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Abstract

Motivation: It is essential to study bacterial strains in environmental samples. Existing methods and tools often de-
pend on known strains or known variations, cannot work on individual samples, not reliable, or not easy to use, etc.
It is thus important to develop more user-friendly tools that can identify bacterial strains more accurately.

Results: We developed a new tool called mixtureS that can de novo identify bacterial strains from shotgun reads of
a clonal or metagenomic sample, without prior knowledge about the strains and their variations. Tested on 243
simulated datasets and 195 experimental datasets, mixtureS reliably identified the strains, their numbers and their
abundance. Compared with three tools, mixtureS showed better performance in almost all simulated datasets and
the vast majority of experimental datasets.

Availability and implementation: The source code and tool mixtureS is available at http://www.cs.ucf.edu/~xiaoman/
mixtureS/.

Contact: haihu@cs.ucf.edu or xiaoman@mail.ucf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is imperative to reconstruct bacterial strain genomes from shotgun
reads of clonal samples of individual species or metagenomic sam-
ples of many species (Luo et al., 2015; Pulido-Tamayo et al., 2015).
Bacterial genomes are constantly evolving, where mutations are
accumulated in different copies of a species genome that result in
different strain genomes of the same species mixed in a sample
(Zolfo et al., 2017). To identify bacterial strains in a sample, shot-
gun sequencing is routinely used to generate short DNA segments
from mixed strain genomes in a sample, which are called reads and
approximate the full DNA content and abundance of the mixed
strain genomes in the sample (Nayfach et al., 2016). To reconstruct
the strain genomes from these reads is thus crucial for our under-
standing of the bacterial diversity, evolution, function, drug resist-
ance and so on (Nayfach et al., 2016; Pulido-Tamayo et al., 2015;
Truong et al., 2017; Zolfo et al., 2017). More than a dozen methods
are available for strain studies. The vast majority of them depend on
known strains and/or known variations in strains, or intent to iden-
tify only variations in the species genome or a portion of the strain
genomes, which cannot be generally applied or cannot de novo re-
construct the entire strain genomes (Ahn et al., 2015; Albanese and
Donati, 2017; Hong et al., 2014; Luo et al., 2015; Nayfach et al.,
2016; Quince et al., 2017; Roosaare et al., 2017; Truong et al.,
2017; Zolfo et al., 2017). This leaves only a few methods that can

de novo reconstruct bacterial strain genomes from reads in individ-
ual samples (Li et al., 2019; Pulido-Tamayo et al., 2015; Smillie
et al., 2018). Moreover, to our knowledge, the performance of these
remaining methods is still suboptimal. In addition, some tools are
difficult to use by general biologists. We thus create a new tool
called mixtureS that have better accuracy and are more user-
friendly.

2 Methods and implementation

As previous studies (Li et al., 2019; Pulido-Tamayo et al., 2015;
Smillie et al., 2018), mixtureS assumes that different strains of a spe-
cies are likely to have different abundance. It also assumes that there
are two types of nucleotides at a true polymorphic site, because al-
most all polymorphic sites in microbial genomes are biallelic (Foster
et al., 2020). The first assumption makes the separation of the poly-
morphic sites in different strains possible, and the second one ena-
bles a simpler solution as shown below. Note that different strains
are still allowed to share polymorphic sites.

Starting from the mapped reads to a species genome, mixtureS
infers the strain genomes and their abundance in three main steps
(Fig. 1A). First, it identifies all genome positions with varied nucleo-
tides in the mapped reads. Second, it refines the identified positions
by removing positions with low-coverage (<10% of the average

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 575

Bioinformatics, 37(4), 2021, 575–577

doi: 10.1093/bioinformatics/btaa728

Advance Access Publication Date: 17 August 2020

Applications Note

http://www.cs.ucf.edu/~xiaoman/mixtureS/
http://www.cs.ucf.edu/~xiaoman/mixtureS/
http://www.cs.ucf.edu/~xiaoman/mixtureS/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data
https://academic.oup.com/


coverage of the genome) and positions with variations highly likely
due to sequencing errors. Finally, mixtureS applies an expectation
maximization (EM) algorithm to infer the strains from the remain-
ing polymorphic positions. EM algorithms have shown good per-
formance previously (Li and Waterman, 2003; Smillie et al., 2018;
Wang et al., 2015, 2016, 2017).

In brief, assume that there are n remaining polymorphic posi-
tions, which are from m strains, and the frequency of the wild-type

nucleotide and the mutated nucleotide at the ith position are x
ðiÞ
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and the probability that a mutated nucleotide at a position belongs
to the jth strain is aj. We have the expectation of the missing data
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j Þ at the M-step. Since m is unknown, mixtureS starts from

m¼1 and applies the Bayesian information criterion to adjust m and
identify the best m. See details in Supplementary Material S1.

We implement the above pipeline into the mixtureS tool pack-
age. This package provides the tool in both Linux and Windows ver-
sions. It also includes a script to process the FASTQ raw reads, to
map reads to the reference genome of interest, and to generate a
four by n matrix as the input to the above pipeline. The readme,
source code, information about simulated and experimental data-
sets, together with example test datasets, are also provided.
Compared with existing tools (Pulido-Tamayo et al., 2015; Smillie
et al., 2018; Truong et al., 2017), it is much easier to set up the run-
ning environment for mixtureS and simpler to interpret the output
of mixtureS, which makes it easy to apply mixtureS for strain
studies.

3 Results

We tested mixtureS on 243 simulated datasets (Supplementary
Material S2). In each dataset, we randomly generated shotgun reads

for 2–4 strains of a bacterial species and mixed these reads together.
We tested mixtureS together with three other tools, BHap,

EVORhA and strainFinder on the mixed reads (Li et al., 2019;
Pulido-Tamayo et al., 2015; Smillie et al., 2018). MixtureS pre-
dicted the correct strain numbers in 202 datasets, while BHap,

EVORhA and strainFinder did it in 40, 46 and 0 datasets, respect-
ively. Because strainFinder had trouble to find the right strain num-
ber, we input the correct strain number to run strainFinder, which

was called strainFinder*. Even with this advantage, in terms of the
strain abundance, mixtureS predicted at least 2.96, 1.74, 7.68 and

3.71 times closer to the true abundance than BHap, EVORhA,
strainFinder and strainFinder*, respectively (the corresponding
standard deviation as 8, 4, 40.70 and 18.50, respectively). In add-

ition, the predicted polymorphic sites by mixtureS was much more
accurate (Fig. 1B).

We also tested mixtureS on 195 experimental datasets
(Supplementary Material S3) (Sobkowiak et al., 2018). There were

two strains of Mycobacterium tuberculosis with known abundance
in each dataset, while the polymorphic sites in the two strains were
unknown. We compared how well the four methods predicted the

number of strains and their abundance. BHap, EVORhA,
strainFinder and mixtureS predicted two strains in 22, 0, 0 and 84

datasets, respectively. As to the strain abundance, mixtureS had a
much accurate estimate than other tools, including strainFinder*
(Fig. 1C).

4 Discussion

We demonstrated the usage of mixtureS on samples of individual

species. For metagenomic samples with multiple species, users can
map reads to the species genome of interest first and then apply

mixtureS. mixtureS can infer strains more accurately than existing
tools and is fast (Supplementary Material S4), which makes it a
valuable addition to study bacterial strains.
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Fig. 1. The mixtureS tool and its performance. (A) The three main steps in mixtureS. (B) Performance of mixtureS and other tools on simulated data. (C) Performance of

mixtureS and other tools on experimental data. MAE on the y-axis is the average absolute difference between the predicted abundance of a predicted strain and the corre-

sponding known abundance of the corresponding known strain across strains and samples

576 X.Li et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa728#supplementary-data


Funding

This work was supported by the National Science Foundation [1661414,

2015838] and the National Institutes of Health [R15GM123407].

Conflict of Interest: none declared.

References

Ahn,T.-H. et al. (2015) Sigma: strain-level inference of genomes from metage-

nomic analysis for biosurveillance. Bioinformatics, 31, 170–177.

Albanese,D. and Donati,C. (2017) Strain profiling and epidemiology of

bacterial species from metagenomic sequencing. Nat. Commun., 8,

1–14.

Foster,J.T. et al. (2020) Ricin forensics: comparisons to microbial forensics.

In: Budowle, S. (eds) Microbial Forensics. Acedemia Press, pp. 315–326.

Hong,C. et al. (2014) Pathoscope 2.0: a complete computational framework

for strain identification in environmental or clinical sequencing samples.

Microbiome, 2, 33.

Li,X. and Waterman,M.S. (2003) Estimating the repeat structure and length

of dna sequences using ‘-tuples. Genome Res., 13, 1916–1922.

Li,X. et al. (2019) BHap: a novel approach for bacterial haplotype reconstruc-

tion. Bioinformatics, 35, 4624–4631.

Luo,C. et al. (2015) Constrains identifies microbial strains in metagenomic

datasets. Nat. Biotechnol., 33, 1045–1052.

Nayfach,S. et al. (2016) An integrated metagenomics pipeline for strain profil-

ing reveals novel patterns of bacterial transmission and biogeography.

Genome Res., 26, 1612–1625.

Pulido-Tamayo,S. et al. (2015) Frequency-based haplotype reconstruction from deep

sequencing data of bacterial populations. Nucleic Acids Res., 43, e105–e105.

Quince,C. et al. (2017) DESMAN: a new tool for de novo extraction of strains

from metagenomes. Genome Biol., 18, 1–22.

Roosaare,M. et al. (2017) Strainseeker: fast identification of bacterial

strains from raw sequencing reads using user-provided guide trees. PeerJ, 5,

e3353.

Smillie,C.S. et al. (2018) Strain tracking reveals the determinants of bacterial

engraftment in the human gut following fecal microbiota transplantation.

Cell Host Microbe, 23, 229–240.

Sobkowiak,B. et al. (2018) Identifying mixed Mycobacterium tuberculosis

infections from whole genome sequence data. BMC Genomics, 19, 613.

Truong,D.T. et al. (2017) Microbial strain-level population structure and gen-

etic diversity from metagenomes. Genome Res., 27, 626–638.

Wang,Y. et al. (2015) MBBC: an efficient approach for metagenomic binning

based on clustering. BMC Bioinformatics, 16, 36.

Wang,Y. et al. (2016) MBMC: an effective markov chain approach for binning

metagenomic reads from environmental shotgun sequencing projects.

Omics J. Integr. Biol., 20, 470–479.

Wang,Y. et al. (2017) rrnafilter: a fast approach for ribosomal RNA read re-

moval without a reference database. J. Comput. Biol., 24, 368–375.

Zolfo,M. et al. (2017) MetaMLST: multi-locus strain-level bacterial typing

from metagenomic samples. Nucleic Acids Res., 45, e7–e7.

mixtureS 577


