Table 3.
Attributes and models | Precision (95% CI) | Sensitivity (95% CI) | Specificity (95% CI) | Accuracy (95% CI) | F1 (95% CI) | AUROCCa (95% CI) | AUPRCb (95% CI) | |
Physical | ||||||||
|
BERTc | 0.593 (0.468-0.717) | 0.427 (0.315-0.538) | 0.929 (0.901-0.956) | 0.832 (0.794-0.867) | 0.496 (0.384-0.593) | 0.775 (0.723-0.848) | 0.537 (0.443-0.634) |
|
Word2vec/SVMd | 0.600 (0.286-0.900) | 0.073 (0.026-0.136) | 0.988 (0.974-0.997) | 0.810 (0.770-0.848) | 0.130 (0.048-0.227) | 0.726 (0.670-0.780) | 0.375 (0.224-0.474) |
|
Word2vec/XGBooste | 0.595 (0.432-0.773) | 0.268 (0.169-0.364) | 0.956 (0.934-0.977) | 0.822 (0.784-0.858) | 0.370 (0.250-0.474) | 0.726 (0.665-0.798) | 0.461 (0.338-0.575) |
Cognitive | ||||||||
|
BERT | 0.803 (0.696-0.895) | 0.757 (0.652-0.854) | 0.963 (0.941-0.981) | 0.929 (0.903-0.953) | 0.779 (0.697-0.855) | 0.948 (0.922-0.979) | 0.855 (0.791-0.930) |
|
Word2vec/SVM | 0.829 (0.690-0.946) | 0.414 (0.292-0.535) | 0.983 (0.968-0.994) | 0.889 (0.861-0.917) | 0.552 (0.418-0.657) | 0.917 (0.886-0.951) | 0.730 (0.632-0.855) |
|
Word2vec/XGBoost | 0.767 (0.625-0.884) | 0.471 (0.359-0.586) | 0.972 (0.953-0.988) | 0.889 (0.858-0.917) | 0.584 (0.468-0.684) | 0.860 (0.817-0.924) | 0.659 (0.550-0.782) |
Social | ||||||||
|
BERT | 0.679 (0.500-0.848) | 0.422 (0.289-0.568) | 0.976 (0.960-0.990) | 0.917 (0.891-0.943) | 0.521 (0.379-0.658) | 0.796 (0.704-0.912) | 0.561 (0.434-0.741) |
|
Word2vec/SVM | 0.778 (0.429-1.000) | 0.156 (0.057-0.267) | 0.995 (0.987-1.000) | 0.905 (0.877-0.929) | 0.259 (0.102-0.406) | 0.817 (0.756-0.881) | 0.393 (0.203-0.534) |
|
Word2vec/XGBoost | 0.571 (0.286-0.833) | 0.178 (0.068-0.300) | 0.984 (0.971-0.995) | 0.898 (0.868-0.924) | 0.271 (0.118-0.415) | 0.780 (0.706-0.850) | 0.330 (0.154-0.436) |
aAUROCC: area under the receiver operating characteristic curve.
bAUPRC: area under precision-recall curve.
cBERT: bidirectional encoder representations from transformers.
dSVM: support vector machine.
eXGBoost: extreme gradient boosting.