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Abstract

A recent formulation of predictive coding theory proposes that a subset of neurons in each cortical area encodes sensory
prediction errors, the difference between predictions relayed from higher cortex and the sensory input. Here, we test for
evidence of prediction error responses in spiking responses and local field potentials (LFP) recorded in primary visual cortex
and area V4 of macaque monkeys, and in complementary electroencephalographic (EEG) scalp recordings in human
participants. We presented a fixed sequence of visual stimuli on most trials, and violated the expected ordering on a small
subset of trials. Under predictive coding theory, pattern-violating stimuli should trigger robust prediction errors, but we
found that spiking, LFP and EEG responses to expected and pattern-violating stimuli were nearly identical. Our results
challenge the assertion that a fundamental computational motif in sensory cortex is to signal prediction errors, at least
those based on predictions derived from temporal patterns of visual stimulation.
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Introduction
The physical environment is structured. Sensory systems
exploit this structure to represent and process information
about the environment efficiently. Predictive coding—a broad
concept encompassing several distinct algorithms (Spratling
2017)—is an information processing strategy in which structure
is used to make predictions that “explain away” expected
signals.

There are many well-established examples of predictive
coding (Keller and Mrsic-Flogel 2018). For instance, the receptive
field structure of retinal ganglion cells has an antagonistic
center-surround organization which allows these cells to
explain away luminance within the receptive field when it is
matched by signals in the surround (Barlow 1961; Srinivasan
et al. 1982). Cortical neurons also have suppressive surrounds

which can be viewed as instantiating a form of predictive coding
(Rao and Ballard 1999; Spratling 2010; Lochmann et al. 2012).
Simple mechanisms of adaptation, such as the neuronal fatigue
caused by recent sensory drive, can be viewed as a way in
which recent experience explains away responses to persistent
or recurring stimuli (Hosoya et al. 2005; Lochmann et al. 2012;
Solomon and Kohn 2014).

One specific, recent formulation of predictive coding has
received a great deal of attention. It proposes a general theory of
cortical architecture and function, in which each level of cortical
processing includes two sets of neurons: one that predicts the
sensory input and relays this information to lower areas via
feedback connections; and another set that computes the differ-
ence between this prediction and the observed sensory input—
the prediction error—and relays this difference to higher cortex
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via feedforward connections (Friston 2005; Bastos et al. 2012;
Clark 2013). The predictions relayed to lower cortex are changed
from moment-to-moment based on recent sensory experience,
reflecting a constantly updating internal model of the sensory
environment. Hereafter, we refer to this proposal as “predictive
coding theory” though predictive coding is a broader concept
that extends beyond this specific formulation.

Experimental support for predictive coding theory has relied
primarily on demonstrations of expectation or repetition sup-
pression (Clark 2013; Summerfield and de Lange 2014). In expec-
tation suppression, a cue or general knowledge of stimulus
statistics generates an expectation of which sensory stimulus
will appear. Weaker responses are often observed to expected
stimuli. Under predictive coding theory, weaker responses arise
because expected stimuli produce a smaller prediction error.
In repetition suppression, a repeated stimulus evokes a weaker
response. This is also attributed to a smaller prediction error,
arising from the expectation that once a stimulus appears it will
likely persist or reappear.

Repetition and expectation suppression are most commonly
measured with functional magnetic resonance imaging (fMRI)
(e.g., Summerfield et al. 2008; Egner et al. 2010; Kok et al. 2012)
or EEG (e.g., Melloni et al. 2011; Wacongne et al. 2011). However,
these signals cannot be directly linked to the prediction error
signals relayed between brain areas through spiking responses.
For instance, weaker fMRI responses to an expected stimulus
may arise from sharper neuronal tuning (Kok et al. 2012; Alink
et al. 2018), so that fewer neurons are recruited, rather than from
weaker responses in neurons encoding prediction errors.

Neuronal studies of predictive coding theory have focused
primarily on simple repetition suppression or “oddball” experi-
ments, in which the response to a frequently presented standard
stimulus is compared with that evoked by a rarely presented
deviant. Weaker responses are usually observed to the stan-
dard, which is consistent with a smaller prediction error. How-
ever, weaker responses may instead reflect simple adaptation
(Ulanovsky et al. 2003; May and Tiitinen 2010; Kaliukhovich
and Vogels 2010; Vogels 2016), arising from neuronal or synap-
tic fatigue (Kohn 2007; Solomon and Kohn 2014), rather than
an explicit comparison of predictions from higher cortex with
sensory input.

Because prediction error coding and simple adaptation are
conflated in repetition suppression measurements, a more dis-
cerning test of predictive coding theory is to compare responses
evoked by a standard pattern of stimuli, which establish an
expectation, to those evoked by stimuli that violate that pattern,
which should result in prediction errors. In EEG and fMRI studies,
this approach has revealed prediction error responses to pattern
violations under some conditions (e.g., Bekinschtein et al. 2009;
Wacongne et al. 2011; Stefanics et al. 2014; Symonds et al.
2017). Pattern-violation responses have also been observed in
neuronal spiking activity in retinal (Schwartz et al. 2007) and
some rodent cortical studies (Yaron et al. 2012; Latimer et al.
2019; Homann et al. 2019). But whether such responses are a
robust feature of sensory cortical encoding is unclear. Further,
neuronal pattern-violation responses have not been reported in
primate sensory cortex where the processing hierarchy, which
lies at the heart of predictive coding theory, is most clearly
established (Felleman and Van Essen 1991; but see Chao et al.
2018 for electrocorticogram responses in some cortical areas of
nonhuman primates).

Here, we report recordings of neuronal responses in early
(V1) and mid-level (V4) visual cortex of awake, fixating macaque

monkeys, evoked by a diverse set of standard patterns and
their violations. Patterns evoked robust repetition suppression
in both areas, but violations of the expected pattern led to
minimal modulation of neuronal responses. That is, there was
little evidence of responses that might reflect prediction errors.
To better understand the relationship between these measure-
ments and those available from EEG experiments, we mea-
sured evoked potentials in human participants using the same
stimulus protocol. These responses revealed no evidence for
pattern-violation responses, unless participants were explic-
itly instructed to identify violations. Our results show sensory
cortical responses that are inconsistent with basic tenets of
predictive coding theory.

Materials and Methods
Headpost and Array Implant Surgery

Monkeys were first implanted with a headpost to allow head
fixation. Animals were premedicated with glycopyrrolate
(0.01 mg/kg) and diazepam (1.5 mg/kg) before inducing anes-
thesia with ketamine (10 mg/kg). They were then intubated
and anesthesia was maintained with isofluorane (1-2%). An
intravenous catheter was inserted in a hindlimb to administer
fluids continuously (0.9% NaCl or Normosol). Monkeys were
then transferred to a stereotaxic frame for the rest of the
surgery, which was performed under strictly sterile conditions.
Throughout the surgery, vital signs (ECG, SpO2, CO2, tempera-
ture) were monitored and maintained at physiologically normal
values. The headpost was attached to the skull with titanium
screws. During recovery, animals were provided with antibiotics
(Ceftiflex) and analgesics (buprenex). All procedures were
approved by the Institutional Animal Care and Use Committee of
the Albert Einstein College of Medicine and were in compliance
with the guidelines set forth in the National Institutes of
Health’s Guide for the Care and Use of Laboratory Animals.

We then trained monkeys to visually fixate for a liquid
reward. Once they performed this task adequately (performing
1000 trials per session, within the fixation window detailed
below), we performed surgery to implant microelectrode arrays.
General procedures were identical to those described above. To
implant the array, a craniotomy was made over visual areas V1
and V4, followed by resection of the dura. One 96-channel and
one 48-channel microelectrode array (1 mm electrode length,
0.4 mm spacing, Blackrock Microsystems) were implanted in V1,
and another 48-channel microelectrode array (0.4 mm spacing)
was implanted in V4, on the prelunate gyrus. We do not know
the cortical depth at which our recordings were made, but the
electrode length (1 mm) makes it probable that recordings were
strongly biased to the superficial or middle layers.

Visual Stimuli

Visual stimuli were generated using custom software (EXPO) and
displayed on a calibrated cathode ray tube monitor (1024 × 768
pixel resolution, 100 Hz refresh rate) viewed at a distance of
64 cm. Monkeys fixated a small white square (0.2 × 0.2◦) at the
center of the monitor while a grating sequence was presented.
Gratings were presented within a circular aperture surrounded
by a gray field of average luminance (∼40 cd/m2).

In each session, we presented a “standard” sequence of grat-
ings (80% of trials), and two “deviant” sequences (each 10% of tri-
als). Each sequence comprised two orthogonal gratings (1.5 cpd,



3138 Cerebral Cortex, 2021, Vol. 31, No. 6

5 Hz, 6◦ diameter, full contrast, unless otherwise noted), referred
to as gratings X and O. The standard sequence of gratings was
XXXOX, and deviants were either XXOXX (termed early deviant)
or XXXXO (late deviant). Each grating in the sequences was
presented for 0.1 s followed by 0.1 s of a gray screen. Each
session was complemented with a second session in which
the X and O stimuli were swapped. Recordings from paired
sessions were made either on the same day or 1–2 days apart.
Monkeys were given a liquid reward after each sequence if they
maintained fixation within a 1.6 (Monkey M) or 1.3◦ diame-
ter (Monkey C) window. The three sequences were rewarded
equally.

We presented several additional variations of this paradigm.
All variants used the same parameter as in the main experiment
described above except for the following variations: (1) To
manipulate stimulus size, gratings were presented in a smaller
aperture (1.75◦ diameter). (2) To manipulate stimulus contrast,
the X and O gratings had the same orientation but different
Michelson contrast values (0.25 and 1). (3) To manipulate
stimulus duration, we presented each grating for 0.2 s followed
by a 0.2 s interstimulus interval (consisting of a gray screen).
Sequences consisted of 3 gratings: the standard sequence was
XOX, and the early and late deviant sequences were OXX and
XXO, respectively. (4) To heighten the salience of the deviant
sequences, we provided twice the volume of liquid reward
on those trials, relative to standard trials. We also presented
an omission stimulus, in which we presented two sequences
that comprised a single grating: in these experiments, a
standard sequence (XXXXX) was presented 90% of the time,
and in 10% of the time one grating was omitted (XXX_X).
All other parameters in these sessions were as in the main
experiment.

In one animal (monkey C), V1 and V4 spatial receptive fields
were retinotopically aligned, at an eccentricity of ∼ 2–4◦. We
therefore centered stimuli on the aggregate receptive field of
the V1 and V4 neurons. In the second animal (monkey M), the
V1 receptive fields were located at eccentricities at ∼ 1–2◦ and
the V4 receptive fields at ∼5–10◦. For this animal, we placed the
gratings between the V1 and V4 aggregate receptive fields (∼3◦),
so that the grating covered a portion of the V1 and V4 neurons’
receptive fields.

Monkey Neurophysiology

Signals from each electrode were amplified and band-pass
filtered (0.3–7.5 kHz) using commercial acquisition systems
(Cerebus, Blackrock Microsystems and Grapevine, Ripple).
Spiking data were acquired by digitizing waveform segments
that exceeded a threshold at 30 kHz. Waveform segments were
manually sorted offline using commercial software (Plexon
Offline Sorter), to isolate single unit activity and small multiunit
clusters. Local field potentials (LFPs) were acquired by low-pass
filtering (0.3–250 Hz) the broadband signal and digitizing at
1 kHz.

In one monkey (Monkey C), we observed cross-talk between
channels of the array, either due to a manufacturing defect or
to compromise of the insulation isolating signals from different
channels during or following implantation. Cross-talk was evi-
dent as the presence of the same action potential waveform at
precisely the same time (within 1 ms) on different electrodes.
To remove these cases, we calculated the percentage of spikes
that occurred within 1 ms of each other, across all pairings of
electrodes. If that value exceeded 10%, we removed 1 of the units

in the pair. Roughly 2–3% of pairs showed evidence of crosstalk
by this criterion.

We measured responses during a 200 ms window, beginning
at stimulus onset and encompassing the interstimulus interval
(100 ms) after stimulus offset. We used this window because the
responses of most neurons persisted into this epoch. For LFPs,
responses were defined as the root-mean-square (rms) of the
trial-averaged signal during this epoch (as in Dubey and Ray
2016). For each condition and electrode, we subtracted the value
of the trial-averaged LFP in a baseline period, measured 0–25 ms
after stimulus onset.

For analyses of responses to the O stimulus, we limited our
measurements to neurons with an evoked response of at least
1 sp/s to each O stimulus in the standard sequence. In addition,
we required that that response was larger than the mean spon-
taneous firing rate (measured in a window from −20 to +30 ms
relative to the establishment of fixation) plus three times the
standard error of that mean. We confirmed that neurons that
did not respond to the O stimulus in the standard sequence also
did not respond to that stimulus in the deviant sequences (i.e.,
that our selection did not bias toward cells that fired solely to
deviants). When analyzing responses to the deviant X stimulus,
we required a response of at least 1 sp/s to each X stimulus in
the sequence. For LFP analyses, we excluded cases that showed
an rms value less than 10 μV.

We detected microsaccades with an approach used in our
previous work (Jasper et al. 2019), a method based closely on
that of Horwitz and Albright (2003). Briefly, we smoothed the
eye position time series with a Gaussian kernel (6 ms standard
deviation), and then computed its derivative. A microsaccade
was defined as an event with velocity ≥10◦/s lasting for at least
8 ms. We removed any response (defined as the activity 0–200 ms
after stimulus onset) during which a microsaccade occurred.
Microsaccades occurred during 31% of standard O presentations
and 23% of deviant O presentations, a rate expected given that
microsaccades are typically made 1–2 times per second.

Human Neurophysiology

The study involved 25 healthy adult participants. Data from
three participants were excluded due to poor task performance
(d-prime values of 1 or lower), leaving 22 participants (16
females; age 27 ± 4 SD years old). Prior to testing, all participants
provided written informed consent after they were told about
the experiment, in accordance with the Declaration of Helsinki.
The protocol was approved by the Internal Review Board of the
Albert Einstein College of Medicine. All participants had normal
or corrected-to-normal vision.

As in animal experiments, visual stimuli were presented
using EXPO and a calibrated monitor (at 800 x 600 pixel reso-
lution, 60 Hz refresh rate). Participants viewed the monitor from
a distance of 57 cm, maintained using a chin rest. Stimuli were
sinusoidal gratings (6◦ diameter, 2 Hz drift rate, 1 cpd) presented
at full contrast. Participants were instructed to maintain fixation
on a small cue (0.1◦); gratings were centered at this location.
We presented the same standard (80% of cases) and deviant
sequences used in animal experiments, where X and O stimuli
were horizontal and vertical gratings (or vice versa). We also
presented sequences in which X and O differed by 10◦; these
revealed nearly identical effects and will be presented else-
where. Each stimulus was presented for 200 ms, and followed
by a 500 ms interstimulus interval during which a gray screen
was presented.
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Stimuli were presented in blocks of roughly 3 min duration,
consisting of 60 presentations of each deviant and 480 presen-
tations of standards, randomly interleaved. The five-stimulus
sequences were presented as a continuous sequence; that is,
after the interstimulus interval, the next sequence began imme-
diately. Participants completed 10 blocks (except one subject,
who did 9). Each session lasted for approximately 1.5 h.

While viewing sequences, participants performed one of two
tasks. In the first, participants were instructed to count the num-
ber of individual gratings presented in each block. The mean
error rate (the total number of stimuli divided by the count num-
ber) for this task was 3% (SD 3), ranging from 0 to 8% across indi-
viduals. In the second task, participants were informed about
the standard sequence (3 gratings of the same orientation fol-
lowed by a different orientation) and asked to press a button
whenever they detected a violation of this expected pattern.
Participants were given brief practice on this task, before data
collection commenced. The mean hit rate for early and late
deviations was 87% (SD 9) and 71% (SD 16), respectively.

EEG was conducted using a 32-channel electrode cap placed
according to the modified International 10–20 System, with
additional electrodes placed on the left and right mastoids (LM
and RM, respectively). Horizontal eye movements were mea-
sured by recording the horizontal electro-oculogram (EOG) in
a bipolar configuration between F7 and F8 electrodes. Verti-
cal EOG was monitored using the FP1 electrode in a bipolar
configuration with an external electrode placed below the left
eye. The reference electrode was placed at tip of the nose. F3
was used as the ground electrode. Impedance was below 5 kΩ

across all electrodes. The EEG and EOG were digitized (Neu-
roscan Synamps amplifier, Compumedics Corp.) at 500 Hz (0.05–
100 Hz bandpass). The EEG was then filtered offline (0.1–30 Hz)
using a finite impulse response filter with zero phase shift and
a roll-off slope of 24 dB/octave using Neuroscan SCAN software
4.3 for PC.

Further analysis was performed in Matlab. Responses to the
relevant X and O stimuli were extracted and re-zeroed using
the response measured 0–25 ms after stimulus onset. Epochs
containing activity exceeding ±75 μV on any electrode were
excluded from further analysis to eliminate artifact activity
stemming from eye movements. Artifact-free epochs were then
averaged together by stimulus type separately in each condition
and used in the analyses.

In preliminary analysis, we performed a repeated-measure
ANOVA to test for differences between O stimuli in the standard
and two deviant sequences, using responses measured at the
OZ, PO9, PO10, O1, and O2 electrode. We also used this approach
to test for an interaction between variations in responses to
the O stimuli and these recording electrodes. We found no
interaction and so averaged responses across these electrodes
in further analysis. We focused on these electrodes because they
provided the most well-defined visually evoked signals and were
thus most comparable with the neuronal responses in early
cortex. In additional analyses (Fig. 8), we explored signals from
all recorded electrodes.

All indications of variance are standard errors of the mean,
unless otherwise indicated. Statistical tests on ratios were per-
formed on log-transformed values.

Results
To create an expectation for an upcoming stimulus, we
presented a standard temporal sequence comprised of two

gratings (termed, X and O). This standard sequence (XXXOX) was
presented on 80% of trials. We violated the expected ordering
of the gratings in two deviant sequences, each shown on 10%
of trials. In one deviant, the O stimulus was shown earlier in
the sequence (XXOXX, termed early deviant); in the other, the
O stimulus was presented at the end of the sequence (XXXXO,
termed late deviant; Fig. 1A; see Methods for details).

To understand the responses that our stimuli might be
expected to produce according to predictive coding theory,
it is helpful to consider first a simple repetition suppression
experiment. When a stimulus is repeated (Fig. 1B, top, light gray),
it evokes progressively weaker responses in driven neurons
(bottom, dark gray). Predictive coding theory posits that this
weakening reflects a growing expectation of later presentations
(black), resulting in a smaller predictive coding error or response.
Note that in this scenario, the prediction is in lock step with the
stimulus. We return to this point in Discussion.

We next consider two scenarios for responses to our
sequences, which can be viewed as the sum of two stimuli.
At each time, each stimulus has a probability of 0 or 1 of
being present; the two stimuli do not appear at the same time
(Fig. 1A; bottom, X in solid lines, O in dotted). For simplicity,
we assume equal neuronal responses to the X and O stimulus.
If neurons responded more to one of the stimuli, this would
not affect comparisons of responses to a given stimulus in
different contexts—for example, an O stimulus that occurred
at the expected compared with unexpected time.

In our first scenario, the visual system learns the ordering of
stimuli in the sequence—or, the “global” pattern (Bekinschtein
et al. 2009). In this case, higher cortical areas might predict that
the standard sequence, the most probable, will be presented
on each trial (Fig. 2C, black). If the prediction is perfect, there
should be no response (no prediction error) to any stimulus
in the standard sequence (left, green) because each stimulus
in the sequence is exactly the one expected. Both the early
(center, blue) and late (right, yellow) deviant sequences should
elicit a strong response to the O stimulus, which occurs at an
unexpected time. One X stimulus in each deviant sequence
should also elicit a strong response because it occurs when an
O stimulus would have appeared in the standard sequence. We
note that predictions with no uncertainty are likely contrived:
imperfect predictions would yield some response, proportional
to the mismatch between prediction and sensory drive. Criti-
cally, as long as some prediction is provided, unexpected O and X
stimuli (deviant sequences) should generate stronger responses
than expected ones (standard sequence).

Predictions based on the global pattern might instead be
a weighted mixture of the different sequences, rather than
reflecting solely the most common sequence. This prediction
is equivalent to the uncertainty that an X or O stimulus will
be presented in each epoch of the sequence (Fig. 1D, black). In
this case, the first two stimuli in the sequence should evoke
no response, because they involve no uncertainty. The final
three stimuli of the standard sequence, however, should evoke
some response because the prediction is biased toward but not
matched to these stimuli (green). The unexpected stimuli in the
deviant sequences would evoke strong responses (blue, yellow).
Finally, predictions derived from learning global statistics might
evolve during the trial, taking into account the stimuli observed
in that trial thus far (i.e., conditional probabilities; Fig. 1E, black).
For instance, the early appearance of the O stimulus in the early
deviant sequence (blue) is unexpected and generates a strong
response. But once the early O is observed, there is no ambiguity
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Figure 1. Stimuli and responses expected from predictive coding. (A) The standard sequence XXXOX was presented on 80% of trials. Early (XXOXX) and late (XXXXO)
deviant sequences were presented on the remaining trials. We considered each stimulus as having either probability 1 or 0 (second row) of appearing in each epoch (gray
vertical bands). Solid lines show the probability for the X stimulus; dotted lines for O. (B) The logic relating repetition suppression experiments (top row) to predictive

coding. When a stimulus is repeated, the response it evokes weakens with each successive presentation (bottom). This is attributed to a growing expectation or
prediction (middle row, black) for the stimulus to reappear. (C) Expected outcome if predictions (top black) are the most frequently presented sequence (the standard).
The responses for each sequence are shown below (green, standard; blue, early deviant; yellow, late deviant). (D) Expected outcome if predictions reflect the combined
probabilities for each sequence. (E) Expected outcome based on the same predictions as (D), but predictions are updated after each stimulus epoch. (F) Expected outcome

if predictions are that a recently encountered stimulus will reappear. Predictions grow in magnitude with each successive presentation.

about the remaining stimuli in the sequence so these should
evoke no response.

A second scenario is that predictions might be based on
the “local” rather than the global pattern. When either an
X or O stimulus is presented, the expectation that same
stimulus will be evident in the next epoch increases (as in
basic repetition suppression; Fig. 1F, black); when the stimulus
is not shown, the expectation that it will appear in the next
epoch decreases (to a minimum of zero). If we assume the
expectation for the X and O stimuli are updated independently,

with the prediction error reflecting their combined influence,
the responses should resemble Figure 1F. Responses to the
X stimulus should decrease as the sequences progress. In
addition, the response to the O stimulus should be strongest
in the late deviant sequence and weakest in the early deviant.
This is because the expectation of an X stimulus grows with
repetition; when an O is instead presented, the prediction
error reflects both the unexpected appearance of the O
stimulus and the violation of the expectation that an X will
appear.
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Figure 2. Comparison of spiking responses to the O stimulus, in standard and deviant sequences. (A,B) Response of a sample V1 (A) and V4 (B) unit to the early deviant
(blue), standard (green) and late deviant (yellow) sequence. Gray shading indicates the response to the O stimulus. (C,D) Average peristimulus time histograms for V1
(C) and V4 (D) units, for the O stimulus in each of the 3 sequences. Color conventions as in (A,B). Line thickness indicates SEM. (E,F) Comparison of the response to
the O stimulus in the standard sequence (abscissa) with the response to the O stimulus in the early (blue) or late (yellow) deviant O, in V1 (E) and V4 (F). Each dot

corresponds to a single unit or sorted multiunit cluster. Open symbols from monkey C; filled from monkey M.

In summary, our sequences could generate a range of
neuronal responses, depending on precisely what is predicted.
Importantly, prediction errors can be assessed by comparing
responses to the same stimulus in different contexts (the O

stimulus, which can appear at an expected or unexpected time)
or an unexpected repetition of a just-encountered stimulus (as
in the fourth X of the late deviant sequence). Neither case relies
on comparing responses to two different stimuli as in traditional
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“oddball” protocols, a comparison for which it is difficult to
rule out the possibility that any observed differences arise from
stimulus-specific adaptation.

Spiking Responses to Deviant O Stimuli Show
no Evidence of a Pattern-Violation Response

Both the local and global scenarios suggest that the response
to the O stimulus should differ between standard and deviant
sequences, if neuronal responses reflect prediction errors. To
test this, we recorded responses to these sequences from two
alert nonhuman primates performing a fixation task. The X and
O stimuli were large, high contrast gratings, whose orientation
differed by 90◦. We obtained responses simultaneously from
units in V1 (mean population of 47.8 ± 1.2 visually responsive
units per session) and V4 (26.0 ± 1.1 units). Animals performed
an average of 345 ± 22.7 trials per session, and 1.8 sessions
per day.

Figure 2A shows responses of an example V1 neuron to the
standard sequence (green) and to each of the two deviants (blue
and yellow). This neuron responded more strongly to the O
than X stimulus, due to its orientation preference. More impor-
tantly, the responses to the O gratings were similar whether
that stimulus occurred at the expected time in the sequence
(standard, green) or at unexpected time (deviants, blue and
yellow). Responses of a sample V4 unit recorded in the same
session showed a similar behavior (Fig. 2B).

To determine whether the responses to expected and unex-
pected O stimuli differed, we first inspected the PSTHs for
each O stimulus, averaged over all responsive cells (Fig. 2C,D; 16
sessions in 2 animals). These did not reveal notable differences
in a particular epoch, so we measured each neuron’s response as
the average firing rate in a 200 ms epoch beginning at stimulus
onset. In both V1 and V4, the responses to the standard O and
the early deviant O were similar (Fig. 2E,F, top; for V1, 15.6 ± 0.6
vs. 14.7 ± 0.5 sp/s; for V4, 19.7 ± 0.8 vs. 18.2 ± 0.8 sp/s), as were
responses to the standard O and the late deviant O (Fig. 2E,F;
bottom; for V1, 15.2 ± 0.5 sp/s; for V4, 18.7 ± 0.8).

We summarized the evidence for pattern-violation responses
by computing the geometric mean ratio, across cells, of the
response to the O stimulus in the deviant compared with the
standard sequences (Fig. 3A). For the early deviant, the mean
ratio was 1.05 in V1 (P < 0.001 for difference from a ratio of 1) and
1.08 in V4 (P < 0.001). For the late deviant, the ratios were, 1.00 in
V1 (P = 0.58) and 1.02 in V4 (P = 0.05). Thus, on average, across
the population, we found at most an 8% average modulation of
neuronal responses to a stimulus which violated the expected
pattern.

In our preceding analysis, we assumed that each of the
recorded neurons was an independent sample. Because neurons
were recorded from chronically implanted arrays, it is likely that
some units were recorded across multiple sessions. To provide
a more conservative test of response modulation by pattern
violation—one in which statistical power is not inflated by the
assumption of independence—we determined the percentage
of cells which showed statistically distinguishable responses
for deviants relative to the standard (bootstrap, P < 0.05). We
required that both deviant responses were larger than the
standard response, as expected if neurons encoded prediction
errors defined by the “global” predictions of Figure 1C–E. Only
a small percentage of neurons showed statistically significant
modulation (in V1, 0.8% of cases; in V4, 1.6% of cases, with a
false positive rate of 0.25%). Similarly, we tested whether cells

conformed to the “local” prediction of Figure 1F (testing whether
responses to early O stimulus were significantly weaker than to
the standard whereas responses to that late O deviant were
significantly greater). Fewer than 1% of V1 and V4 cells had
responses consistent with this prediction. Thus, few neurons
showed evidence of encoding pattern violations.

We considered that our results might be affected by fixational
eye movements, which can substantially modulate visual cor-
tical responses (Bair and O’Keefe 1998; Martinez-Conde et al.
2009). To test this possibility, we identified all epochs during
which a microsaccade was made during the presentation of an O
stimulus (see Methods). We then compared responses measured
on trials without microsaccades, with those during which a
microsaccade occurred. In every case—comparing the early and
late deviant O with the standard O, in either V1 or V4—the
response ratio was near 1 (range of 0.98–1.07). There was no
significant difference in response ratio for the two subsets of tri-
als (P > 0.05, Bonferroni correction for 4 comparisons). Thus, the
absence of V1 or V4 response modulation by pattern violation
cannot be attributed to fixational eye movements.

We conclude that there is little modulation of V1 and V4
neuronal responsivity by whether a stimulus appears at the
expected or unexpected time during a stimulus sequence.

Stimulus Variants

We have thus far only considered responses to sequences of
large high-contrast gratings. We tested several variants of this
stimulus, in search of stronger pattern-violation responses.

Stimulus size: We recorded in additional sessions using
smaller grating stimuli—1.75◦ in diameter (6 sessions in 2
animals). Large stimuli recruit surround suppression, which
can be viewed as a form of hierarchical, predictive coding (Rao
and Ballard 1999). Thus, we thought prediction-error responses
induced by sequences of small gratings might somehow
differ from those induced by sequences of large gratings.
However, we found that neuronal responses to the deviant
O stimuli were nearly indistinguishable from the responses
to the standard O stimulus. In V1, the average response ratio
(deviant/standard) was 1.04 for the early deviant and 0.98 for
the late deviant (P = 0.02 and P = 0.28, respectively; Fig. 3B, left).
In V4, the corresponding average ratios were 1.06 (P < 0.001) and
1.09 (P < 0.001). On average, 1.8% of V1 and V4 units showed
significant modulation by pattern violations, defined by either
global or local predictions.

Contrast: We recorded responses to sequences in which X
and O stimuli had the same orientation but differed in contrast
(0.25 for one stimulus, and full contrast for the other; 6 sessions
in 2 animals). Previous fMRI work has reported that V4 responds
robustly to increments or decrements of contrast (Gardner et al.
2005), indicating an encoding of contrast change (perhaps a type
of prediction error; see also Boehnke et al. 2011 for related work
in the colliculus). Thus, we thought pattern-violation responses
might be apparent for sequences of stimuli with different con-
trasts, at least in V4. However, neuronal responses to the deviant
O stimuli were similar to those for the standard O (Fig. 3C). In V1,
the response ratio for the early deviant O was 1.03 (P = 0.02) and
for the late deviant 1.03 (P = 0.02). In V4, the respective response
ratios were 1.07 (P < 0.001) and 1.03 (P = 0.08). On average, 3.8%
of V1 and V4 units showed significant modulation by pattern
violations, defined by either global or local predictions.

Presentation duration: We used sequences in which each X
and O was presented for a longer duration (200 rather than
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Figure 3. Stimulus variants. (A) Histogram with blue bars shows the ratio of the response to the O stimulus in the early deviant sequence compared with the O stimulus
in the standard sequence. Each case is a single- or multi-unit cluster. Histogram with yellow bars shows the corresponding values for the O stimulus in the late deviant
sequence. V1 data plotted on left; V4 data on right. X and O stimuli are large sinusoidal gratings differing in orientation by 90 deg. (B) Comparison of responses to

deviant and standard O stimuli, when X and O stimuli were small sinusoidal gratings. (C) Comparison of responses to deviant and standard O stimuli, when X and O
stimuli differed in contrast not orientation. (D) Comparison of responses to deviant and standard O stimuli, when X and O stimuli were large gratings presented for
200 ms. (E) Comparison of responses to deviant and standard O stimuli, when only standard sequences were presented for the first 200 behavioral trials, to ensure
the establishment of an expected sequence. (F) Comparison of responses to deviant and standard O stimuli, when trials with deviant sequences provided twice the

reward volume as trials with the standard sequence. In all histograms, ratios less than 0.33 or greater than 3 are placed in the first or final bin, respectively, for display
purposes only.
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100 ms presentations; 2 sessions in 1 animal). Previous studies
have found that expectation violation signals are more evident
in later response epochs (Todoric and de Lange 2012; Chen
et al. 2015; Schwiedrzik and Freiwald 2017). By prolonging the
presentation of each sequence element—to a duration similar
to a visual fixation—and measuring responses in a later epoch
(150–300 ms after stimulus onset), we thought we might find
pattern-violation responses, but we did not (Fig. 3D). In V1, the
mean ratio was 1.01 for the early deviant (P = 0.7) and 0.95 for
the late deviant (P = 0.001). In V4, the mean ratio was 1.04 for
the early deviant (P = 0.3) and 0.92 for the late deviant (P = 0.002).
On average, 0.6% of V1 and V4 units showed significant mod-
ulation by pattern violations, defined by either global or local
predictions.

Establishing a stronger expectation for the standard: We con-
sidered that perhaps deviant sequences failed to elicit pattern-
violation responses because they were randomly interleaved
with the standard sequence. Perhaps the occasional presenta-
tion of a deviant sequence interfered with the establishment of
a strong expectation for the standard sequence. We therefore
conducted additional sessions in which we presented the stan-
dard sequence for the first 200 trials, before randomly interleav-
ing standard (80% of trials) and deviant (10% for each version)
sequences (2 sessions in 1 animal). We only analyzed responses
after the initial 200 trials, used to set expectation. Neuronal
responses to the early and late deviant O were nearly identical
to the standard O (Fig. 3E; average ratio for early deviant: 1.03,
P = 0.08 in V1; 1.06, P = 0.01 in V4; for late deviant: 1.01, P = 0.56
in V1; 1.1, P < 0.001 in V4). On average, 2.4% of V1 and V4 units
showed significant modulation by pattern violations, defined by
either global or local predictions.

Enhancing the salience of deviant sequences: We sought to
heighten the behavioral salience of the deviant sequences (2 ses-
sions in 1 animal), thinking greater behavioral relevance might
reveal pattern-violation responses. We manipulated salience by
doubling the reward provided on deviant trials. Still, we found
no consistent effect on response ratios in V1 (for early deviant:
1.1, P < 0.001; for late deviant: 0.99, P = 0.66), and only a slight
elevation of response ratios in V4 (1.09 for early, P < 0.001; 1.06
for late, P < 0.001; Fig. 3F). On average, 2.0% of V1 and V4 units
showed significant modulation by pattern violations, defined by
either global or local predictions.

Omission responses: We tested whether the omission of
an expected stimulus would trigger a measurable response, as
previously reported in the retina (Schwartz et al. 2007) and
several mouse V1 studies (Latimer et al. 2019; Homann et al.
2019). We presented a sequence of 5 identical gratings on 90% of
trials; on remaining trials, we removed the fourth grating from
the sequence (4 sessions in 1 animal). There was no response
to the omitted stimulus evident in the population PSTHs in
V1 or V4 (Fig. 4A,B). In V1, the response during the omitted
stimulus was indistinguishable from the spontaneous firing rate
measured before sequence onset (Fig. 4C, P = 0.13, paired t-test),
and much weaker than the response to the grating presented
during that epoch in the standard sequence (Fig. 4D; P < 0.001).
In V4, the response to the omitted stimulus was weaker than the
spontaneous firing rate before sequence onset (Fig. 4E, P < 0.001),
but similar to the spontaneous firing rate in the interstimulus
interval between the preceding stimuli (Fig. 4B). Responses to
the omitted stimulus were also weaker than the response to
the corresponding grating in the standard sequence (Fig. 4F;
P < 0.001).

In V4, we did observe that the response onset latency for the
final stimulus in the omission sequence occurred earlier (gray,
Fig. 4B) than the response to that same stimulus embedded in
the standard sequence (green). This difference in onset latency
was not evident in V1 (Fig. 4A). One possibility is that the change
in V4 onset latency is a form of prediction error response, with
responses to an expected stimulus (the final stimulus of the
standard sequence) being delayed relative to those that are less
expected (the final stimulus after an omission). An alternative—
and in our view, more likely—possibility is that the delayed
onset in the standard sequence is a consequence of sensory
adaptation, as described in previous work (Saul 1995; see also
Fig. 5B for shifts in onset latency during the preceding stimuli).
In the omission sequence, the absence of a stimulus before
the final stimulus presumably allows for some recovery from
adaptation, so response onset is more rapid.

In summary, we tested several stimulus variants: manipu-
lating grating size and contrast, lengthening the presentation
duration, providing extended exposure to standard sequences,
enhancing the reward provided on trials with deviant sequences,
and measuring responses to an expected but omitted stimulus.
None of these variants revealed compelling evidence for
pattern-violation responses. Only a small percentage of cells
showed significant modulation of responsivity by pattern-
violations.

X Repetition Induces Robust Suppression
but not Pattern-Violation Responses

The weak evidence of pattern-violation responses to O stimuli
in deviant sequences might simply reflect that the sequences
created no expectation. To test this possibility, we focused on
the late deviant sequence—XXXXO—in our standard paradigm
(Fig. 2). We tested whether responses to X stimuli were weak-
ened with each successive presentation. That is, we tested for
repetition suppression, the phenomenon interpreted as foun-
dational evidence for predictive coding theory (Clark 2013). In
addition, we compared the response to the fourth X in the
sequence to those to preceding X stimuli, a pattern violation
which involved no change in stimulus properties relative to
those preceding stimuli.

Spiking responses became weaker with each successive pre-
sentation of the X stimulus, including the fourth “unexpected”
repetition, as shown for example V1 and V4 units in Figure 5A.
In V1, this response reduction was driven by a reduction in the
amplitude of the onset transient, as evident in the population
PSTH (Fig. 5B, left; see also Patterson et al. 2013). In V4, responses
to later stimuli in the sequence were weaker because response
onset was delayed (Fig. 5B, right).

To quantify the degree to which responses weakened across
stimulus presentations for each unit, we calculated the ratio
of the response to each X, relative to the first presentation.
In both V1 and V4, this ratio decreased monotonically with
repetition number (Fig. 5C). The responses to the second X, for
instance, were significantly weaker than to the first presen-
tation (P < 0.001 in both V1 and V4), indicating robust repeti-
tion suppression. This suppression indicates that our sequences
induced some “expectation” in the sense that weaker responses
have been interpreted as evidence for smaller prediction errors.

The observation that responses decreased with each succes-
sive presentation of the X stimulus also applied to the fourth
X in the sequence, which was an unexpected stimulus based
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Figure 4. Omission stimulus. (A,B) Population V1 (A) and V4 (B) PSTHs for response to a standard sequence of 5 gratings (green) and to infrequent (10% of trials)

presentations of the same sequence but with the fourth grating omitted (gray). Dotted lines show the average spontaneous firing rate. (C) Comparison of the
spontaneous firing rate (abscissa) and the response to the omitted grating (ordinate), for V1 units. (D) Comparison of the response to the fourth grating in the sequence
(abscissa) and the response measured when that grating was omitted (ordinate). (E,F) As in (C,D) but for V4 units. Responses less than 0.1 sp/s are displayed along

the axes.

on the standard pattern. The response to that stimulus was
significantly smaller than the response to preceding X stimulus
in both V1 (0.86 vs. 0.92; P < 0.001; paired t-test) and V4 (0.79
vs. 0.87; P < 0.001). Thus, an unexpected repetition of a stimulus
produces no pattern-violation response in either V1 or V4.

Notably, the repetition suppression evident in the responses
to the fourth X stimulus, when it was an unexpected stimulus,
was stronger than the suppression observed to the fourth X in
the omission experiment, when that stimulus was expected. In
the long deviant sequence, the response ratio for the fourth X
compared with the third X stimulus was 0.93 in V1 and 0.91 in
V4; in the omission sequence, the corresponding ratios were 1.05
and 1.01. This is entirely contrary to the expected outcome for
pattern-violation responses.

LFP Responses do not Signal Pattern Violations

We next analyzed the LFPs recorded in V1 and V4 simulta-
neously with the neuronal spiking responses. The LFP is an
aggregate electrical signal that reflects both synaptic events
and active neuronal conductances, and can provide a sensitive
measure of local neural activity (Einevoll et al. 2013). In the
current context, we thought the LFP might capture weak but
broadly shared pattern-violation signals (Polterovich et al. 2018;
Vinken et al. 2018), which might be undetectable with spiking
activity.

We focused our analyses on LFPs for O stimuli in the
sequences of large, high contrast gratings (sessions of Fig. 2).
LFPs evoked by O stimuli in the standard and deviant sequences

were visually indistinguishable (Fig. 6A, for population average
V1 LFPs in one session; Fig. 6B for overlay of responses to the
different O stimuli). To quantify LFP responses, we computed
the rms amplitude of the trial-averaged response for each
electrode in each session. This metric is equally sensitive to
positive and negative components of the signal, and thus does
not require assumptions about which components might differ
across conditions. We then compared the rms amplitude for
responses to the O stimuli in each of the deviant sequences,
relative to the O stimulus in the standard sequence (Fig. 6C).
The ratio of these responses was between 0.97 and 1.03 (i.e., a
3% modulation), except for V4 responses to the early deviant in
one animal (15% smaller than the standard; blue trace, Fig. 6B,
bottom).

Thus, LFPs in V1 and V4 show little evidence of pattern-
violation responses.

Responses to Unexpected Stimuli in Human Visual
Cortex Depend on Task Engagement

Much of the work on repetition suppression and predictive
coding has been performed in human participants, using either
EEG or fMRI. We wondered whether our stimulus protocol
would induce different effects in macroscopic measurements of
human brain activity. We therefore conducted complementary
human EEG recordings, using the same stimulus design as in
monkey experiments (but with slightly different temporal and
spatial parameters, see Methods). These additional experiments
also allowed us to assess the effect of task engagement on
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Figure 5. Response to X stimuli in the late deviant sequence. (A) Example PSTHs to the late deviant sequence in V1 (left) and V4 (right). Colored bars under the PSTHs
indicate when each of the four X stimuli were presented; thin gray line indicates when the O stimulus was presented. (B) Population PSTHs for responses to X1–X4, for

V1 (left) and V4 (right). (C) Ratio of the response to stimulus Xi, compared with X1, for V1 (left) and V4 (right). Error bars, within each symbol, indicate SEM.

evoked responses by altering verbal instructions given to
participants.

In the first experiment, participants were instructed to main-
tain fixation and count the number of gratings presented. The
task thus required participants to be alert and attend the stim-
uli, but it did not require awareness or detection of patterns
or pattern violations. Each grating of the sequence evoked a
clear scalp potential at each of the occipital electrodes (O1, O2,
OZ, PO9, PO10, where visual-evoked responses have greatest
signal-to-noise ratio), and in their average (Fig. 7A). The average
response to the O stimulus in the standard sequences (Fig. 7A,
bottom left, green) and in the deviant sequences (early, blue;
late, yellow) were indistinguishable (repeated measures ANOVA
on average EEG amplitude from 0 to 700 ms after stimulus
onset, F(2,18) < 0.01; P > 0.5), indicating no signaling of the pat-
tern violations. We also found no evidence of pattern-violation

responses evoked by the unexpected fourth X stimulus in the
late deviant sequences, which were indistinguishable from the
preceding X stimuli (Fig. 7A; bottom, right, repeated measures
ANOVA, F(3,27) = 1.3, P = 0.29). The absence of repetition sup-
pression in these responses likely reflects the relatively brief
stimulus presentation (200 ms) and substantial interstimulus
interval (500 ms).

We then collected additional sessions in which participants
were informed about the patterned structure of the stimulus
sequences and instructed to indicate with a button press each
time the standard pattern was violated. Thus, participants
pressed the response button to the unexpected O stimulus
in early deviant sequences and to the unexpected fourth X in
the late deviant sequence. In this task, the evoked responses
to deviant sequences differed markedly from responses to
standard sequences (Fig. 7B). These differences were evident
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Figure 6. Comparison of LFP responses to the O stimulus, in standard and deviant sequences. (A) Trial-average LFP response from one electrode in V1, for standard
(green), early (blue) and late (yellow) sequences. (B) Average LFP responses in V1 (top) and V4 (bottom) for each of the 3 sequences. Color convention as in (A). (C)

Comparison of LFP response to the O stimulus in the standard sequence (abscissa) with the response to the O stimulus in the early (left, blue) and late (right, yellow)
deviant, in V1 (top) and V4 (bottom). Each symbol represents data from one electrode in one recording session.

Figure 7. Human EEG responses to standard and deviant sequences. (A) Top: Average response to the standard (green), early deviant (blue) and late deviant (yellow)
sequences, recorded while subjects performed a counting task. Responses shown are the average across the occipital electrodes (OZ, PO9, PO10, O1, and O2). Gray bars
indicate epochs during which stimuli were presented. Line thickness indicates SEM. Bottom: Overlay of the responses to the O stimulus in each of the three sequences
(left), and the responses to each X stimulus in the late deviant sequence (right). (B) As in (A) but recorded while subjects performed a task requiring them to detect

violations of the pattern in the standard sequence.

both to the O stimuli in deviant sequences (Fig. 7B, bottom
left) and to the unexpected X stimulus in the late deviant
(bottom right). For the O stimuli, the differences were evident
200–250 ms after stimulus onset, determined by repeated-
measures ANOVA conducted on successive 50 ms epochs of the

response (P < 0.05, Bonferroni corrected). For the X stimulus,
the difference was first evident 250–300 ms after stimulus
onset.

To determine whether these pattern-violation responses
reflected processes early in the visual stream or were more
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closely tied to attentional processes associated with target
detection (i.e., a P3b response; Luck 2014), we first subtracted
the average response to the standard sequence from the
average responses to each of the deviant sequences. This
subtraction eliminated the sensory ERP components elicited
by the presentation of each stimulus (e.g., P1). The resultant
difference signal was minimal, for responses recorded while
participants performed the counting task (shown for Pz, Oz, P09,
and P010 electrodes in Fig. 8A). For responses obtained when the
participants performed the pattern violation task, both deviants
produced a robust difference signal (Fig. 8B).

We then applied current source density analysis to these
difference signals to sharpen the spatial representation of the
underlying current dipoles and reveal the corresponding scalp
topography (Fig. 8A,B; insets). Pattern deviants triggered a clear
P3b component, which was strongest at the Pz electrode (thick
solid line), as expected. In addition, deviants evoked robust
signals preceding the P3b, which were strongest at electrodes
over occipital cortex. Thus, it appears that task engagement
can recruit some type of pattern-violation response within
visual cortex when detecting the pattern violation is an explicit
task goal.

Discussion
To test whether visual cortical responses are consistent with
predictive coding theory, we presented a fixed sequence of
grating stimuli on most trials, and infrequently presented
deviant sequences in which the stimulus ordering was altered.
We measured cortical responses to these sequences at three
spatial scales: spiking activity and LFPs, in V1 and V4 of
macaque monkeys; and EEGs, in human observers. We found
little evidence for pattern-violation signals, except in EEG
signals when human participants were explicitly told to report
violations of the expected sequence. Our results suggest that
the vast majority of neurons in early and midlevel cortex do
not encode sensory prediction errors, at least those which
might be generated from established temporal patterns of visual
input.

Evidence Against Prediction Error Responses

Our stimulus design allows us to distinguish between effects
that might be attributed to simple adaptation—as in a basic
repetition suppression or “oddball” paradigms—and effects
which can only be attributed to a mismatch (or prediction
error) between an expected stimulus and the one experienced.
Importantly, the expectation in our design was based on
a passively experienced, regular sequence of stimuli. This
expectation does not require explicit cueing, which may
recruit internal cognitive processes not directly tied to sensory
processing. Importantly, predictive coding theory is a general
theory of sensory representation, rather than one predicated on
specific task goals (Aitchison and Lengyel 2017).

One might argue that defining expectation based on a pas-
sive viewing of sequences of grating stimuli is a narrow and
contrived test of predictive coding theory. Perhaps the the-
ory is correct, but our stimulus protocol does not generate
sufficiently strong expectations to reveal its relevance. How-
ever, we found that the successive presentation of X stimuli
in our sequences resulted in progressively weaker responses
(Fig. 5). This weakening—repetition suppression—is frequently
cited as evidence for predictive coding. But this weakening

can only support the theory if sequences result in predictions
that strengthen with each exposure (and thus generate smaller
prediction errors, or responses). If predictions grow in strength
during a sequence then violations of those predictions should
trigger stronger responses, which we did not observe.

We measured responses in V1 and V4 because encoding is
relatively well understood in these areas. Our stimuli involved
manipulations of grating contrast, size, and orientation, which
robustly modulate neuronal responsivity in both V1 and V4
(Lennie and Movshon 2005; Roe et al. 2012). Thus, the weak
evidence for pattern-violation responses in these areas cannot
be attributed to a mismatch between the stimuli used and the
area targeted. An additional benefit of targeting V1 and V4 is
that these areas occupy distinct levels of the visual hierarchy
(Felleman and Van Essen 1991). By recording responses to a
common set of stimuli in both areas (in the same animals, at the
same time), we were able to compare signals that might be sent
from V1 to V4 (presumed to relay prediction errors) and those
that might be relayed in the opposite direction (from V4 to V1,
presumably providing predictions to V1). We observed similar
repetition suppression and near absence of pattern-violation
signals in both areas, and no evidence for a hierarchical orga-
nization of prediction errors as proposed by predictive coding
theory (see Vinken et al. 2017 for a contrary outcome in rodent
cortex).

We also found no evidence, in either V1 or V4, for the exis-
tence of two functional classes of neurons: those which might
provide predictions to lower cortex, and another which might
encode the mismatch between the prediction and the encoun-
tered sensory input. Only these latter neurons should exhibit
repetition suppression (if this suppression reflects prediction
errors), whereas our data and previous studies indicate that
nearly all neurons show weaker responses to a repeated stimu-
lus. Further, there was no evidence of bimodality in the response
distributions of Figure 4 (Hartigan’s dip test, P > 0.4 in all cases),
as one might expect there to be if a substantial subset of neurons
encoded sensory prediction errors. However, because our record-
ings involved planar microelectrode arrays, we cannot exclude
the possibility that two functional classes exist, if these were
separated across cortical layers.

Our simple conceptual model (Fig. 1) points out an over-
looked assumption of attempts to relate neuronal responses to
predictive coding theory, raising an additional challenge to the
theory. Specifically, the weaker responses in repetition suppres-
sion are evident at stimulus onset, which requires the prediction
to appear precisely when the stimulus does (as in Fig. 1B; see
also Wacongne et al. 2012 for this behavior in a predictive coding
model). This, in turn, requires knowledge of when a stimulus
will reappear, or the maintenance of a prediction signal during
the interstimulus interval. The first possibility is illogical since
repetition suppression does not require learning an interstim-
ulus interval; it is evident after a single stimulus presentation
and for a wide range of interstimulus intervals (Priebe et al.
2002; Patterson et al. 2014). The proposal of a maintained predic-
tion signal between stimulus presentations is also incompatible
with cortical physiology. When a stimulus ends, the response
it evokes rapidly decays (e.g., Figs 4 and 5). If predictions carry
forward in time to produce repetition suppression, then they
should cause prediction errors (or perhaps, more accurately, a
“surprise” response or unsigned prediction error; Lieder et al.
2013) during the interstimulus interval rather than a return to
the prestimulus spontaneous firing rate. Experimental tests of
predictive coding theory often treat sensory input as discrete
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Figure 8. Scalp current source density analysis of human EEG responses. (A) Difference between average EEG response to the early deviant and standard (top, blue),

and late deviant and standard (bottom, yellow), for responses recorded during the counting task. Time axis markers indicate onset of each stimulus in the sequence.
Responses from four electrodes are shown. Insets show scalp topography of current source density analysis of the difference waveforms. Topography is calculated at
times of 1577, 1682, and 2043 ms (from left to right) for the top trace; and for 2235, 2379, and 2673 ms for the bottom. (B) Difference traces for the active task. Responses
from 5 electrodes are shown. Topography is calculated at times of 1556, 1688, and 2052 ms (from left to right) for the top trace; and for 2235, 2379, and 2673 ms for the

bottom. Gray bars indicate epochs during which stimuli were presented.

isolated events, neglecting to account for how cortex responds
in the interstimulus interval.

We note that our conceptual model makes a number of
simplifying assumptions. For instance, predictions involve an
expectation that a particular stimulus will appear. Predictions
might instead consist of multiple factors: one being that a stimu-
lus will appear, another being what its features will be, and so on.
In this case, the responses produced by prediction error coding

of our sequences might differ from the scenarios we consider.
We note that if predictions simply involved the appearance of
a stimulus, regardless of its identity, than stimulus omissions
should have triggered a prediction error response, which we
did not observe (Fig. 4). Clearer specification of the nature of
top–down predictions (e.g., their tuning) would be needed to
provide experimentally testable predictions of more subtle and
sophisticated schemes.
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Comparison with Previous Work

Our experiments involve relatively brief experience with grating
sequences (hundreds of trials in each session). This is differ-
ent from studies of “statistical learning,” in which two stimuli
are presented in a fixed order, over hundreds or thousands of
repetitions distributed across multiple days or weeks. This form
of longer term learning establishes an expectation of transition
probabilities between images (Meyer and Olson 2011; Kaposvari
et al. 2016), resulting in weaker responses to the expected, trail-
ing image in area V2 and IT cortex in monkeys (Ramachandran
et al. 2017; Schwiedrzik and Freiwald 2017; Huang et al. 2018), a
potential correlate of predictive coding. Similarly, responses to
naturalistic images (whose properties are presumably learned
through extended experience) and scrambled controls differ in
a way which appears consistent with some aspects of predictive
coding theory (Issa et al. 2018). Our results do not conflict
with these observations since they involve vastly different time
scales. Importantly, predictive coding theory is proposed as a
general theory of cortical function. Although it requires train-
ing—in the sense that predictions are based on prior knowledge
or experience—the theory is meant to be broadly relevant to our
visual experience, not only stereotyped patterns of input that
are experienced repeatedly over days.

A perhaps surprising discrepancy between our study and
previous work is the absence of omission responses (Fig. 4).
Omission responses have been reported in a number of human
EEG studies (e.g., Nordby et al. 1994; Wacongne et al. 2011).
They have also been reported in some neuronal studies of early
sensory processing. For instance, Schwartz et al. (2007) reported
robust omission responses in the retina though these responses
were only observed for sequences with repetition rates above
6 Hz, and thus might not reflect a general prediction error coding
scheme. A few studies have also reported omission responses in
V1. In some studies (Gavornik and Bear 2014; Fiser et al. 2016)
these responses were observed after extensive exposure to stim-
ulus sequences. But in other studies omission responses were
evident after a within-session exposure (Homann et al. 2019;
Latimer et al. 2019), similar to ours. The discrepancy between
those studies and ours might reflect differences in the stimuli
or species used. Consistent with the latter possibility, we note
that in primate cortex “statistical learning” results in weaker
responses to the expected stimulus (Meyer and Olson 2011;
Kaposvari et al. 2016; Ramachandran et al. 2017), whereas in
mouse V1 it leads to stronger responses (Gavornik and Bear
2014). In any case, our results show that omission responses are
not a universal feature of sensory encoding.

Many previous studies that sought to test predictive coding
theory have relied on measuring the mismatch negativity
(MMN), a scalp potential evoked when an unexpected stimulus
is presented (Näätänen et al. 2001; Sussman et al. 2014;
Stefanics et al. 2014). In the simplest stimulus paradigm, the
MMN is evoked by a rarely presented stimulus. However, this
form of the MMN can be readily explained by neural fatigue
or adaptation. More sophisticated paradigms—for instance,
using sequences of stimuli—have provided robust evidence
for prediction violation responses (Sussman et al. 1998). For
instance, using stimulus sequences similar to ours, Bekinschtein
et al. (2009) found that the responses to rarely presented stimuli
triggered an MMN in early sensory cortex. But signals encoding
a violation of an expected sequence were only evident in fronto-
parietal networks, and required task engagement. Similarly,
Wacongne et al. (2011) found that stimulus changes within
a pattern (X vs. O) could elicit an MMN in auditory cortex,

but that responses to violations of an expected pattern were
more evident in fronto-parietal areas. These pattern-violation
responses required subjects to be attentive but did not require
engagement in a pattern-violation detection task. Finally, Chao
et al. (2018) studied auditory pattern-violations responses in
macaque monkeys using electrocorticography, during passive
listening. They found pattern-violation responses were not
evident in early auditory cortex under these conditions, but
were observed in anterior temporal cortex. Our EEG findings are
broadly consistent with these studies, in that we found pattern-
violation responses were not evident in early sensory cortex
under attentive viewing. However, in our study, task engagement
did reveal evidence for prediction violation responses in early
sensory cortex, not only in fronto-parietal networks as in these
previous EEG studies.

We note that in our experimental design the enhanced sen-
sory EEG response during the performance of the task could be
either due to the detection of the target (i.e., the task goal) or to
the target being unexpected. In previous work in the auditory
system (Sussman et al. 2002; Max et al. 2015; Symonds et al.
2017), we have found that under some stimulus conditions (slow
stimulus presentation rates) the enhanced responses required
both pattern-task engagement (a “top–down” influence) and
a violation of the expected sequence; neither influence was
sufficient to elicit an enhanced response. However, when stim-
uli are presented rapidly, the expectation of the auditory pat-
tern is established even without task engagement (Sussman
and Gumenyuk 2005; Symonds et al. 2017), unlike the findings
presented here. Thus, changing the temporal parameters of
patterns presented to the visual system might yield different
results.

Predictive Coding and Cortical Function

Our data do not disprove the existence of prediction error coding
in sensory cortex. Across neurons, there was a small (up to
8%) modulation of responsivity for expected compared with
unexpected stimuli, though this modulation was not always
consistent for violations associated with early compared with
late deviants. A small percentage of neurons (∼1%) did show
consistent modulation of the type expected for prediction error
coding. One possibility is that prediction error coding is per-
formed by these neurons. Another possibility is that our record-
ing strategy failed to sample the relevant population, though
this explanation makes it nearly impossible to test any theory—
proponents can always seek recourse in an undetected subpop-
ulation of neurons. A more straightforward interpretation of our
data is that the theory has limited merit, at least as a description
of the function of most sensory cortical neurons.

We also emphasize our data do not argue against the general
concept of predictive coding. Well-established cortical mecha-
nisms of visual processing, such as receptive field surrounds
(Rao and Ballard 1999; Spratling 2010; Lochmann et al. 2012) and
simple sensory adaptation (Hosoya et al. 2005; Lochmann et al.
2012; Solomon and Kohn 2014), can be viewed as instantiations
of predictive coding. Nor do our results argue against modulation
of sensory responses by expectation. It is well established that
sensory cortex is affected by internal cognitive processes like
expectation and attention (Carrasco 2011; Cohen and Maunsell
2014), and these likely involve “top–down” signaling. It is also
clear that sensory systems must use prior knowledge to properly
infer the state of the world (i.e., the causes of the sensory signals
they receive).
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The critical distinctions between these more general con-
cepts and those of predictive coding theory explored here is
the explicit comparison of a top–down prediction and bottom-
up sensory evidence, and a representation of their difference—
the prediction error—in sensory cortex. Our data provide little
evidence in support of this view as a central motif of cortical
visual processing, when predictions are based on the temporal
pattern of recently encountered stimuli.
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