Skip to main content
. 2021 Nov 11;74:103684. doi: 10.1016/j.ebiom.2021.103684

Table 5.

The performance of the multimodal ACNN model for predicting triple negative from non-triple negative breast cancers in two subgroups with different T stages.

Datasets Subgroups AUC Sensitivity (%) Specificity (%) Accuracy (%) F1-score
Internal validation cohort T1 stage (n=39) 0.957 (0.891-1.000) 100 (45.41-100) 88.57 (73.45-96.06) 89.74 (75.85-96.51) 0.89
non-T1 stage (n=46) 0.985 (0.958-1.000) 100 (59.56-100) 89.74 (75.85-96.51) 91.30 (79.14-97.10) 0.91
Test cohort A T1 stage (n=44) 0.958 (0.897-1.000) 100 (59.56-100) 94.59 (81.37-99.43) 95.45 (84.04-99.58) 0.95
non-T1 stage (n=49) 0.961 (0.903-1.000) 100 (55.72-100) 86.05 (72.36-93.82) 87.76 (75.39-94.64) 0.87
Test cohort B T1 stage (n=39) 0.957 (0.889-1.000) 100 (45.41-100) 82.86 (66.94-92.28) 84.62 (69.89-93.14) 0.85
non-T1 stage (n=56) 0.932 (0.868-0.996) 93.33 (68.16-100) 85.37 (71.17-93.50) 87.50 (76.07-94.12) 0.84

Note. —95% confidence intervals are included in brackets.

ACNN, assembled convolutional neural network; AUC, area under the receiver operating characteristic curve.