Skip to main content
. 2021 Nov 3;23(11):e26777. doi: 10.2196/26777

Table 3.

Performance of natural language processing/machine learning models for fatigue domain by 3 symptom attributes.

Attributes and models Precision (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) F1 (95% CI) AUROCCa (95% CI) AUPRCb (95% CI)
Physical

BERTc 0.593 (0.468-0.717) 0.427 (0.315-0.538) 0.929 (0.901-0.956) 0.832 (0.794-0.867) 0.496 (0.384-0.593) 0.775 (0.723-0.848) 0.537 (0.443-0.634)

Word2vec/SVMd 0.600 (0.286-0.900) 0.073 (0.026-0.136) 0.988 (0.974-0.997) 0.810 (0.770-0.848) 0.130 (0.048-0.227) 0.726 (0.670-0.780) 0.375 (0.224-0.474)

Word2vec/XGBooste 0.595 (0.432-0.773) 0.268 (0.169-0.364) 0.956 (0.934-0.977) 0.822 (0.784-0.858) 0.370 (0.250-0.474) 0.726 (0.665-0.798) 0.461 (0.338-0.575)
Cognitive

BERT 0.803 (0.696-0.895) 0.757 (0.652-0.854) 0.963 (0.941-0.981) 0.929 (0.903-0.953) 0.779 (0.697-0.855) 0.948 (0.922-0.979) 0.855 (0.791-0.930)

Word2vec/SVM 0.829 (0.690-0.946) 0.414 (0.292-0.535) 0.983 (0.968-0.994) 0.889 (0.861-0.917) 0.552 (0.418-0.657) 0.917 (0.886-0.951) 0.730 (0.632-0.855)

Word2vec/XGBoost 0.767 (0.625-0.884) 0.471 (0.359-0.586) 0.972 (0.953-0.988) 0.889 (0.858-0.917) 0.584 (0.468-0.684) 0.860 (0.817-0.924) 0.659 (0.550-0.782)
Social

BERT 0.679 (0.500-0.848) 0.422 (0.289-0.568) 0.976 (0.960-0.990) 0.917 (0.891-0.943) 0.521 (0.379-0.658) 0.796 (0.704-0.912) 0.561 (0.434-0.741)

Word2vec/SVM 0.778 (0.429-1.000) 0.156 (0.057-0.267) 0.995 (0.987-1.000) 0.905 (0.877-0.929) 0.259 (0.102-0.406) 0.817 (0.756-0.881) 0.393 (0.203-0.534)

Word2vec/XGBoost 0.571 (0.286-0.833) 0.178 (0.068-0.300) 0.984 (0.971-0.995) 0.898 (0.868-0.924) 0.271 (0.118-0.415) 0.780 (0.706-0.850) 0.330 (0.154-0.436)

aAUROCC: area under the receiver operating characteristic curve.

bAUPRC: area under precision-recall curve.

cBERT: bidirectional encoder representations from transformers.

dSVM: support vector machine.

eXGBoost: extreme gradient boosting.