Skip to main content
. 2021 May 8;106(8):2304–2312. doi: 10.1210/clinem/dgab317

Table 2.

Performance of LS-BSI to predict vertebral fractures in logistic regression models adjusted for different covariates

Model R 2 LS-BSI ≥ 2.2 adjusted OR; 95% CI (P value) Adjustments AUC (95% CI); P value
# 1 0.243 6.887 (1.628-29.138); P = 0.009 Sex, Age 0.768 (0.597-0.938); P = 0.019
# 2 0.270 7.709 (1.752-33.924); P = 0.007 Sex, Age, BMI 0.795 (0.618-0.972); P = 0.009
# 3 0.376 9.602 (1.251-73.696); P = 0.030 Sex, Age, BMI, CTX, P1NP 0.825 (0.666-0.984); P = 0.004
# 4 0.189 5.739 (1.244-26.481); P = 0.025 TBS 0.735 (0.535-0.935); P = 0.039
# 5 0.251 7.152 (1.355-37.755); P = 0.020 TBS, Sex, Age, BMI 0.795 (0.616-0.974); P = 0.009
# 6 0.388 15.120 (1.059-215.786); P = 0.045 TBS, Sex, Age, BMI, CTX, P1NP 0.830 (0.676-0.984); P = 0.004

Abbreviations: AUC, area under the receiver operating characteristics curve; BMI, body mass index (kg/m2); CTX, collagen telepeptide (ng/mL); LS-BSI, lumbar spine bone strain index; P1NP, aminoterminal propeptide (ng/mL); TBS, trabecular bone score.