Table 2.
Attributes and models | Precision (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | F1 (95% CI) | AUROCCa (95% CI) | AUPRCb (95% CI) | |
Physical | ||||||||
|
BERTc | 0.692 (0.555-0.811) | 0.507 (0.387-0.618) | 0.950 (0.924-0.972) | 0.870 (0.836-0.903) | 0.585 (0.467-0.683) | 0.875 (0.824-0.948) | 0.677 (0.568-0.770) |
|
Word2vec/SVMd | 0.722 (0.562-0.867) | 0.366 (0.262-0.479) | 0.969 (0.948-0.987) | 0.859 (0.824-0.893) | 0.486 (0.362-0.594) | 0.868 (0.826-0.922) | 0.623 (0.5090.743) |
|
Word2vec/XGBooste | 0.697 (0.528-0.857) | 0.324 (0.221-0.435) | 0.969 (0.949-0.987) | 0.852 (0.813-0.887) | 0.442 (0.318-0.551) | 0.830 (0.769-0.888) | 0.553 (0.437-0.659) |
Cognitive | ||||||||
|
BERT | 0.800 (0.657-0.935) | 0.583 (0.432-0.735) | 0.980 (0.964-0.994) | 0.931 (0.905-0.957) | 0.675 (0.543-0.779) | 0.923 (0.879-0.997) | 0.818 (0.735-0.917) |
|
Word2vec/SVM | 0.760 (0.583-0.920) | 0.396 (0.254-0.533) | 0.983 (0.967-0.994) | 0.910 (0.882-0.939) | 0.521 (0.361-0.648) | 0.900 (0.863-0.957) | 0.609 (0.434-0.761) |
|
Word2vec/XGBoost | 0.769 (0.500-1.000) | 0.208 (0.104-0.333) | 0.991 (0.980-1.000) | 0.895 (0.867-0.926) | 0.328 (0.178-0.474) | 0.828 (0.748-0.905) | 0.474 (0.321-0.630) |
Social | ||||||||
|
BERT | 0.636 (0.461-0.800) | 0.500 (0.349-0.652) | 0.966 (0.946-0.983) | 0.916 (0.887-0.941) | 0.560 (0.410-0.690) | 0.857 (0.786-0.918) | 0.566 (0.402-0.750) |
|
Word2vec/SVM | 0.286 (0-0.668) | 0.048 (0-0.118) | 0.986 (0.973-0.997) | 0.885 (0.854-0.916) | 0.082 (0.035-0.200) | 0.804 (0.742-0.878) | 0.309 (0.173-0.426) |
|
Word2vec/XGBoost | 0.556 (0.222-0.875) | 0.119 (0.029-0.229) | 0.989 (0.977-0.997) | 0.895 (0.864-0.923) | 0.196 (0.072-0.343) | 0.786 (0.728-0.850) | 0.304 (0.148-0.420) |
aAUROCC: area under the receiver operating characteristic curve.
bAUPRC: area under precision-recall curve.
cBERT: bidirectional encoder representations from transformers.
dSVM: support vector machine.
eXGBoost: extreme gradient boosting.