Z is a single column of 1 s and Z the identity matrix of
dimension p�p, respectively.

Fitting of xtune LASSO consists of two steps: (i) choose the pen-
alty parameters vector k and (ii) estimate the regression coefficients
b given k. The second step is easy to implement using standard soft-
wares, such as the glmnet package in the R language (Friedman
et al., 2010). For the first step, cross-validation is commonly used to
select the single penalty parameter for standard lasso. However,
with potentially a large number of penalty parameters to tune,
cross-validation is not feasible for xtune LASSO. On the other hand,
most penalized regression approaches have a Bayesian interpretation
which provides a natural way to allow multiple tuning parameters
and incorporate external information.

LASSO regression can be equivalently formulated as a Bayesian
or random effects model where the coefficients are modeled with a
double exponential (a.k.a. Laplace) prior distribution condition on
r2 (Tibshirani, 1996). Assuming that the distribution of the response
variable Y conditional on the regression coefficients b and r2 follows
a normal distribution, the LASSO coefficient estimates that solves
Equation (1) can be equivalently characterized as the posterior
mode, or maximum a posteriori (MAP) in a Bayesian model with
the a double exponential prior distribution for b conditional on r2.
The regression coefficients b that minimize the xtune LASSO object-
ive function in Equation (2) is equivalent to the MAP estimator
bMAP under the Bayesian formulation shown in Equation (3), which
is conditional on r2. Therefore, we select the penalty parameter vector
k for xtune LASSO in Equation (2) by estimating k as hyperparameters
under the Bayesian formulation of xtune LASSO in Equation (3).

YjX; b�NðXb; r2InÞbjjr2� Double Exponentialð0; kj

2r2
Þ;

8j ¼ 1;2; ::; p
k ¼ eZa:

(3)

The variance of the double exponential prior in the Bayesian for-

mation of xtune LASSO in Equation (3) is 2=
kj

2r2

� �2

. Thus, kj con-

trols how far away from zero bj can vary, i.e. the amount of
shrinkage for coefficient bj. A large kj implies a small bj in magni-
tude. The hyperparameter ak models in turn how the degree of
shrinkage kj varies with the value of meta-feature k for feature k, zkj.

Specifically, because kj ¼ ea0 e
Pq

k¼1
akzjk ; k0 ¼ ea0 can be interpreted

as the overall level of shrinkage across all regression coefficients.
The hyperparameters ak;k>0 control the individual degree of shrink-
age, above or below the overall level given by k0, that is applied to
coefficient bj. A positive ak indicates that features with positive
(negative) values of zk should be shrunk more (less) relative to the
overall level of shrinkage k0. Similarly, a negative ak indicates that
features with positive (negative) values of zk should be shrunk less
(more) relative to the overall level of shrinkage k0. A zero ak indi-
cates that meta-feature k does not affect the shrinkage of the regres-
sion coefficients. Thus, the hyperparameters ak determine the
importance of meta-feature k in determining the magnitude of the
regression coefficients. The population variance parameter r2 can
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be estimated from the data or given a point-mass prior (Li and Lin,
2010). In this article, we estimate r2 using the method proposed by
Reid et al. (2016) and assume it is ‘set in advance’. Park and
Casella (2008) and Li and Lin (2010) used a specification that
assigned a non-informative prior for r2 and used a Gibbs sampler
based on full conditional distributions to obtain regression coeffi-
cients estimates. Our method is different in that, rather than
extending the model to include Bayesian inference over the hyper-
parameters, we use an empirical Bayes approach that maximizes
the log-likelihood of the hyperparameters. That is, the hyperpara-
meters a are estimated from the data by first marginalizing over
the coefficients b and then performing what is commonly referred
to as empirical Bayes, evidence maximization or type-II maximum
likelihood (Tipping, 2001).

2.2 Empirical Bayes parameter tuning
The empirical Bayes of hyperparameters a (hence k) is obtained by
maximizing the marginal likelihood calculated by integrating out
the random effects b from the joint distribution of Y and b. The mar-
ginal likelihood of a is given by:

LðaÞ ¼
Ð
R

p LðYjX; bÞfðbjkðaÞÞdb

¼
ð
R

p
NðYjXb; r2InÞDouble Exponentialðbj0; aÞdb

¼
ð
R

p

Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

ðYi�XibÞ2

2r2

Yp
j¼1

expðZjaÞ
4r2

e�
expðZjaÞ

2r2 jbj j; (4)

When X is not orthogonal, the marginal likelihood resulting
from the p-dimensional integral in Equation (4) does not have a us-
able closed-form solution. Foster et al. (2008) proposes using a
Laplace approximation to the integral which has simple close-form
solution. Motivated by their approach, we propose a simpler new
approximation which uses a normal distribution with the same prior
variance to approximate the double exponential distribution. That
is, we use a normal distribution bj � Nð0; 2

s2
j

Þ to approximate the
double exponential distribution bj � Double ExponentialðsiÞ, yields
closed-form solution for the approximated marginal likelihood:

YjX;b�NðXb; Inr2Þ

b�Nð0;V�1Þ; (5)

where V ¼ diagðg1; . . . gpÞ ¼ diagð k
2r2Þ

2
=2Þ

�
.

Therefore, the approximate log marginal negative likelihood of a

integrating out b is:

�‘ðaÞ ¼ log jCaj þYTC�1
a Y (6)

where Ca ¼ r2I þXV�1XT . The approximated log likelihood (6) is
then maximized to obtain a estimates. Once a known, hence the
penalty parameters vector k known, the glmnet package in the R
language is used to implement the LASSO with given penalty vector.

2.3 Marginal likelihood maximization
The objective function given by the negative marginal log-likelihood
(Equation 6) is non-convex, making it intrinsically a challenging
problem. We note that the approximated model (Equation 5) is
closely related to the model specification of the Automatic
Relevance Determination (ARD) (MacKay, 1992; Neal, 1995;
Tipping, 2001) method widely used in the field of signal processing.
Wipf and Nagarajan (2008, 2010) described a Majorization
Minimization (MM) procedure that uses a reformulation of ARD to
optimize the non-convex optimization function by solving a series of
easier re-weighted L1 problem. Motivated by their idea, we propose
an iterative re-weighted L2 optimization algorithm described in de-
tail below. Note that this non-convex optimization problem is a spe-
cial case of the difference of convex functions (DC) problem (Le Thi
and Pham Dinh, 2018).

The log-determinate term log jCaj is a concave function in a

(Boyd and Vandenberghe, 2004). A majorization function of it is its
slope at the current value a of log jCaj:

h ¼ ra log jCaj ¼ diag½XTC�1
a X�: (7)

The YTC�1
a Y term in Equation (6) is convex. Therefore, at

current value of a, the majorization function for �‘ðaÞ is
‘hðaÞ¢hT 1

g þ YTC�1
a Y. Given h; a is updated by:

a argmin
a

‘hðaÞ¢hT 1

g
þ YTC�1

a Y: (8)

Although the objective function (Equation 8) is convex, it is slow to
optimize in practice. We use one more MM procedure for optimizing
(Equation 8). The data dependent term YTC�1

a Y can be re-expressed as:

YTC�1
a Y ¼ min

d

1

r2
jjY �Xdjj2 þ

X
j

d2
j gj: (9)

We therefore introduce another auxiliary term d, the upper-
bounding auxiliary function for ‘hðaÞ is:

‘hða; dÞ¢hT 1

g
þ
X

j

gjd
2
j þ

1

r2
jjY �Xdjj2 � ‘hðaÞ: (10)

The a value that minimizes Equation (8) can be estimated by it-
eratively updating d and a in Equation (10). For any d; a is estimated
by minimizing

hT 1

g
þ
X

j

gjd
2
j : (11)

Given a; d is updated by:

d argmin
d
jjY �Xdjj2 þ

X
j

gjd
2
j : (12)

Equation (12) has a weighted convex L2 regularized cost func-
tion, and it can be optimized efficiently using glmnet. The iterative
reweighed L2 algorithm has the schema summarized in Algorithm 1.
Simulations we conducted with continuous instead of binary meta-
features yielded very similar results (data not shown).

Once the hyperparameters a are estimated, and therefore the
penalties are known, the LASSO regression coefficients can be
obtained using standard LASSO software (e.g. glmnet).
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2.4 Extension to linear discriminant analysis for

classification
So far, we have been focused on LASSO linear model where the re-
sponse variable is continuous. Here, following the scheme proposed
by Mai et al. (2012) that builds high dimensional linear discriminate
analysis (LDA) upon sparse penalized linear regression, we extend
the xtune LASSO model to the framework of LDA with a binary re-
sponse variable Y 2 f1; 2g.

The LDA model assumes that X is normally distributed within
each class, i.e.

XjðY ¼ kÞ � N ðlk;RÞ
PrðY ¼ kÞ ¼ pk; k ¼ 1;2

where lk is the mean of X within class k and R is the common
within-class covariance matrix. We adopt the following procedure
proposed by Mai et al. (2012) to predict the class of Y based on
xtune LASSO linear penalized regression:

Step 1. Let yi ¼ � n1

n if Y i ¼ 1, and yi ¼ n
n2

if Y2 ¼ 2.
Step 2. Compute the solution to a penalized least squares problem:

ðb̂LDA
; b̂0

LDAÞ ¼ argminb;b0
n�1
Xn

i¼1

ðyi � b0 � xT
i bÞ2 þ

Xp

j¼1

PkðbjÞ

(13)

Step 3. Estimate the LDA model on the reduced data

fYi;X
T
i b̂

LDAg
n

i¼1. Assign observation x to class 2 if

fx� ðl̂1 þ l̂2Þ=2gT b̂
LDA þ ðb̂LDAÞT R̂b̂

LDA

fðl̂1 � l̂2ÞT b̂
LDAg�1 logðn2=n1Þ > 0;

(14)

where l̂1;n1; l̂2; n2 are the sample mean vector and sample size
within class 1 and class 2, R̂ is the sample covariance matrix, Pkð:Þ is
a generic sparsity-inducing regularization term, such as the single-
penalty L1 norm, Elastic-Net or adaptive L1 norm in our case. We
first solve Equation (13) using xtune LASSO, then predict response
variable class by Equation (14).

3 Results

3.1 Simulation studies
3.1.1 Simulation setting

We performed a simulation study to evaluate the performance of the
xtune LASSO under a range of scenarios obtained by varying the fol-
lowing key simulation parameters:

1. The true ability of the features to predict the outcome as meas-

ured by the signal to noise ratio (SNR) defined as VarðXbÞ=r2.

2. The informativeness of the external metadata controlled by the

number of non-zero hyperparameters a.

3. The number of predictor features p.

4. The sparsity level captured by the number of non-zero true re-

gression coefficients b.

5. The overall magnitude of the non-zero entries of the true regres-

sion coefficient vector b controlled by a0.

6. The degree of correlation between features q.

The simulation data was generated according to the following
steps: (i) set the parameter a controlling the informativeness of the
external metadata; (ii) generate the external metadata matrix Z; (iii)
generate the vector of regression coefficients b based on a and Z; (iv)
generate the feature data X; (v) generate outcome Y based on b, X
and an independent drawn random error �.

The external metadata matrix Z of dimension p�q was gener-
ated to have 0–1 entries indicating a grouping of features.
Specifically, entry Zjk indicates whether the jth feature belongs to

group k (1) or not (0). The entries were independently generated to
be zero or one with probability 0.2 and 0.8, respectively. A conse-
quence of how Z was generated is that features can belong to more
than one group, i.e. the groups can overlap. A column of 1 s was
appended to Z corresponding to the second level intercept a0, which
controls the overall amount of shrinkage; the higher a0; the smaller
the regression coefficients.

The true regression coefficient bj were generated by sampling
from a double exponential distribution with local parameter l¼0
and scale parameter b ¼ expðZjaÞ. Parameter d controls the sparsity
of the final b vector. The ½pd� largest bs in magnitude were retained,
while all smaller entries were set to be zero. The feature matrix X
was simulated by sampling from a multivariate normal distribution
with mean vector zero and covariance matrix Ri;j ¼ qji�jj.

Finally, for each simulation replicate, an independent error term
� was sampled from a normal distribution with mean 0 and a vari-
ance corresponding to the pre-set SNR. The outcome was generated
as Y ¼ Xbþ �. Each simulated data is split into a training set
(n¼200) and a test set (n¼1000). The performance of the standard
LASSO, adaptive LASSO and xtune LASSO were compared by the
prediction R2 computed on the test using the model fitted in the
training set. The large test set guarantees that the generalization/test
error was accurately estimated. Penalty parameter tuning for the
standard LASSO was performed by 10-fold cross-validation.
Implementation of adaptive LASSO utilizes the adalasso() function
in the parcor R package. One hundred replicates were generated for
each scenario.

We considered the following six scenarios varying each of the
main simulation parameters described above. The simulation results
are summarized inFigure 1.

1. SNR ¼ 1; 2;3

2. p ¼ 500;1000; 3000

3. External data informativeness: low, medium and high. We fixed

the sub-set of the a ¼ ða0;�1;�0:78;�0:56;�0:33;�0:11;0:11;

0:33; 0:56; 0:78; 1Þ:The low external information is simulation

from alow ¼ ða;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
60

Þ. The medium external information is

simulated from amedium ¼ ða; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
20

Þ, and the high external in-

formation is simulated from ahigh ¼ a. The idea is that non-

informative external information has many noise variables.

4. a0 ¼ 1; 3;5

5. d ¼ 0:3; 0:5; 0:7

6. Different correlation magnitude q ¼ 0:3; 0:6; 0:9

3.1.2 Simulation results

Figure 1a shows box plots (across simulation replicates) of the pre-
diction R2 for the standard, adaptive and xtune LASSO varying
SNR. As SNR increases, the prediction performance increases for all
methods, but the xtune LASSO has a better prediction accuracy
across all levels of SNR considered.

When the p/n ratio gets higher, all three methods have decreased
performance. However, xtune LASSO has a slower decreasing rate.
When the p/n ratio is very high, we see that the performance of
standard LASSO decreased dramatically, and xtune LASSO has sig-
nificantly better prediction performance than standard LASSO
(Fig. 1b). The R2 for standard LASSO remain the same across differ-
ent level of external data informativeness. The performance of xtune
LASSO decreases with external information of lower informative-
ness (Fig. 1c).

Figure 1d shows the effect of decreased b sparsity. The higher
the value of d, the less sparse the model and the more non-zero re-
gression coefficients. The value of xtune LASSO becomes more ap-
parent when the model is less sparse. With d ¼ 0:5, 31 out of 1000
features are non-zero. All three methods have decreased perform-
ance when the model has more non-zero features, but xtune LASSO
has a slower decreasing rate. From Figure 1e, the overall amount of
shrinkage seems to have little effect on the performance of all three
methods. Notice that all three methods have a higher prediction
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ability when the signal features (non-zero) features are correlated
with each other (Fig. 1f). The improved prediction of xtune
LASSO over standard LASSO becomes smaller as the correlation
between features increases. LASSO is known to have a decreased
ability in variable selection when the features are highly corre-
lated. It tends to select one variable from each highly correlated group
and ignoring the remaining ones. Hebiri and Lederer (2013) studied
the influence of correlation on LASSO prediction and suggested that

correlation in features is not problematic for LASSO prediction; the
prediction errors are mostly smaller for the correlated settings in ex-
perimental studies.

In summary, our simulation results showed that the LASSO with
individual penalties informed by meta-features can outperform the
standard LASSO in terms of prediction when (i) the meta-features
are informative for the regression effect sizes, (ii) the true model is
less sparse and (iii) the SNR is relatively high.

Fig. 1. Simulation results. Subplot (a): SNR ¼ 1, 2, 3, with n¼200, p¼ 1000, q¼10, a0 ¼ 3; d ¼ 0:5; q ¼ 0:2. Subplot (b): p¼500, 1000, 3000, with n¼ 200, SNR ¼ 2,

q¼10, a0 ¼ 3; d ¼ 0:5; q ¼ 0:2. Subplot (c): q¼10, 30, 50, with n¼200, p¼1000, SNR ¼ 2, a0 ¼ 3; d ¼ 0:5; q ¼ 0:2. Subplot (d): regression coefficients sparsity d ¼
0:3; 0:5; 0:7, with n¼ 200, p¼1000, SNR ¼ 2, q¼ 10, a0 ¼ 3; q ¼ 0:2. Subplot (e): overall penalty magnitude a0 ¼ 1, 3, 5, n¼200, p¼1000, SNR ¼ 2, q¼10,

d ¼ 0:5; q ¼ 0:2. Subplot (f): q ¼ 0:3; 0:6; 0:9, with n¼200, p¼1000, SNR ¼ 2, q¼ 10, a0 ¼ 3; d ¼ 0:5
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3.2 Applications
We exemplify the method’s performance on real data by considering two
applications to clinical outcomes prediction using gene expression data.

3.2.1 Bone density data

In the first example, bone biopsies from 84 women were profiled
using an expression microarray to study the relationship between
bone mass density (BMD) and gene expression. The goal is to pre-
dict the total bone density based on the gene expression profiles.
Bone density was measured by the hip T-score derived from biop-
sies, with a higher score indicating higher bone density. The data
contains 22 815 gene expression features and were normalized using
the RMA method as described in (Tharmaratnam et al., 2016).
Gene expression levels were analyzed on a logarithmic-2 scale. The
bone density dataset is publicly available from the European
Bioinformatics Institute (EMBL-EBI) Array Expression repository
ID E-MEXP-1618.

The external information consists of four covariates. The first
covariate uses insights from a previous study that identified eight
genes highly associated with bone density variation (Reppe et al.,
2010). A binary external covariate indicates whether each gene is
one of the eight genes identified or not. The second to fourth exter-
nal covariates are evidence scores related to empirical P-values with
continuous values that indicates the strength of functional annota-
tions. They are extracted from the dbGAP Gene-Trait Associations
dataset, GWASdb SNP-Phenotype Associations dataset and GWAS
Catalog SNP-Phenotype Associations dataset (Li et al., 2012;
Rouillard et al., 2016; Welter et al., 2013).

To illustrate the advantage of incorporating external informa-
tion, we compare our proposed method to both standard LASSO
and adaptive LASSO. The data were randomly split into a training
data consisting of 80% of the observations and a test dataset con-
sisting of 20% of the observations. We fitted the adaptive LASSO,
standard LASSO, and our proposed method in the training data and
evaluated their prediction performance in the testing data. We
repeated 100 random splits of the full data into training and test
sets. Figure 2 shows the MSE, R2 and the number of selected (non-
zero) expression features across the 100 splits.

Overall, we see that the externally tuned LASSO has better pre-
diction performance than the standard LASSO while selecting a
more parsimonious model. The adaptive LASSO does not perform
well in this data example. To gain further insight into the prediction
performance results, we examined the penalties applied to the re-
gression coefficients by each of the methods when fitted on the full
data. The tuning parameter chosen by standard LASSO using cross-

validation is 0.16, while for the xtune LASSO, the estimated tuning
parameter is 0.26 for the gene expression features without external
information and 0.016 for the expression features with external in-
formation, resulting in larger effects estimates for the latter group.
The estimated a for the first external covariate is negative, which
means the group of eight genes are penalized less than the genes not
in this group. Among the identified genes, SOST and DKK1 are
involved in the Wnt pathway which is central to bone turnover.
ABCA8 and NIPSNAP3B are involved in transporting lipids across
membranes and vesicular trafficking (Reppe et al., 2010).

3.2.2 Breast cancer data

In the second example, we apply the xtune LASSO to a breast cancer
dataset. The data is from the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) cohort (Curtis et al., 2012)
(https://ega-archive.org/dacs/EGAC00001000484). 29 476 gene ex-
pression profiles and three clinical variables (age at diagnosis, pro-
gesterone receptor status and lymph node status) were used for the
prediction of five-year survival (survived or died). Patients followed-
up for less than five years, with no record of mortality, were
excluded from the analysis. We used a subset of the METABRIC
data with patients that are Estrogen receptor (ER) positive and
human epidermal growth factor receptor 2 (HER2) status negative.
The data contains a discovery set of 594 observations and an add-
itional validation set of 564 observations. The models were trained
in the discovery set and tested on the validation set.

The external information used for the xtune LASSO model con-
sists of six covariates. The first covariates is a binary variable indi-
cating whether a predictor in X is a clinical feature (1) or a gene
expression feature (0). The second covariate is a continuous variable
with evidence scores for genes co-occurring with the breast cancer in
abstracts of biomedical publications from the DISEASES Text-
mining Gene–Disease Association Evidence Scores dataset
(Pletscher-Frankild et al., 2014). The third covariate has count val-
ues for the number of times that each gene is used as one of major
prognostic signatures for breast cancer. More specifically, breast
cancer multigene prognostic signatures including OncotypeDX (21
genes), MammaPrint (70 genes), PAM50 (50 genes), EndoPredict
(12 genes) and Breast Cancer Index (7 genes) have been validated
through clinical trials and are recommended for classification, prog-
nosis and prediction in breast cancer. We therefore believe genes
that belong to one or more prognostic signatures are potentially
more important than other genes. The frequency that each gene
belongs to one of breast cancer prognostic signatures is used as the
third external covariate. The fourth to sixth external covariates are
based on the results of (Cheng et al., 2013), where groups of genes
referred to as ‘metagenes’ that are prognostic in all cancers, includ-
ing breast cancer were identified. In specific, (Cheng et al., 2013)
analyzed six gene expression datasets from different cancer types
and present three multi-cancer attractors with strong phenotype
associations: a lymphocyte-specific attractor (LYM), a mesenchymal
transition attractor strongly associated with tumor stage (MES), and
a mitotic chromosomal instability attractor strongly associated with
tumor grade (CIN). The LYM, MES and CIN metagenes consist of
169, 134 and 108 genes, respectively. The fourth to sixth external
covariates are binary variables to indicate whether or not each gene
belong to LYM, MES and CIN respectively.

We compared the xtune LASSO incorporating the meta-features
described above, with the standard and the adaptive LASSO. As in
the first example, standard LASSO was tuned by repeated 10 fold
cross-validation and the adaptive LASSO is implemented using the
adalasso() function in the parcor R package.

Table 1 compares the AUC, the number of selected features,
and the computation time for the standard, the adaptive and the
xtune LASSO. Figure 3 shows the receiver operating characteris-
tic (ROC) curves for the three methods. The xtune LASSO has
the best prediction performance among all three methods. The
second level coefficients a estimated by xtune LASSO is
a ¼ ð7:23;�4:55;�0:57;�0:13;�1:42;�0:47;�1:38Þ. This illus-
trates how the xtune LASSO can induce differential shrinkage
among the features according to their empirical importance. In this

Fig. 2. Compare test R2 and number of selected covariates of adaptive LASSO,

standard LASSO and xtune LASSO using bone density data. The mean test R2 is

0.27 for adaptive LASSO; 0.38 for the standard LASSO, and 0.43 for xtune LASSO.

The mean number of selected covariates is 10 for adaptive LASSO, 43 for standard

LASSO and 16 for the xtune LASSO
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example, the three clinical variables are given a very small penalty in
xtune LASSO and are all estimated to be non-zero. The xtune
LASSO shrinks the coefficients corresponding to expression features
that do not belong to any metagene (the vast majority) toward zero
much more aggressively than the standard LASSO, while it shrinks
the clinical variables and the expression features in metagenes LYM
and MES much less than the standard LASSO. The standard LASSO
shrink the coefficients for the two clinical variables to 0, effectively
selecting them out of the model. Adaptive LASSO selected out one
of the clinical variables (lymph node status). In agreement with our
simulation results, the xtune LASSO also yielded a much more parsi-
monious model with only 13 selected features, while the standard
LASSO selected 207 features. In terms of computation time, both
adaptive LASSO (fitted using adalasso function) and xtune LASSO
take more computation time than the standard LASSO fitted using
glmnet.

4 Discussion

We introduced xtune LASSO, a new approach implemented in the
namesake R package (Zeng and Lewinger, 2019) for integrating ex-
ternal meta-features to inform the tuning of penalty parameters in
LASSO regression. We showed through simulation and real data
examples that xtune could yield better prediction performance than
standard LASSO by incorporating prior knowledge. These findings
are consistent with the work of (van de Wiel et al., 2016), which
proposed a method for estimating group-specific penalties for ridge
regression and showed that the use of prior knowledge could im-
prove prediction performance.

xtune LASSO differs from related methods (Boulesteix et al.,
2017; Liu et al., 2018; Pan et al., 2010) in our use of an empirical
Bayes approach to estimate the penalty parameters, rather than rely-
ing on cross-validation. In the particular case of no external meta-
features (i.e. Z is a vector of 1 s), xtune performs empirical Bayes
tuning of the single LASSO penalty parameter, providing an alterna-
tive to standard tuning by cross-validation. Cross-validation

becomes impractical with more than a handful of penalty parame-
ters, while empirical Bayes tuning allows xtune to handle a much
larger number of individualized penalties.

The empirical Bayes approach in this article estimates the indi-
vidual variances of the first-level regression coefficients by maximiz-
ing the marginal likelihood. This is also known as Type II maximum
likelihood estimation, which has been employed for fitting the rele-
vance vector machine model, a popular technique in the pattern rec-
ognition machine learning community. Instead of relying on cross-
validation, the ‘Bayesian’ set-up has distinct advantages in terms of
the penalty parameter choice by marginalizing them over the poster-
ior distribution (Bhattacharya et al., 2014). Bayesian penalization
methods (Li and Lin, 2010; Park and Casella, 2008) also have
employed this connection and use hierarchical models to select the
penalty parameter based on sampling strategies. A similar empirical
Bayes approach has also been used by the penalized regression meth-
ods implemented in the EBglmnet R package (Huang and Liu,
2016). However, these methods do not incorporate information
from external covariates, which is the main goal of this article.

An MM algorithm is used to minimize the non-convex objective
function (6). While there may be multiple local minima to (6), we
did not encounter multi-modality issues in the analyses described in
the manuscript. The same estimates are obtained for different initial
starting values of a. In sensitivity analysis, we also tried directly opti-
mizing the non-convex objective function (6) using standard meth-
ods (EM algorithm, gradient descent, L-BFGS algorithm), the same
hyperparameter estimates are obtained but the MM algorithm is
much faster than the other methods.

In both of our real data application examples, the meta-features
are combination of continuous variables and categorical variables
that group features into subsets. A categorical meta-feature also
arises when the features originate from different data types (e.g.
gene expression, methylation, somatic mutations). (Liu et al., 2018)
showed that having separate penalty parameters for each data type
can yield better prediction performance.

The gain in prediction performance in the proposed model
depends to the relevance of the external information that is used to
guide the penalization. The external information is relevant or ‘in-
formative’ if it can help differentiate groups of predictors of different
effect size or correlates with the importance of the predictors.
Therefore, expert knowledge of the study domain is often crucial.
A question that we have not addressed in the article is the how to de-
cide whether the inclusion of an external covariate would be helpful
before they are included in the model. In practice, the use of xtune
LASSO is more demanding than the use of the standard LASSO as it
requires more time and thought on the extraction, processing and in-
terpretation of the external information. On the other hand, how-
ever, the process of finding and understanding external information
about the predictors can help the investigators better understand the
predictors, rather than fitting the model as a ‘black box’. We do not
seek to claim that our approach always give a better performance as
compared to standard LASSO or other related methods. Rather, we
provides a way to integrate prior knowledge into the model building
process and show that is quite competitive, especially on larger data-
sets and the meta-features are informative.

Although prediction performance has been our main focus of
interest, our results also show that for the range of simulation scen-
arios we considered and in the two real data applications, xtune
tends to yields sparser and, therefore, more interpretable models
than standard LASSO regression. However, we did note that when
the number of meta-features q relative to the sample size n is large,
the a estimates may not be stable. A related limitation is that in its
current implementation, xtune does not scale to ultra high dimen-
sional datasets. Typical datasets that xtune LASSO can currently
handle have sample size of up to n � 5000, with p � 50 000 features
and q � 100 meta-features. However, we believe that future algo-
rithmic improvements, along with parallel computing, can extend
the applicability of xtune to larger datasets and larger numbers of
meta-features. To further widen the range of applicability of xtune,
we are pursuing extensions to binary (logistic regression) and time

Fig. 3. ROC curves for adaptive LASSO, standard LASSO and xtune LASSO applied

to the breast cancer dataset

Table 1. Compare AUC, number of selected covariates and computation

time (in minutes) for standard LASSO, adaptive LASSO and xtune LASSO

Standard

LASSO

Adaptive

LASSO

xtune

LASSO

AUC 0.677 0.718 0.767

No. of selected covariates 207 5 13

Computation time 2.26 39.28 11.00
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to event (Cox regression) outcomes, as well as the incorporation of
the Ridge and Elastic-Net penalties in addition to the LASSO.
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