TABLE 2.
Summary of polysaccharides and glycosides with significant anti-liver disease activity.
Compounds | Source | The species investigated | Dose | Mechanisms | References |
---|---|---|---|---|---|
Polysaccharides | |||||
PRAM2 | Rhizoma Atractylodis Macrocephalae | Male ICR mice | 50, 100, 200 mg/kg | Inhibition of NOS activity and NO level and its reduction of the production of free radicals | Han et al. (2016) |
Radix isatidis polysaccharide | Radix isatidis | 3T3-L1 preadipocytes | 25, 50, 100 μg/ml | Improvement of the glucose metabolism, lipid metabolism and oxidative stress | Li, et al. (2019c) |
Male Wistar rats | 25, 50, 100 mg/kg | ||||
Salvia miltiorrhiza polysaccharide | Salvia miltiorrhiza | Chickens | 0.5, 1, 2 g/L | Down-regulation of the contents of ALT, AST, and MDA, and up-regulation of the contents of GSH and CYP450 | Han et al. (2019) |
Chicken hepatocytes | 100, 200, 500 μg/ml | ||||
Angelica sinensis polysaccharide | Angelica sinensis | L02 cells | 200, 400, 800 μg/ml | Through regulating lipid metabolism, anti-inflammation, anti-oxidation and inhibiting HSC activation | Ma et al. (2020); Wang et al. (2016); Wang. et al. (2020c) |
ICR male mice | 100, 300, 500 mg/kg | ||||
Male Balb/c mice | 1.5, 6 mg/kg | ||||
Murine splenocytes | 5, 25,125 μg/ml | ||||
Male C57BL/6J mice | 200 mg/kg | ||||
Primary splenocytes | 50, 100, 200 μg/ml | ||||
Codonopsis pilosula polysaccharide | Codonopsis pilosula | Female ICR mice | 100, 150, 200 mg/kg | Through antioxidant effect | Liu et al. (2015) |
Poria cocos polysaccharide | Poria cocos | Male Kunming mice | 200, 400 mg/kg | By suppressing cell death, reducing hepatocellular inflammatory stress and apoptosis, and Hsp90 bioactivity | Wu et al. (2018c); Wu. et al. (2019b) |
AML12 cells | 20, 40 g/L | ||||
Lycium barbarum polysaccharide | Lycium barbarum | L02 cells | 24 μg/ml | By reversing oxidative injury, inflammatory response and TLRs/NF-κB signaling pathway expression | Gan. et al. (2018b); Wei et al. (2020) |
Male wistar rats | 400, 800, 1600 mg/kg | ||||
Astragalus membranaceus-Polysaccharide | Astragalus membranaceus | HFSTZ Mice | 500 mg/kg | Through improving peripheral metabolic stress, activating hepatic insulin signaling | Huang et al. (2016); Huang et al. (2017); Sun et al. (2019) |
C57BL/6 mice | 800 mg/kg | ||||
HCC cells | 0.1, 0.5, 1 mg/ml | ||||
SFP-100 | Sophora flavescens | Female Balb/c mice | 500 mg/kg | By decreasing hepatocytes apoptosis, inhibit the infiltration of neutrophils and macrophages into liver | Yang et al., (2018) |
L02 cells | 10, 50, 250 μg/ml | ||||
HepG2.2.15 cells | 50, 100, 250, 500 μg/ml | ||||
Codonopsis lanceolata polysaccharide | Codonopsis lanceolata | Male C57BL/6 mice | 100 mg/kg | Through activating anti-oxidative signaling pathway | Zhang, et al. (2020a) |
STRP | Sophora tonkinensis | Male ICR mice | 50, 100, 200 mg/kg | By inhibiting MDA, ROS generation and increasing liver GSH, GPx, T-SOD, CAT levels | Cai et al. (2018); Shan et al. (2019) |
Schisandra chinensis Polysaccharide | Schisandra chinensis | Mice | 200, 400, 800 mg/kg | Regulation of Nrf2/antioxidant response element and TLR4/NF-κB signaling pathways | Shan et al. (2019) |
Schisandra chinensis acidic polysaccharide | Schisandra chinensis | Male ICR mice | 5, 10, 20 mg/kg | By inhibiting the expression of CYP2E1 protein and then alleviating oxidative stress injury | Yuan et al. (2018) |
HepG2 cells | 3.12, 6.25, 12.5 μg/ml | ||||
GBLP | Ginkgo biloba | Male Wistar rats | 100, 200, 400 mg/kg | By attenuating IR, preserving liver function, enhancing antioxidant defense system, and reducing lipid peroxidation | Yan et al. (2015) |
Paeoniae radix alba polysaccharides | Paeoniae radix alba | Male Kunming mice | 0.2, 0.4, 0.8 g/kg | Inhibition of the NF-κB signaling pathway | Wang et al. (2020b) |
Glycosides | |||||
Chrysophanol 8-O-glucoside | Rheum palmatum | LX-2 cells | 1, 5, 20 μg/ml | Regulation of the STAT3 signaling pathway | Park et al. (2020) |
Sennoside A | Rheum officinale Baill | HepG2 cells | 25, 50, 100 μM | Down-regulation of KRT7 and KRT81, and inhibition of the AKT and ERK pathways | Le et al. (2020); Zhu et al. (2020) |
SMMC-7721 cells | 25, 50, 100 μM | ||||
Male C57BL/6J mice | 15, 30, 60 mg/kg | ||||
HSC-T6 cells | 10 μM | ||||
Astragaloside IV | Astragalus membranaceus | SMMC-7721 cells | 80 μg/ml | Inhibition of lncRNA-ATB, MRP2, PTP1B and anti-apoptotic signaling, and improvement insulin resistance | Li et al. (2018g); Qu et al. (2020); Su et al. (2020); Zhou et al. (2021) |
Huh-7 cells | 80 μg/ml | ||||
HepG2 cells | 0.4, 4, 40 μM | ||||
H22 cells | 0.4, 4, 40 μM | ||||
Male BALB/c mice | 50 mg/kg | ||||
HepG2 cells | 6.4, 12.8, 25.6, 51.2, 102.4 μM | ||||
SK-Hep1 cells | 200, 400 μM | ||||
Hep3B cells | 200, 400 μM | ||||
Amarogentin | Swertia and Gentiana roots | HSCs | 0.01, 0.1, 1 mg/ml | By anti-oxidative properties and suppressing the mitogen-activated protein kinase signaling pathway | Zhang et al. (2017) |
Male C57BL/6 mice | 25, 50, 100 mg/kg | ||||
Amygdalin | Armeniaca semen | Female BALB/c mice | 4, 8 mg/kg | regulation of the NLRP3, NF-κB, Nrf2/NQO1, PI3K/AKT and JAK2/STAT3 signaling pathways | Tang et al. (2019); Wang et al. (2021a); Yang et al. (2019a) |
HepG2 cells | 80 μM | ||||
Male Sprague–Dawley rats | 0.5, 1, 1.5, 3 mg/kg | ||||
LX-2 cells | 1.25, 2.5, 5 mg/ml | ||||
Forsythiaside A | Forsythia suspensa | Male BALB/c mice | 15, 30, 60 mg/kg | Through modulating the remolding of extracellular matrix, PI3K/AKT and Nrf2 signaling pathway, and inhibition of NF-κB activation | Gong et al. (2021); Pan, et al. (2015a) |
Transgenic zebrafish | 25, 50, 100 μM | ||||
Gentiopicroside | Gentiana manshurica Kitagawa | Male Sprague–Dawley rats | 20 mg/kg | Improvement of mitochondrial dysfunction and activation of LKB1/AMPK signaling | Li, et al. (2018e); Yang et al. (2020a); Zhang et al. (2021) |
Male C57BL/6 mice | 40, 80 mg/kg | ||||
HepG2 cells | 100 μM | ||||
RAW 264.7 macrophages | 25, 50, 100 μM | ||||
Paeoniflorin | Paeonia lactiflora | Male Sprague-Dawley rats | 10, 20, 40, 80, 200 mg/kg | By activating LKB1/AMPK and AKT pathways, and inhibiting HMGB1-TLR4 signaling pathway and HIF-1α expression | Li, et al. (2018d); Xie et al. (2018); Zhao et al. (2014) |
Male C57BL/6 mice | 100 mg/kg | ||||
Swertiamarin | Gentiana manshurica Kitag | HSCs cells | 2.4, 6, 15 μM | By suppressing angiotensin II–angiotensin type 1 receptor–extracellular signal-regulated kinase signaling | Li et al., (2016) |
MaleWistar rats | 15, 20 mg/kg | ||||
Nodakenin | Angelica biserrata | Male ICR mice | 10, 30 mg/kg | By regulating apoptosis-related mitochondrial proteins | Lim et al. (2021) |
Geniposide | Gardenia jasminoides frui | HepG2 cells | 65, 130, 260 μmol/L | Regulation of Nrf2/AMPK/mTOR signaling pathways | Shen et al. (2020) |
Male wild-type mice | 50, 75, 100 mg/kg |