Skip to main content
. 2021 Nov 3;23(11):e26777. doi: 10.2196/26777

Table 2.

Performance of natural language processing/machine learning models for pain interference domain by 3 symptom attributes.

Attributes and models Precision (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1 (95% CI) AUROCCa (95% CI) AUPRCb (95% CI)
Physical

BERTc 0.692 (0.555-0.811) 0.507 (0.387-0.618) 0.950 (0.924-0.972) 0.870 (0.836-0.903) 0.585 (0.467-0.683) 0.875 (0.824-0.948) 0.677 (0.568-0.770)

Word2vec/SVMd 0.722 (0.562-0.867) 0.366 (0.262-0.479) 0.969 (0.948-0.987) 0.859 (0.824-0.893) 0.486 (0.362-0.594) 0.868 (0.826-0.922) 0.623 (0.5090.743)

Word2vec/XGBooste 0.697 (0.528-0.857) 0.324 (0.221-0.435) 0.969 (0.949-0.987) 0.852 (0.813-0.887) 0.442 (0.318-0.551) 0.830 (0.769-0.888) 0.553 (0.437-0.659)
Cognitive

BERT 0.800 (0.657-0.935) 0.583 (0.432-0.735) 0.980 (0.964-0.994) 0.931 (0.905-0.957) 0.675 (0.543-0.779) 0.923 (0.879-0.997) 0.818 (0.735-0.917)

Word2vec/SVM 0.760 (0.583-0.920) 0.396 (0.254-0.533) 0.983 (0.967-0.994) 0.910 (0.882-0.939) 0.521 (0.361-0.648) 0.900 (0.863-0.957) 0.609 (0.434-0.761)

Word2vec/XGBoost 0.769 (0.500-1.000) 0.208 (0.104-0.333) 0.991 (0.980-1.000) 0.895 (0.867-0.926) 0.328 (0.178-0.474) 0.828 (0.748-0.905) 0.474 (0.321-0.630)
Social

BERT 0.636 (0.461-0.800) 0.500 (0.349-0.652) 0.966 (0.946-0.983) 0.916 (0.887-0.941) 0.560 (0.410-0.690) 0.857 (0.786-0.918) 0.566 (0.402-0.750)

Word2vec/SVM 0.286 (0-0.668) 0.048 (0-0.118) 0.986 (0.973-0.997) 0.885 (0.854-0.916) 0.082 (0.035-0.200) 0.804 (0.742-0.878) 0.309 (0.173-0.426)

Word2vec/XGBoost 0.556 (0.222-0.875) 0.119 (0.029-0.229) 0.989 (0.977-0.997) 0.895 (0.864-0.923) 0.196 (0.072-0.343) 0.786 (0.728-0.850) 0.304 (0.148-0.420)

aAUROCC: area under the receiver operating characteristic curve.

bAUPRC: area under precision-recall curve.

cBERT: bidirectional encoder representations from transformers.

dSVM: support vector machine.

eXGBoost: extreme gradient boosting.