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ABSTRACT

Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fun-
damental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing
proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and
development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochem-
ical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological
inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the
importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the
development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90
interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a
summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides
a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.

Keywords: protein–protein interactions, proteomics, chemogenomics, Hsp90, synthetic lethality, mutant libraries, Candida, Cryptococ-
cus neoformans, Aspergillus fumigatus

INTRODUCTION
Proteins facilitate diverse cellular processes, such as metabolism,
the electron transport chain and movement of organelles. It is,
thus, critical that proteins remain folded and stable, yet they are
inherently unstable. Their folding is maintained by the equivalent
energy of approximately three hydrogen bonds, meaning they ex-
ist on a thermodynamic knife-edge. As such they are vulnerable
to denaturation or aggregation, especially in the crowded cellular
environment (Ellis 2001) or when cells are experiencing environ-
mental stress. In response to these challenges, chaperone proteins
evolved to assist with protein folding and stabilization, thereby
maintaining proteostasis and ultimately ensuring survival of the
organism.

Hsp90 is an essential chaperone and
evolutionary capacitor
The highly conserved and ubiquitous molecular chaperone Heat-
shock protein 90 (Hsp90) was first described in the 1970s as a
protein of approximately 90 kDa that was significantly upregu-
lated during heat stress in Drosophila cell culture and salivary
gland tissue (Moran et al. 1978). Subsequently, orthologs have been
identified in eubacteria and all eukaryotes but not archaebacteria
(Stechmann and Cavalier-Smith 2004). Hsp90 protein sequences
are 60% identical between human and the model eukaryote Sac-
charomyces cerevisiae. Mammalian Hsp90 can complement the oth-

erwise lethal phenotype of Hsp90 depletion in S. cerevisiae (Mi-
nami et al. 1994; Nathan, Harju Vos and Lindquist 1999). Hsp90
is amongst the 20 most abundant proteins in the eukaryotic cell
(Ghaemmaghami et al. 2003) and in response to thermal stress
and other environmental stimuli, Hsp90 levels increase further
(Taipale, Jarosz and Lindquist 2010). Lack of Hsp90 results in se-
vere susceptibility to elevated temperatures (Borkovich et al. 1989).
Under both non-stress and stress conditions, the chaperone func-
tions by stabilizing a specific set of proteins, called target proteins
or clients. Hsp90 forms a complex with its client until the client
reaches its cellular destination or is required in its active state.
At this point, the chaperone cycle is completed, and the mature
client released (Zuehlke and Johnson 2010). Hsp90 is involved in
numerous fundamental processes such signal transduction, cell
growth and cellular differentiation in the eukaryotic cell (Zhao et
al. 2005; Taipale et al. 2012).

Beyond functioning as a traditional chaperone, Hsp90 acts as
an evolutionary capacitor. As such, it facilitates the storage and
release of genetic variation. Under non-stress conditions, Hsp90
correctly folds its clients, masking any mutations their DNA
sequences may accumulate because Hsp90 recognizes the 3D-
structure of partially folded proteins rather than their sequence.
Depleting Hsp90 either genetically or pharmacologically, however,
removes the evolutionary buffer and causes clients to fold based
solely on their amino acid sequence, causing the mutations to be
expressed. Consequently, aberrations in plant (Queitsch, Sangster
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and Lindquist 2002) and fly (Rutherford and Lindquist 1998) mor-
phology, as well as eye size in cave fish (Rohner et al. 2013) can
be detected. In fungi, reducing Hsp90 function abolishes antifun-
gal drug resistance (Cowen and Lindquist 2005). Hsp90’s ability to
buffer a multitude of traits is due to its capacity to control ex-
pression of ∼20% of the pre-existing genetic variation (Jarosz and
Lindquist 2010).

In addition to chaperoning client proteins, Hsp90 regulates
gene expression in evolutionarily diverse organisms. For example,
mammalian circadian clock genes (Schneider, Linka and Reinke
2014), plant phytohormone genes (Shigeta et al. 2015) and fun-
gal stress-responsive kinase genes (Diezmann et al. 2012) require
Hsp90 for expression. Due to Hsp90’s central role in fundamen-
tal cellular processes and its ability to shape evolutionary tra-
jectories, it is critical to identify Hsp90 interactors. Elucidating
Hsp90 interaction networks, of either direct or indirect nature,
would allow for a comprehensive understanding of the protein
complexes and cellular pathways Hsp90 is involved in. Yet, map-
ping Hsp90 networks in eukaryotes is technically challenging and
requires extensive genetic and biochemical tools and techniques,
such as genome-scale mutant libraries. Until recently these were
only available in S. cerevisiae. Yet, with the development of molec-
ular biology tools in other fungal species, Hsp90 interaction net-
works can now be mapped in a diverse range of fungi.

Fungi represent an opportunity to study Hsp90
function and interaction networks in an
evolutionary context
Fungi are ancient. Fungal microfossils from the Canadian North-
west Territories date back to ∼1 billion years (Loron et al. 2019).
Thus, fungi evolved before land plants, which emerged ∼470 mil-
lion years ago on the fossil record (Edwards et al. 2014). Fungal
species for which tools required for Hsp90 network mapping ex-
ist, span >500 million years of evolution (Fig. 1). Being able to
map Hsp90 interaction networks in multiple fungal species across
evolutionary time scales allows for powerful comparisons of how
Hsp90 networks evolved, their evolutionary trajectories and the
impact of ecology on network evolution. Within the subphylum
Saccharomycotina, S. cerevisiae and Candida glabrata diverged ∼50
million years ago. They split from the ancestor of Candida albicans
and Candida parapsilosis ∼250 million years ago. The Saccharomy-
cotina diverged from the Pezizomycotina, the sub-phylum con-
taining moulds such as Aspergillus fumigatus, ∼400 million years
ago and the Dikarya, the group formed by the Ascomycota and the
Basidiomycota, emerged ∼560 million years ago (Beimforde et al.
2014; Shen et al. 2020). Mutant libraries, required for Hsp90 genetic
interaction network mapping, have been engineered in C. albicans,
C. parapsilosis, C. glabrata, A. fumigatus and the basidiomycete Cryp-
tococcus neoformans with the aim to comprehensively identify and
study virulence factors. They also provide the unique opportunity
to study Hsp90 network evolution.

Hsp90 in S. cerevisiae
Saccharomyces cerevisiae has been instrumental in understanding
eukaryotic Hsp90 function and regulation. Unlike other fungi, S.
cerevisiae expresses two isoforms of Hsp90. One, Hsc82, is consti-
tutively expressed at very high levels, and the other, Hsp82, is ex-
pressed at much lower levels but is strongly induced in response to
heat shock. Expression of either gene is essential for growth, how-
ever, each isoform has distinct functions and clients (Borkovich
et al. 1989; Girstmair et al. 2019). Crystalizing full-length S. cere-
visiae Hsp90 together with an ATP analogue and a co-chaperone

revealed the complex architecture of the clamp-like structure of
the chaperone and the intricate conformational changes required
to execute chaperone function (Ali et al. 2006). Due to its ease of
manipulation, S. cerevisiae has been extensively used to identify
and characterize the role of post-translational modifications in
chaperone regulation. For more specific examples see this review
by Mollapour and Neckers (2012). The phosphorylation site essen-
tial for survival of high temperatures was initially detected and
characterized in S. cerevisiae (Nathan and Lindquist 1995).

Hsp90 in C. albicans
Amongst pathogenic fungi, Hsp90 is best understood in C. albicans.
This yeast causes ∼750 000 life-threatening invasive infections
world-wide each year with mortality rates of up to 75% (Brown
et al. 2012; Bongomin et al. 2017). In addition to this burden on
human life and health, candidemia adds substantially to health
care costs. The United States alone spent $1.4 billion on over 26
K hospitalizations necessitated by candidemia in 10 years (Bene-
dict et al. 2019). High mortality rates and extended hospital stays
are due to the currently available treatments being rather inef-
fective or the emergence of antifungal drug resistance. It is, thus,
imperative to understand C. albicans virulence mechanisms and
stress response pathways to develop more efficacious treatment
strategies. Hsp90 is a key regulator of C. albicans virulence (Cowen
et al. 2009), morphogenesis (Shapiro et al. 2009), drug resistance
in planktonic cells (Singh et al. 2009) and biofilms (Robbins et al.
2011) as well as cell cycle progression (Senn, Shapiro and Cowen
2012). Despite promising results in insect models of fungal dis-
ease, targeting Hsp90 with inhibitors tested in clinical trials as
anticancer drugs resulted in severe host toxicity in mice with can-
didemia. Due to the high sequence conservation between fungal
Hsp90 and the mammalian ortholog, both othologs were inhib-
ited, which caused complications for the host (Cowen et al. 2009).
Hsp90 itself is therefore not suitable as an antifungal drug tar-
get until fungal-specific inhibitors of Hsp90 exist. Hence, alterna-
tive strategies need to be explored and Hsp90 interactors could
prove useful as future drug targets. They could either be targeted
by monotherapy or in combination therapy with already available
Hsp90 inhibitors.

Hsp90 in C. parapsilosis
Candida albicans’ relative C. parapsilosis causes 33% of candidemia
infections in pre-term infants with mortality rates of 10% (Pammi
et al. 2013). Candida parapsilosis infections can be difficult to treat
due to reduced susceptibility to the echinocandin class of anti-
fungals. This is caused by a naturally occurring amino acid sub-
stitution in the protein encoding the echinocandin target Fks1 rel-
ative to other Candida species (Garcia-Effron et al. 2008). Similar to
C. albicans, Hsp90 represses filamentation in C. parapsilosis (Hos-
sain, Veri and Cowen 2020) and the combination of triazoles and
the Hsp90 inhibitor, geldanamycin, acts synergistically, reducing
minimum inhibitory concentrations to triazoles (Mahmoudi et al.
2019). Beyond this, Hsp90’s role in virulence in this pathogen of
premature infants remains uncharacterized.

Hsp90 in C. glabrata
Although closely related to S. cerevisiae, comparatively little is
known about Hsp90 in C. glabrata. This yeast is the leading cause of
non-albicans candidiasis in Northern Europe and the United States
of America, and the third or fourth in Asia (Kumar et al. 2019).
Commensal strains found in the oral cavity or gut are often the
causative agents in clinical C. glabrata infections (Pfaller et al. 2002;
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Figure 1. Phylogenetic relationships amongst fungal species with available mutant libraries. Divergence times for branches leading to C. albicans, S.
cerevisiae and C. glabrata (all Saccharomycotina), A. fumigatus (Pezizomycotina) and C. neoformans (Basidiomycota) are indicated by colored circles.

Wang et al. 2013; Guinea 2014; Khatib et al. 2016; Nash et al. 2017).
Candida glabrata employs a suite of virulence traits that facilitate
infection of humans including surface adhesion, biofilm produc-
tion, tissue invasion, macrophage survival, immune dampening
and drug resistance. Echinocandin resistance requires the envi-
ronmentally responsive phosphatase, calcineurin, in C. glabrata,
as in C. albicans. Inhibition or genetic repression of Hsp90 pheno-
copies that of Cnb1, a subunit of calcineurin, when measuring
echinocandin resistance in C. glabrata (Singh-Babak et al. 2012).
In addition to rapid development of drug resistance, C. glabrata
is more intrinsically resistant to many drugs, especially the azole
anti-fungals. Fluconazole became fungicidal instead of fungistatic
when C. glabrata Hsp90 was inhibited by geldanamycin (Borah,
Shivarathri and Kaur 2011). Apart from these studies, the role of
Hsp90 in C. glabrata virulence remains unstudied.

Hsp90 in A. fumigatus
The Pezizomycotina are a sister group to the Saccharomycotina
yeasts. Amongst the Pezizomycotina, the ‘deadly mould’ A. fumi-
gatus causes >300 000 invasive infections world-wide each year
with mortality rates of up to 95% (Brown et al. 2012; Bongomin
et al. 2017). In addition to causing life-threatening invasive infec-
tions, mainly of the lung, A. fumigatus causes chronic and allergic
pulmonary disease in ∼8 million patients world-wide (Bongomin
et al. 2017). The United States alone spent ∼$1.2 billion on hos-
pitalizations necessitated by invasive aspergillosis over 10 years
(Benedict et al. 2019). These staggering numbers are due to a suite
of host- and fungal-specific factors. Aspergillus fumigatus is highly
prevalent in the environmental and its small spore size allows
the fungus to reach the bronchoalveolar space. Once inside the
host, A. fumigatus effectively adheres to the human lung lumen
and extensive secretion of galactosaminogalactan and extracel-
lular proteases facilitate persistence in the human lung (Gago,
Denning and Bowyer 2019). This is further confounded by a broad
and increasing patient demographic that includes leukemic pa-
tients and those that received hematopoietic stem cell or solid
organ transplants (Kontoyiennis et al. 2010; Pappas et al. 2010).
Hsp90’s role in A. fumigatus virulence, drug resistance and mor-
phogenesis has been reviewed here (Lamoth, Juvvadi and Stein-
bach 2016). More recently, Hsp90 expression, controlled by the
transcription factor (TF) HsfA (Fabri et al. 2021), has been shown

to be up-regulated in response to heat-shock and azole treatment
(Tu, Yin and Li 2020). Resembling findings in C. albicans (Lafayette
et al. 2010; Caplan et al. 2018), A. fumigatus Hsp90 governs the cell
wall integrity pathway (CWIP) by stabilizing key kinases of this
pathway (Rocha et al. 2021). While specific Hsp90 interactors, such
as the CWIP kinases have been identified, a global view of Hsp90
genetic and physical interactors is yet to be obtained.

Hsp90 in C. neoformans
The basidiomycetous yeast C. neoformans, the causative agent of
the AIDS-defining illness cryptococcal meningitis, causes >1 mil-
lion cases world-wide each year with mortality rates of up to 70%
(Brown et al. 2012). From its environmental reservoirs, mainly pi-
geon guano but also Eucalyptus trees (Edwards et al. 2021), C. ne-
oformans spores enter the host via inhalation and then move to
the brain (Lin and Heitman 2006). Important virulence factors
supporting host colonization include an antiphagocytic capsule
(Kozel et al. 1988) and melanin production, which provides pro-
tection from UV light, oxidative stress, microbicidal peptides and
phagocytic cells (Casadevall, Steenbergen and Nosanchuk 2003).
Upon entry of C. neoformans into the mammalian lung, Hsp90
is up-regulated (Hu et al. 2008). Pharmacological inhibition of
Hsp90 reduced C. neoformans tolerance to thermal stress, antifun-
gal drugs and virulence in an invertebrate model of fungal vir-
ulence (Cordeiro et al. 2016). It has, furthermore, been observed
that Hsp90 is physically associated with the C. neoformans cell
wall and regulates capsule induction and maintenance (Chatter-
jee and Tatu 2017). Hsp90 interactors are yet to be identified and
characterized in C. neoformans.

To date, ten fungal Hsp90 interaction networks have been
mapped. Due to limited availability of essential tools, such as
genome-scale mutant libraries, Hsp90 networks are currently re-
stricted to the eukaryotic model system S. cerevisiae and the ma-
jor fungal pathogen C. albicans. Here, we will review the tools and
technologies that made Hsp90 network mapping possible and how
they may be extended into other fungal species.

Mutant libraries available in fungi
To get a global view of the genes and proteins that either directly
or indirectly interact with Hsp90, a suite of genetic and molecu-
lar biological manipulations is required. These include genome-
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Figure 2. Synthetic lethality identifies genes acting in the same pathway or complex. Yeast cells are viable when experiencing either sub-lethal
depletion of Hsp90 function or loss of function of ‘your favourite gene’ (YFG). The combination of both, however, is not tolerated and yeast cells are
either ‘sick’ (reduced growth) or dead. Hsp90 function can be reduced by either pharmacological inhibition or the use of hypomorphic alleles and
loss-of-function mutations can be achieved as described in the text.

scale collections of loss-of-function mutants and epitope-tagged
strains.

Genetic interactions are defined as two genes that together pro-
duce an unexpected phenotype (Costanzo et al. 2019; Fig. 2). To
map genome-scale Hsp90 genetic interaction networks, suitable
mutant collections are required. These mutant libraries, contain-
ing hundreds or thousands of loss-of-function mutants, were ini-
tially developed to study eukaryotic gene function in S. cerevisiae or
to identify virulence genes in pathogenic fungi. To generate these
collections (Table 1), the majority of which were made possible by
community efforts, different genetic approaches were deployed.

Gene deletion libraries are easier to assemble in haploid organ-
isms, as only one allele requires manipulation. Cryptococcus neofor-
mans, C. glabrata and A. fumigatus are haploid, while C. albicans and
C. parapsilosis are diploid. In contrast, non-laboratory S. cerevisiae
strains are usually diploid (Diezmann and Dietrich 2009), while
the S. cerevisiae laboratory strain S288c is an artificial haploid (Mor-
timer and Johnston 1986). This is due to mutations in the HO-
endonuclease, whose wild-type facilitates mating-type switching
and consequently selfing (Meiron, Nahon and Raveh 1995).

Saccharomyces cerevisiae mutant libraries
Saccharomyces cerevisiae has been a trailblazer in building interac-
tion networks due to ease of genetic manipulation and a read-
ily executable sexual cycle. Various libraries, differing by mating
type, ploidy and auxotrophic markers have been generated (Ta-
ble 1). To delete target genes in a haploid background, wild-type
alleles of non-essential genes were replaced with the KanMX cas-
sette, conferring resistance to the antibiotic geneticin (G418) to
select for successful transformation events. These haploid dele-
tion strains were then mated and selected for based on their aux-

otrophies to create diploid homozygous deletion strains (Giaever
et al. 2002). Additionally, in these libraries the KanMX cassette
is flanked 3’ and 5’ by 20-mer oligonucleotides, which serve as
unique barcodes. Barcode frequencies can either be quantified via
microarray technology or next-generation sequencing, allowing
pooling of libraries and screening of thousands of mutants in a
single vial under the exact same conditions.

Candida albicans mutant libraries
Research on pathogenic fungi is often hampered by low homolo-
gous integration rates and the absence of a canonical sexual cycle.
Consequently, different strategies have been implemented to ma-
nipulate gene function. The situation is further confounded by C.
albicans being diploid, which means that depletion of gene func-
tion requires two rounds of transformation. This is usually done
using a modified S. cerevisiae lithium acetate protocol, which can
inadvertently lead to changes in chromosome copy numbers (Bou-
chonville et al. 2009).

The first publicly available mutant library deployed random
transposon insertion mutagenesis (Davis et al. 2002). Transposon
mutagenesis is a widely used technique through which genetic
material, such as auxotrophic markers, are distributed through-
out the host genome via a mobile DNA element, the transpo-
son. This process is mostly random but can lead to gene inactiva-
tion, should the transposon insert into coding DNA. Here, the Tn7
transposon, carrying the UAU1 cassette (Tn7-UAU1), was trans-
formed into the C. albicans genome. The UAU1 cassette contains
a complete copy of ARG4 flanked by the 3’ and the 5’ regions of
URA3. Transforming the Tn7-UAU1 construct into C. albicans strain
BWP17 (arg, his and ura) yields Arg+ transformants upon suc-
cessful integration into allele one. Should recombination of the
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UAU1 cassette occur, the URA3 marker reconstitutes while being
inserted into allele two, therefore, homozygous mutants are Arg+
Ura+. This strategy delivered >1200 histidine–auxotroph transpo-
son insertion mutants representing 703 genes. It should be noted
that the progenitor strain used to generate this library, BWP17, is
missing a part of the right arm of chromosome 5B (Forche et al.
2004; Selmecki, Bergmann and Berman 2005)

Conversely, a TF library was produced using a clean gene dele-
tion approach to remove both alleles of 166 non-essential TF genes
(Homann et al. 2009). Auxotrophic markers HIS1 and LEU2 replace
each wild-type TF allele in the progenitor strain SN152 (Noble
and Johnson 2005). This approach was then expanded to create a
homozygous gene deletion library containing 3000 mutants rep-
resenting 674 genes (Noble et al. 2010). These mutants are also
tagged with one of 48 different oligonucleotide barcodes. This 20-
mer, adjacent to the selectable marker, allows for mutants to be
pooled in groups of 48, thereby drastically reducing the experi-
mental load.

In addition to transposon insertions and clean gene deletions,
C. albicans loss-of-function mutants have also been created us-
ing a gene replacement and conditional expression (GRACE) strat-
egy (Roemer et al. 2003). To produce each mutant, the progenitor
strain CaSS1, a histidine–auxotroph CAI derivative, has one allele
replaced with the HIS3 auxotrophic marker, flanked by two dis-
tinct barcodes, and the second allele’s promoter is replaced by a
SAT1-marked tetracycline promoter. Transformants were then se-
lected for nourseothricin resistance and expression of allele two
can be repressed by culturing with doxycycline or tetracycline. It
was successfully used to identify essential genes in C. albicans. The
library design allows for the prototrophic and nourseothricin re-
sistant mutants to be pooled but limits further genetic manipula-
tions.

Of the four C. albicans libraries described above, there is very
little overlap in genes represented (Fig. 3). The largest portion of
genes, 221, is shared by the Noble and the GRACE library. Only
13 genes are covered by all four libraries. Thanks to these efforts,
the C. albicans community has access to four mutant libraries that
together cover ∼50% of the genome.

Candida parapsilosis and C. glabrata libraries
Homologous integration rates are also extremely low in the
other Candida species, including C. parapsilosis and C. glabrata. To
counter-act this and improve transformation rates, wild-type al-
leles were replaced in both species with constructs flanked by
500 bp homology arms made using fusion PCR (Noble and John-
son 2005). To create the C. parapsilosis library, the first wild-type
allele was replaced with the C. maltosa LEU2 gene and the second
allele with the C. dubliniensis HIS1 gene (Holland et al. 2014). Each
of the 200 mutants, two per gene, is also barcoded with a 20-mer
signature DNA tag permitting pooling of otherwise prototrophic
mutants. To replace wild-type alleles in haploid C. glabrata, the
NAT1 marker (Shen, Guo and Köhler 2005), conferring resistance
to nourseothricin, flanked by two barcodes, was deployed. The li-
brary, containing 1601 mutants, covers ∼10% of the genome and
mutants can be pooled in groups of 96 (Schwarzmüller et al. 2014).
Mutants are nourseothricin resistant and auxotrophic for histi-
dine only or for histidine, tryptophan and leucine, permitting fur-
ther manipulations if required.

The A. fumigatus library
To create the A. fumigatus gene deletion library, the hygromycin B
phosphotransferase cassette (hph) was amplified with 1 kb flank-

ing regions using a fusion PCR protocol (Szewczyk et al. 2006). This
construct was transformed into the progenitor strain MFIG001
(Fraczek et al. 2013). MFIG001 is deficient for homologous end join-
ing (akuBKU80; Kress et al. 2006) and carries the pyrG gene, which
encodes the orotidine-5’-phosphate decarboxylase, complement-
ing for uracil and uridine auxotrophy (Osmani, Oakley and Os-
mani 2006). As a consequence, the almost 500 TF gene deletion
mutants are prototrophic and resistant to hygromycin B, preclud-
ing further genetic modifications (Furukawa et al. 2020).

Different sets of mutant libraries exist for C. neoformans. In a
targeted approach utilizing database predictions of gene func-
tion, wild-type alleles of TFs, kinases and phosphatases were
deleted (Jung et al. 2015; Lee et al. 2016; Jin et al. 2020) in the wild-
type strain C. neoformans H99S (Janbon et al. 2014). To do so, the
nourseothricin-resistance marker NAT1 was amplified together
with a barcode using either an overlap PCR (Davidson et al. 2002)
or a double-joint PCR approach (Kim et al. 2009) and transformed
into H99S. Mutants, usually multiple per gene, are prototrophic
and barcoded for ease of handling. A second, much larger, set of
C. neoformans mutants was generated by transforming wild-type
strain KN99alpha with overlap fusion PCR products (Chun, Liu and
Madhani 2007). The transformation constructs harbor the NAT1
marker, together with 48 unique barcodes (Liu et al. 2008) flanked
by 1 kb regions of homology to the up- and down-stream regions of
the target gene. In this library, each gene is represented by one pro-
totrophic, nourseothricin resistant, barcoded mutant. Note that
H99S and KN99 are derivatives of H99, which was collected from a
patient at Duke Medical Center in 1978. For genetic relationships
amongst these and other H99 derivatives see here (Janbon et al.
2014).

Together, these mutant libraries enable the large-scale studies
into genetic interactions, including that of Hsp90 across evolu-
tionary time in species with different life history trajectories.

Useful techniques for mapping Hsp90 networks
in fungi
Several genetic and biochemical approaches have been developed
to map Hsp90 interaction networks. Screens are conducted to cat-
alog genes or proteins that are part of the same cellular pathways
as Hsp90 or depend on Hsp90 for regulation, stability and/or acti-
vation.

Perturbing Hsp90 function
Knock-out mutants have long provided a fundamental technique
to investigate the function and interactions of genes, however, this
is confined only to non-essential genes. Since Hsp90 is essential,
deletion mutants are not viable, so pharmacological inhibition or
genetic depletion have been used to carry out synthetic lethality
screens to build Hsp90 interaction networks. Pharmacological in-
hibition of Hsp90 can be achieved by addition of one of several
commercially available Hsp90 inhibitors, such as geldanamycin
and macbecin II, which would be the ones most commonly used in
Hsp90 screens. It should be noted that while both drugs are com-
monly considered to inhibit Hsp90 by binding to its ATP-binding
pocket (Prodromou et al. 1997; Martin et al. 2008), they appear to
exert multiple subtle effects that in combination reduce Hsp90
function and may cause small off-target effects (Schmid, Götz and
Hugel 2018). Genetic depletion of Hsp90 is possible by producing
mutants where Hsp90 is under a repressible promoter such as
the tetracycline promoter (Gari et al. 1997; Nakayama et al. 2000).
Both, chemical and genetic Hsp90 perturbation, allow fine tuning
of Hsp90 function to elicit synthetic lethality in loss-of-function
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Figure 3. Candida albicans mutant libraries sizes and overlaps. Upset R-plot depicting the size of each library on the left (set size) and the overlap
between different libraries on the right. The Homann library covers 166 TF gene deletions (Homann et al. 2009). The Mitchell library consists of 703
genes disrupted by transposon insertions (Davis et al. 2002). The Noble library comprises 674 clean gene deletion mutants (Noble et al. 2010). The
GRACE library provides repressible mutants for 2357 genes (Roemer et al. 2003). Vertical bars represent the number of genes shared between each of
the libraries, the libraries sharing these genes are indicated by the connected dots. There is little overlap in genes represented between libraries,
together these libraries allow disruption of 2603 genes, covering 42% of the C. albicans genome.

libraries, a prerequisite for the mapping of genetic interaction
networks.

Synthetic lethality screens
Genetic interactions occur between genes in the same pathways
or molecular complexes, and the functional associations between
genes throughout the genome form a genetic interaction network.
Genetic interactions can be investigated using the concept of syn-
thetic lethality. Synthetic lethality states that if two non-essential
genes genetically interact, the viability of a double mutant is sig-
nificantly affected, causing reduced fitness (synthetic sickness) or
death (synthetic lethality; Dobzhansky 1946; Bendert and Pringle

1991). Organisms have inherent redundancy in their cellular path-
ways, thereby if one component is not functional, a second route
exists that can by-pass the non-functional component. However,
when two interacting genes are not functioning, the pathway is no
longer functional, and the organism’s survival is affected (Fig. 2).
Gene deletion libraries can be screened for inviability in response
to Hsp90 inhibition in studies termed chemical genetic synthetic
lethality (CGSL) screens.

Synthetic genetic arrays (SGA) also use the premise of synthetic
lethality but exploit sexual recombination to cross haploid S. cere-
visiae gene deletion strains (Tong et al. 2001). Again, since Hsp90
is essential, a hypomorphic Hsp90 allele must be used. Inviable
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crosses indicate that the non-functional genes in the haploid par-
ents genetically interact (Novick, Osmond and Botstein 1989).

Y2H and C2H protein–protein interaction screens
Hsp90 forms numerous protein complexes with clients and co-
chaperones through its role as a molecular chaperone. Some co-
chaperones contain a conserved Hsp90-binding sequence, how-
ever, client proteins lack such a motif (Scheufler et al. 2000). This

hinders bioinformatic prediction of Hsp90 clients, necessitating
proteomic and physical interaction screens.

A canonical, large-scale method to identify protein–protein in-
teractions (PPIs) is the yeast two-hybrid system (Y2H; Fields and
Song 1989). This system employs a reporter gene such as HIS3,
ADE2, LEU2 or Escherichia coli LacZ down-stream of an inducible
promoter such as GAL1p (Vojtek, Hollenberg and Cooper 1993; Es-
tojak, Brent and Golemis 1995; James, Halladay and Craig 1996).
The original and most utilized system uses the S. cerevisiae TF,
Gal4 to bind to GAL1p and induce expression of LacZ. Gal4 com-
prises an N-terminal DNA binding domain (DBD) and a C-terminal
activator domain (AD). When both Gal4 domains come together,
expression of β-galactosidase from LacZ is induced. On addition
of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal), β-
galactosidase cleaves the X-gal to form a blue-colored molecule.
In Y2H screens the Gal4 binding domain is fused to one protein
(termed the ‘bait’) and the activating domain to another protein
(‘prey’). If these proteins interact, Gal4 is reconstituted, allowing
expression of β-galactosidase and cleavage of X-gal, causing the
colony to turn blue (Fig. 4A). To enable high-throughput screen-
ing of the S. cerevisiae proteome, a haploid MATa bait library con-
taining the Gal4 DBD attached to each protein in the S. cerevisiae
proteome can be mated with a MATalpha prey strain containing a
gene of interest attached to the Gal4 activating domain (Uetz et al.
2000). When crossed, selected for diploid cells and grown with X-
gal, blue colonies indicate that the Gal4-domain tagged proteins
in the haploid parental strains directly and physically interact.

Due to C. albicans’ alternative codon usage (CUG coding for
leucine instead of serine) and this species’ inability to maintain
plasmids, Y2H systems designed in S. cerevisiae are not reliable in
this pathogenic yeast. The first 2H system designed for C. albicans
(C2H) comprises plasmids that are integrated into the genome
(Stynen, van Dijck and Tournu 2010). A total of two reporter genes,
C. albicans HIS1 and Staphylococcus thermophilus LacZ were used, up-
stream of five copies of the Staphylococcus aureus LexA operon and
the C. albicans ADH1 promoter. An artificial TF comprised of S. au-
reus LacZ DBD and the viral activating domain VP16 activate the
LexA operon and induce expression of LacZ and HIS1. The bait and
prey plasmids allow the tagging of genes of interest with the LexA
DBD and VP16 activating domain under the MET3 repressible pro-
moter. Reporter gene, bait and prey plasmids are then linearized
and integrated into sections of the C. albicans genome where their
affects were predicted to be minimal. If the bait and prey proteins
interact, strains grown in methionine deficient media are able to
grow on histidine selection media and have high activity in a β-
galactosidase assay (Fig. 4B).

This C2H system was developed by making the vector plasmids
Gateway compatible and mating-inducible C. albicans strains were
constructed to allow crossing of bait and prey strains rather than
triple-transforming the same strain with three plasmids (Legrand
et al. 2018). Again, further improvements to allow high-throughput
screens were made by optimizing a mating protocol on agar rather
than in broth (Schoeters et al. 2018). Furthermore, the ORFeome li-
brary (each C. albicans ORF in a Gateway vector, Table 1) allows the
cloning of each C. albicans ORF into the bait or prey C2H vectors for
high-throughput interaction studies. Now, the mating-inducible
strain containing the reporter gene cassette can be transformed
with either the bait or prey plasmids, mated and screened for his-
tidine prototrophy, which indicates the bait and prey proteins in-
teract.
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Figure 4. Set-up of the original yeast two-hybrid system for use in S. cerevisiae and its adaption to Candida two-hybrid. (A) The original yeast two-hybrid
system uses LacZ as the reporter gene (Fields and Song 1989). When the Gal4 DBD-tagged bait protein interacts with the Gal4 AD-tagged prey protein,
Gal4 induces the expression of LacZ via the GAL1 promoter. Colonies where bait and prey proteins interact will appear blue when grown on X-gal
media. (B) The Candida two-hybrid system uses C. albicans optimized genes (Stynen, van Dijck and Tournu 2010; Legrand et al. 2018; Schoeters et al.
2018). The background strain, SC2H3, has two reporter genes, Streptococcus thermophilus LacZ and C. albicans HIS1. Each reporter gene is under the C.
albicans ADH1 promoter and five copies of the Staphylococcus aureus LexA operon. The LacZ reporter cassette is integrated into chromosome 1 and the
HIS1 reporter cassette is integrated into chromosome 4. When S. aureus LexA DBD-tagged bait interacts with viral VP16 AD-tagged prey, expression of
LacZ and HIS1 is induced. Strains where bait and prey proteins interact will grow on histidine deficient media and have increased β-galactosidase
activity, measurable via assay.

Tandem affinity purification—mass spectrometry
proteomics
The Y2H and C2H systems involve several transformations, which
is not an insignificant task on a high-throughput level, especially
in C. albicans which has low rates of homologous integration. An
alternative proteomic approach to investigate PPIs is that of tan-
dem affinity purification (TAP) coupled with mass spectrometry
(MS; Rigaut et al. 1999). The TAP tag is formed of calmodulin bind-
ing peptide (CBP) and protein A (ProtA) linked with a Tobacco Etch
Virus protease (TEV) cleavage site. Tagging a protein with this epi-
tope allows stringent purification first using ProtA’s strong affin-
ity to immunoglobulin G (IgG), the protein is then released by TEV
protease cleavage and purified again using calmodulin in the pres-
ence of Ca2+. Chelating the calcium ions by egtazic acid (EGTA)
releases the TAP-tagged protein from calmodulin. Any proteins
that form stable complexes with the TAP-tagged protein will co-
purify and can be identified by MS. This technique needs only one
transformation of a yeast, tagging a gene of interest with the TAP
epitope, of which S. cerevisiae and C. albicans optimized sequences
exist (Gavin et al. 2002; Lavoie et al. 2008).

Multiplexed quantitative proteomics
Another approach is to utilize multiplexed quantitative pro-
teomics to identify both direct and indirect interactions of Hsp90.
The most used technique, stable isotope labeling by amino acids
in cell culture (SILAC), involves growing cells in the presence
of heavy or light carbon-labeled amino acids, usually arginine
and lysine, while inhibiting or repressing Hsp90 (Ong et al. 2002;
Gopinath et al. 2014; O’Meara et al. 2019). The cells assimilate these
isotopic amino acids into newly synthesized proteins. When sub-
jected to MS, the differently labeled samples can be quantified in-
dividually, allowing comparisons between up to three samples at
once: those with natural isotopes, light isotopes and heavy iso-
topes. A more powerful quantitative proteomic approach is Tan-

dem Mass Tagging (TMT; Thompson et al. 2003). This technique
covalently attaches one of up to ten different isobaric tags of the
same mass to a cell protein sample. During MS, the tags frag-
ment into reporter ions with differing masses, allowing compari-
son of up to 11 samples simultaneously. Since many samples can
be compared concurrently and because tagging occurs after pro-
tein extraction, TMT allows robust quantitative proteomic studies
without extremely high costs or specialist cell-culture techniques.
Although TMT proteomics is yet to be applied to fungal Hsp90
studies, this technique has been used on Hsp90-inhibited human
lung cancer and squamous cell carcinoma cell lines (Grimes et al.
2018; Mehta et al. 2020).

Quantitative proteomics on Hsp90-impaired cells can identify
interactors up and down-stream of Hsp90 in molecular pathways.
Interactors up-stream of Hsp90 are likely to increase in abun-
dance to mitigate loss of Hsp90 function, while clients which are
dependent upon Hsp90 for their stability and folding will decrease
in abundance. Since clients lack a conserved Hsp90 binding motif
to allow identification bioinformatically, quantitative proteomics
provides a unique, proteome-wide view to predict novel Hsp90
clients.

The use of these techniques provides a comprehensive toolbox
to investigate genetic, proteomic and PPIs.

Fungal Hsp90 interaction networks
Inhibiting Hsp90 function results in a multitude of phenotypes
indicative of the central role this molecular chaperone plays. Ge-
netic, physical and proteomic interaction networks allow identifi-
cation of the molecular pathways and complexes through which
Hsp90 exerts its control. To date, ten networks have been mapped
in two fungi, yielding insights into Hsp90 function and regulation
(Table 2).
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Hsp90 networks in S. cerevisiae
Probably the most thorough examination of the fungal Hsp90 net-
work landscape has been achieved in S. cerevisiae. Deploying this
yeast’s extensive toolbox, which includes loss-of-function mutant
libraries (Table 1), epitope-tagged libraries (Janke et al. 2004; How-
son et al. 2005) and genome-scale collections suitable for Y2H
screens (Uetz et al. 2000), provided a comprehensive overview of
the eukaryotic Hsp90 interaction landscape. Key findings of the
six screens conducted in S. cerevisiae are highlighted in Table 2.
Based on these screens, several general features of Hsp90 biology
can be concluded.

Hsp90 is a network hub that interacts with at least 10% of the
proteome (Zhao et al. 2005). Genome-scale Hsp90 network data
have not just yielded lists of genes and proteins that function in
the same pathways and complexes as Hsp90, but further analy-
ses of these extensive lists of Hsp90 clients provided important
insights into Hsp90’s role in genome evolution (Zhao et al. 2005;
Gong et al. 2009). Comparative analyses of evolutionary rates of
S. cerevisiae Hsp90 clients with their homologs in the close rela-
tive S. paradoxus showed that Hsp90 clients diverged faster due
to Hsp90’s ability to buffer destabilizing mutations (Koubkova-
Yu, Chao and Leu 2018; Alvarez-Ponce et al. 2019). Furthermore,
gene/genome duplication is an important pillar of genetic diver-
sification as it produces new genetic material that can take on a
new function, share the function of the predecessor, or be lost. The
molecular mechanisms involved in these processes are not yet
fully understood. The ancestor of S. cerevisiae underwent whole
genome duplication (Langkjær et al. 2003) and S. cerevisiae thus
provides an ideal testing ground to determine Hsp90’s role in the
fate of duplicated genes. Indeed, comparing the evolutionary rates
of Hsp90 clients with those of their non-client paralogs revealed
that Hsp90 clients evolved faster and Hsp90 thus facilitates the di-
vergence of gene duplicates (Lachowiec et al. 2013). Hence, Hsp90
is an important contributor to genome diversification.

Hsp90 interactors are involved in many fundamental cellu-
lar processes, therefore, inhibition or depletion of Hsp90 re-
sults in a multitude of phenotypes. The most extensive S. cere-
visiae screen to date, combining Y2H, TAP-MS, SGA and CGSL
screens, showed that at 30åC >10% of interactors function in tran-
scription, cellular fate, protein post-translational modifications,
metabolism, cellular transport and the cell cycle and DNA pro-
cessing (Zhao et al. 2005). This finding was supported by a CGSL
screen comparing Hsp90 genetic interactors from cells grown
at 30 and 37åC (McClellan et al. 2007). Here, Hsp90 interactors
are 2-fold enriched for genes involved in nuclear organization,
protein binding, signal transduction and pseudohyphal growth.
The second screen, furthermore showed that Hsp90 genetic in-
teractors differ with the test environment (McClellan et al. 2007)
and interactor profiles in cells that were grown in more simi-
lar temperatures are more similar to each other (Franzosa et al.
2011). Thus, the Hsp90 interaction network is environmentally
responsive.

Further, genome-scale S. cerevisiae Hsp90 network screens have
identified novel Hsp90 co-chaperones, which differ from tradi-
tional co-chaperones that are essential for Hsp90 activity, client
specificity and directionality of the chaperone cycle (Zuehlke
and Johnson 2010). Co-chaperones identified as part of genomic
screens for Hsp90 interactors have established links between
Hsp90 and specific cellular pathways, such as epigenetic gene reg-
ulation (Zhao et al. 2005). While rich in discovery, these findings are
limited to one species and may not be necessarily transferable to
species with other evolutionary trajectories and ecologies.

Hsp90 networks in C. albicans comprise novel
regulators of Hsp90 and fungal virulence
To reveal more detail of Hsp90’s role as a regulator of virulence
traits in C. albicans, the Hsp90 genetic interaction network was
mapped using the transposon insertion mutant library (Davis et
al. 2002). In a CGSL screen, mutants were screened for loss of via-
bility in response to Hsp90 inhibition in six environmental condi-
tions: two different temperatures, mild osmotic stress and three
common antifungal drugs (Diezmann et al. 2012). Most interac-
tions were detected under just one or two experimental condi-
tions. Only very few interactors were detected during exposure to
five or six different conditions. Further analyses showed that high-
connectivity interactors, such as Ckb1, are required for Hsp90
phosphorylation and expression, while various low-connectivity
interactors were shown to be Hsp90 clients. The experimental set-
up of the initial screen was applied to two more C. albicans li-
braries, the Homann TF library and the Noble deletion mutant
library (Table 1), whose overlap with the transposon insertion
mutant library is limited to 25 mutants (Fig. 3), bringing cover-
age of the C. albicans genome to ∼20%. Here, a similar pattern of
high- and low-connectivity interactors was observed (O’Meara et
al. 2016a). A total of two high-connectivity interactors, ERG5 and
STT4, were further characterized. Lack of ERG5 resulted in hyper-
sensitivity to Hsp90 inhibitors, due to the additional cell stress of
a destabilized cell wall and loss of STT4 increases cellular demand
for Hsp90 due to defects in actin organization. Mapping Hsp90 net-
works in C. albicans not only contributed to a better understand-
ing of how the chaperone network modulates C. albicans virulence
traits (O’Meara, Robbins and Cowen 2017) but revealed another
feature of Hsp90 interactors. High-connectivity interactors, those
that are detected as essential for growth during most test con-
ditions, affect Hsp90 expression, phosphorylation and function
(Diezmann et al. 2012; O’Meara et al. 2016b). Low-connectivity in-
teractors, those detected at specific environmental conditions, de-
pend on Hsp90 for stability and function (Diezmann et al. 2012).

Given the limitations associated with targeting fungal Hsp90,
its interactors could provide novel avenues to reducing fungal vir-
ulence. To demonstrate just how broadly Hsp90 interactors are in-
volved in different C. albicans virulence factors, three were selected
for a more detailed review, two of which, AHR1 and ERG5, were
identified as high connectivity interactors. The third, CKA2, was
initially identified as a low-connectivity interactor but was later
found to be critical for phosphorylation of a Hsp90 serine residue
and modulating Hsp90 is a hallmark of a high-connectivity inter-
actor.

The Candida-specific zinc cluster TF Ahr1 (Table 2) activates nu-
merous genes required for fundamental processes of virulence,
including adhesion, hyphal growth and biofilm formation (Askew
et al. 2011) as well as HSP90 expression (Diezmann et al. 2012). Ahr1
furthermore acts as repressor of the white-to-opaque transition
(Wang et al. 2011) by being one of three core regulators of the white
cell regulatory network. This network comprises 179 genes, 93 of
which are activated by Ahr1 (Hernday et al. 2013). Most recently, it
was shown that Ahr1 also activates expression of ECE1 in hyphae
(Ruben et al. 2020). ECE1 is the most abundant transcript in hyphae
and the precursor of Candidalysin, the first fungal cytolytic toxin
to be identified. Candidalysin is critical for mucosal pathogenesis
(Moyes et al. 2016). Given how many aspects of C. albicans virulence
are controlled by Ahr1, it is not surprising that the ahr1�/� mu-
tant strain displayed attenuated virulence in a murine model of
systemic infection (Askew et al. 2011).

Erg5 (Table 2) is part of the ergosterol biosynthetic pathway,
which is a prominent drug target making Erg5 itself a prominent
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component of antifungal drug resistance. Deletion of this C-22
sterol desaturase (P450 cytochrome) results in accumulation and
integration of different sterol intermediates into the cell mem-
brane, which causes Hsp90 stress (O’Meara et al. 2016b). Deletion
of ERG5 also renders S. cerevisiae cells resistant to polyene antifun-
gals, such as nystatin (Parks et al. 1985). Mutations in ERG5 and
ERG11, as identified in a clinical isolate of C. albicans from a pa-
tient with recurrent oral candidosis, resulted in multi-drug resis-
tance. The strain was reported to be resistant against the most
commonly deployed class of antifungals, the azoles and the last-
line antimycotic Amphotericin B, severely compromising the an-
tifungal armamentarium available to treat this patient (Martel et
al. 2010).

The tetrameric kinase Ck2 is not well-characterized in C. al-
bicans, but plays a central role in mammalian regulation of
cell proliferation and DNA damage repair (Filhol and Cochet
2009). Ck2’s catalytic subunit Cka2 is required for invasion of
oral epithelial cells (Chiang et al. 2007) and a mutant lack-
ing CKA2 displays increased resistance to fluconazole (Bruno
and Mitchell 2005). The latter phenotype could be explained
by the lack of phosphorylation of serine residue 530 in C. al-
bicans Hsp90 (Alaalm et al. 2021). This phospho-switch regu-
lates Hsp90 stability and the expression of various virulence
traits, including drug resistance. Phosphorylation of S530 results
in a loss-of-function phenotype, as exemplified by susceptibil-
ity to fluconazole, filamentous growth and increased susceptibil-
ity to thermal stress. Thus, Cka2 is a repressor of Hsp90 func-
tion that requires Hsp90 chaperoning for stability (Diezmann
et al. 2012).

Further dissecting the functions of Hsp90 interactors identified
in networking mapping efforts, will provide new insights into the
molecular pathways through which this protein hub governs fun-
gal virulence.

Core network of Hsp90 interactors comprises key
regulators of the environmental stress response
Comparing Hsp90 networks from different species has revealed
limited overlap between Hsp90 genetic interactors. Only ∼17%
of interactors are conserved between S. cerevisiae and C. albicans
(Zhao et al. 2005; Diezmann et al. 2012). However, a core of con-
served Hsp90 interactors is beginning to emerge. Unsurprisingly,
with Hsp90 being a stress-responsive chaperone, core interactors
are also involved in stress-response pathways, more specifically
several are stress-responsive kinases. In total, two examples of
core Hsp90 client kinases are components of the CWIP, which is re-
quired for survival during thermal stress. Protein kinase C (Pkc1),
which activates the mitogen-activated protein kinase (MAPK) cas-
cade that is integral to the CWIP, is stabilized by Hsp90 in C. al-
bicans (Caplan et al. 2018), as is the A. fumigatus homolog PkcA
(Rocha et al. 2021). Mkc1, a MAPK of the CWIP, is stabilized by
Hsp90 in C. albicans (Lafayette et al. 2010), in S. cerevisiae (Slt2; Mill-
son et al. 2005) and A. fumigatus (MpkA; Rocha et al. 2021). Yet,
Hsp90 core interactors are not restricted to CWIP kinases. Hog1,
which regulates the osmolarity signaling pathway (Schüller et al.
1994) is stabilized by Hsp90 in S. cerevisiae (Millson et al. 2005)
and C. albicans (Diezmann et al. 2012). Interestingly, even the hu-
man homolog, p38, is stabilized and activated by Hsp90 in murine
cardiomyocytes (Ota et al. 2010) and human sperm (Sun et al.
2021). Understanding core Hsp90 interactors may shed new light
onto the early days of evolution of this intricate and divergent
network.

Beyond experimental mapping and validation of Hsp90 inter-
actions, existing PPI databases, such as the STRING and BioGRID
(https://string-db.org/; https://thebiogrid.org/; von Mering et al.

2005; Oughtred et al. 2021) can be mined for Hsp90 interactions.
Querying the STRING database for PPIs between different molec-
ular chaperones in S. cerevisiae, C. albicans, A. fumigatus and C. neo-
formans, revealed that protein interactors have diverged between
the different species (Horianopoulos and Kronstad 2021). This is
supported by a comparison between experimental data of Hsp90
interactors from two different studies in S. cerevisiae (Zhao et al.
2005) and C. albicans (Diezmann et al. 2012), which showed that
less than 20% of interactors are shared between these two species.
Yet, to fully understand the degree of divergence between Hsp90
chaperone networks in different species, network assays need to
be done under comparable conditions.

CONCLUSIONS AND OUTLOOK
Being able to map Hsp90 interaction networks in diverse fungal
species facilitates detection of signatures of evolution. Compar-
ing Hsp90 networks mapped in S. cerevisiae that commonly lives
on fruit and in the soil, with those gleaned from C. albicans, a com-
mon human commensal and opportunistic pathogen, will iden-
tify common interactors due to shared ancestry and those that
evolved in response to selection exerted by the environmental
niche. Comparisons between Hsp90 networks in different species
will furthermore provide novel insights into general features of
network biology, allowing network dynamics and properties, such
as degrees of connectivity, to be established more robustly. Also,
experimental identification of Hsp90 interactors has the poten-
tial to improve existing databases that allow in silico investiga-
tions of PPI networks, such as STRING and BioGRID databases
(https://string-db.org/; https://thebiogrid.org/; von Mering et al.
2005; Stark et al. 2006; Oughtred et al. 2021). While powerful with
regards to the fungal kingdom, these databases are often limited
to experimentally validated interactions in S. cerevisiae, which are
then used to predict interactions of orthologs in other species.
With the arrival of experimental data in species other than S. cere-
visiae, predictions can be refined and improved.

Lastly, research on non-model fungal pathogens, which is ham-
pered by low rates of homologous recombination, is currently be-
ing revolutionized by CRISPR-Cas technology (Jinek et al. 2012). To
date, CRISPR-Cas has been adapted to operate in C. albicans (Vyas,
Barrasa and Fink 2015; Min et al. 2016), C. parapsilosis (Lombardi
et al. 2017), C. glabrata (Enkler et al. 2016), C. neoformans (Arras et
al. 2016) and A. fumigatus (van Rhijn et al. 2020). Being able to se-
lectively and efficiently manipulate specific loci, will not only en-
able expansion of existing libraries, but also facilitate creation of
libraries in differing genetic backgrounds with varying environ-
mental origins. Being able to mine population-scale mutant col-
lections will further increase resolution of Hsp90 interaction net-
works.

The model eukaryote S. cerevisiae has been instrumental in ex-
tracting fundamental knowledge of the nature of Hsp90 networks.
Fungal Hsp90 networks can provide critical insights into the evo-
lution of complex chaperone networks and emergence of patho-
genesis.
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