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Abstract

Objective: We sought to determine histologic and gene expression features of clinical 

improvement in early diffuse cutaneous systemic sclerosis (dcSSc; scleroderma).

Methods: Fifty-eight forearm biopsies were evaluated from 26 individuals with dcSSc in two 

clinical trials. Histologic/immunophenotypic assessments of global severity, alpha-smooth muscle 
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actin (aSMA), CD34, collagen, inflammatory infiltrate, follicles, and thickness were compared 

to gene expression and clinical data. Support vector machine learning was performed using 

scleroderma gene expression subset (normal-like, fibroproliferative, inflammatory) as classifiers 

and histology scores as inputs. Comparison of w-vector mean absolute weights was used 

to identify histologic features most predictive of gene expression subset. We then tested for 

differential gene expression according to histologic severity and compared those to clinical 

improvement (according to the Combined Response Index in Systemic Sclerosis).

Results: aSMA was highest and CD34 lowest in samples with highest local modified Rodnan 

skin score. CD34 and aSMA changed significantly from baseline to 52-weeks in clinical 

improvers. CD34 and aSMA were the strongest predictors of gene expression subset, with highest 

CD34 staining in the normal-like subset (p<0.001) and highest aSMA staining in the inflammatory 

subset (p=0.016). Analysis of gene expression according to CD34 and aSMA binarized scores 

identified a 47-gene fibroblast polarization signature that decreases over time only in improvers 

(vs. non-improvers). Pathway analysis of these genes identified gene expression signatures of 

inflammatory fibroblasts.

Conclusion: CD34 and aSMA stains describe distinct fibroblast polarization states, are 

associated with gene expression subsets and clinical assessments, and are useful biomarkers of 

clinical severity and improvement in dcSSc.
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Introduction:

Systemic sclerosis (SSc; scleroderma) is an autoimmune disorder characterized by 

vasculopathy, inflammation, and fibrosis of the skin and internal organs [1]. Among 

rheumatic diseases, SSc carries the highest mortality rate, in part due to limited treatment 

options that do not address both the fibrotic and inflammatory disease features [2]. Progress 

in the field is limited by patient heterogeneity and imperfect outcome measurements [3], and 

there is a growing need to discover novel treatment targets.

Most SSc treatment trials have used the modified Rodnan skin score (MRSS) as the 

primary outcome measurement tool. This validated measure of skin thickness has limitations 

including inter-observer variability [4]. The Combined Response Index in Systemic 

Sclerosis (CRISS) is a composite outcome measure that incorporates new scleroderma 

renal crisis, decline in forced vital capacity (FVC) >15 %-predicted, new heart failure, 

and pulmonary hypertension requiring treatment, as well as change in MRSS, patient and 

physician global assessments, Health Assessment Questionnaire Disability Index (HAQ-DI), 

and FVC. The CRISS output is a probability of clinical improvement (0—1), and a threshold 

of ≥0.6 has been proposed [5].

Many SSc trials use skin histology and/or gene expression as exploratory outcomes. 

Skin biopsies have good face, content, criterion, and construct validity [6]; however, no 

standardized approach exists for interpreting histology in clinical trials. Previous studies 
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have described correlations of skin biopsy weight [7], collagen, and alpha-smooth muscle 

actin (aSMA) with MRSS [8]. CD34, a dermal fibroblast marker, is decreased in SSc 

versus normal skin [9]. Skin gene expression may also describe SSc clinical severity and 

heterogeneity. Previous studies identified three gene expression subsets in diffuse cutaneous 

(dc)SSc skin: normal-like, fibroproliferative, and inflammatory [10, 11]. These subsets 

have been incorporated into stratified clinical trial analyses to better understand patient 

heterogeneity and treatment response [12–18].

The purpose of this study was to determine which histologic features of SSc lesional skin 

are most informative of gene expression subset and to use those histologic features to focus 

subsequent gene expression analyses to gain insights relevant to clinical improvement. We 

aimed (1) to define SSc skin histologic correlates of clinical improvement, (2) to assess 

the power of histologic features to predict gene expression subsets using an unbiased 

machine learning approach, and (3) to integrate histology-based gene expression analyses 

with 52-week clinical improvement.

Methods:

Patient data.

Fifty-eight forearm skin biopsies from 26 individuals with early, dcSSc were assessed 

by physical exam, DNA microarray, and histology in the context of two clinical trials at 

Hospital for Special Surgery (New York): the nilotinib in SSc trial (N=8) [15] and the 

belimumab in SSc trial (N=18) [12]. The nilotinib trial was an open-label, single-arm pilot 

trial where background immunosuppressive treatment was not permitted and all participants 

received nilotinib, a tyrosine kinase inhibitor. The belimumab trial was a randomized, 

controlled pilot trial where all participants received background mycophenolate mofetil 

and were randomized to receive either intravenous belimumab or placebo. Clinical data 

were collected including disease duration, autoantibodies, clinical assessments of lung and 

renal SSc involvement, c-reactive protein (CRP), erythrocyte sedimentation rate (ESR), 

FVC, total MRSS, local (biopsy-site) MRSS (scored by a single assessor using “averaging” 

approach [19]), physician and patient global assessments, and HAQ-DI. 52-week CRISS was 

calculated.

Sample processing.

Two 3-mm punch biopsies of extensor-surface, forearm lesional skin were obtained 

(nilotinib: baseline, 26-, 52-weeks; belimumab: baseline, 52-weeks) [12, 15]. Subsequent 

biopsies were performed 1-cm from baseline procedure. One biopsy was formalin-fixed, 

paraffin-embedded, and stained for hematoxylin and eosin (H&E), aSMA (Leica PA0943, 

RTU), and CD34 (Leica PA0212, RTU). The other biopsy was analyzed by DNA microarray 

as described previously and in supplemental methods [12, 15]. Microarray data were log2

lowess normalized and filtered for probes with intensity ≥1.5-fold over local background. 

Probes with >20% missing data were excluded. Missing expression values were imputed 

using GenePattern module (ImputeMissingValues.KNN) with default parameters, and probe 

expression set was collapsed to gene expression set using respective GenePattern modules 

[20]. Nilotinib samples were processed in a single batch. Belimumab samples were 
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processed in two batches. These three batches did not exhibit a significant batch bias (as 

determined by gPCA, p=0.434, Supplemental Figure 1); therefore, no batch adjustment was 

performed. Expression data are accessible at NCBI GEO (accession no. GSE65405 and 

GSE97248, respectively).

Histologic evaluation.

Each sample was assessed using a histology scoring system that includes seven histologic/

immunophenotypic features: thickness (epidermis to subcutis, measured by micrometer), 

follicle count, and a semi-quantitative (0—3) assessment of global histologic severity, 

infiltrate intensity, and collagen density detectable by H&E stain, and two fibroblast 

markers: CD34 and aSMA (Supplemental Figure 2). Similar to a patient or physician 

global assessment, the pathologist global assessment of histologic severity is a summary 

assessment of the histologic features assessed by H&E stain. Blinded to prior scores, a 

dermatopathogist (CM) and second pathologist (YZ), analyzed a sub-sample of biopsies 

(N=12) for reliability.

Statistical analysis.

Intraclass correlation coefficients (ICC) were calculated for inter-rater and intra-rater 

reliability for each histology domain. Median [interquartile range] score of each histology 

feature was calculated by local MRSS. In a paired analysis (baseline and 52-week), 

Wilcoxon signed-rank test was used to evaluate histologic change, stratified by CRISS 0.6 

probability threshold to differentiate clinical improvers and non-improvers [5]. Spearman 

correlation was used to correlate histologic change with 52-week CRISS and change 

in each clinical outcome included in CRISS. Kruskal-Wallis and Mann-Whitney U-tests, 

Bonferroni-adjusted for multiple comparisons, were used to determine differences in clinical 

characteristics and histologic features by gene expression subset assignment.

Predicting gene expression subset assignment using histologic features.

Supplemental Figure 3 outlines the data processing pipeline. Samples were assigned to 

gene expression subsets using multinomial elastic net supervised classifier (GLMnet), 

as previously developed [21]. For each sample, the classifier assigns a probability for 

belonging to each gene expression subset (sum of probabilities equals 100%), and samples 

are assigned to the subset with the highest probability. Then, using histologic features 

as inputs and gene expression subsets as classifiers, support vector machine learning was 

performed to determine histologic features most predictive of gene expression subset. To 

binarize continuous variables (i.e., thickness), quantiles were generated. The area under the 

curve (AUC) of the receiver operating characteristic (ROC) curves generated for each gene 

expression subset were calculated to evaluate algorithm performance. Mean absolute weight 

for each histology score was determined using „w-vector‟ to identify histologic features and 

associated scores most predictive of subset assignment.

Differential gene expression by histologic features.

Using binarized scores for the histologic/immunophenotypic features with the highest 

weight for classifying samples (CD34 and aSMA), differentially expressed genes (DEG) 
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were identified using an unequal sample size and unequal variance t-test between 

groups. Significant genes were defined as those with Bonferroni adjusted p-value <0.05. 

Hierarchical clustering was performed for DEG identified according to binarized histology 

scores. DEG identified by histology scores were similarly analyzed in paired samples, 

stratified by improvement status. Average DEG expression was plotted by clinical 

improvement status. Hierarchical clustering, supervised by baseline or 52-weeks, was 

performed for significant genes in improvers and non-improvers.

Pathway analysis.

Pathway analysis was performed for 47 identified genes differentially expressed according to 

aSMA and CD34 scores (goseq R package) [22]. The background gene set was the 16,645 

genes expressed in the skin samples (genes with intensity >1.5 fold over background Cy3 

and Cy5 in the microarray). All gene ontology (GO) pathways were considered. Benjamini

Hochberg adjusted false discovery rate <5% was considered significant.

Results:

Histologic features underlying biopsy-site assessments of SSc severity.

Fifty-six biopsies were analyzed from 26 individuals with dcSSc (median disease duration 

0.8 years). Patient characteristics are presented in Table 1. Reliability of histology scores are 

presented in Supplemental Table 1. To describe histologic features underlying biopsy-site 

clinical assessments of SSc severity, median histology scores were calculated for each local 

MRSS score (Table 2). Higher global severity, aSMA, and collagen density and lower CD34 

scores were observed for samples with highest (worse) local MRSS. The reverse was true for 

lowest local MRSS samples where global severity, aSMA, and collagen density was low and 

CD34 was high.

Histologic correlates of clinical improvement.

Paired baseline and 52-week skin biopsies were available for 24 individuals. Samples were 

stratified according to clinical improvers (CRISS≥0.6) versus non-improvers (Supplemental 

Table 2). As expected, clinical improvers had significant improvements in total and local 

MRSS, physician global assessment, patient global assessment, and HAQ-DI (Figure 

1A). Among improvers, there were significant changes in baseline versus 52-week global 

histologic severity (2.5 to 1.5, p<0.01), aSMA (2 to 0.5, p=0.04), CD34 (1 to 2, p<0.001), 

and collagen density (2 to 1, p<0.01) (Figure 1B). Among six non-improvers, there 

were no significant changes in any baseline versus 52-week histology scores. Because 

the CRISS threshold for improvement is still provisional, we also compared histology 

changes to CRISS as a continuous measure. Consistent with the previous analysis using 

a CRISS threshold of ≥0.6, increasing (more favorable) CRISS correlated with decreasing 

global histologic severity (r=−0.52, p=0.01), aSMA (r=−0.44, p=0.03), and collagen density 

(r=−0.44, p=0.03), and increasing CD34 (r=0.53, p=0.01) (Table 3).

Histologic features to predict gene expression subset.

24, 16 and 18 samples were assigned to normal-like, fibroproliferative, or inflammatory 

gene expression subsets, respectively. Skin biopsy sites from normal-like, fibroproliferative 
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or inflammatory samples were associated with increasing clinical severity with median local 

MRSS of 1, 2, and 3; respectively, (p<0.01) (Figure 2A). There was also a significant 

trend of increasing total MRSS and ESR and decreasing disease duration across the three 

gene expression subsets (Figure 2A). Histologic/immunophenotypic features also associated 

with gene expression subset. CD34 staining was highest in normal-like compared to 

fibroproliferative and inflammatory samples (median score 2, 1, 0.5, respectively; p<0.001) 

(Figure 2B). Conversely, aSMA staining was lowest in normal-like versus fibroproliferative 

and inflammatory samples (0.5, 0.75, 2, respectively; p=0.02). There were also significant 

differences in global severity (1.5, 2.25, 2, respectively; p=0.01) and collagen density (1, 2, 

2.5, respectively; p=0.01).

We next tested the performance of a machine learning algorithm using histologic 

features to predict gene expression subset. The AUC of the ROC curve of models 

predicting inflammatory, normal-like, and fibroproliferative gene expression subsets were 

0.72, 0.66, and 0.52, respectively (Figure 2C). The histology features with strongest 

predictive values (highest mean weight) were CD34 and aSMA (Figure 2D). In subsequent 

machine learning models, using only either CD34 or aSMA as inputs, CD34 predicted 

fibroproliferative subsets (AUC 0.77) and normal-like subsets (AUC 0.76), while aSMA 

predicted inflammatory subsets (AUC 0.73).

Gene expression signature of high aSMA vs. high CD34 scleroderma skin.

aSMA was highest and CD34 was lowest in samples with high MRSS and high 

inflammatory gene expression, and reversed with clinical improvement (Table 2, Figures 1B, 

2B, 5). Taken together, these data support a strong and clinically relevant inverse relationship 

between the two dermal fibroblast markers. To visualize this, we plotted aSMA and CD34 

scores for all samples (Figure 3A). Samples with highest aSMA and lowest CD34 scores 

were often assigned to the inflammatory gene expression subset, while the inverse was 

true of the normal-like subset. We next sought to uncover gene expression signatures that 

characterize fibroblast polarization. We identified one DEG when constraining the analysis 

to aSMA high versus low and 32 DEGs when constraining the analysis to CD34 high 

versus low. When we further focused the analysis to samples with either extreme of the 

immunophenotype (aSMAlow/CD34high vs. aSMAhigh/CD34low), we identified 36 DEGs. 

The union of these results yielded a total of 47 genes which we refer to as aSMA/CD34 

polarization genes (Figure 3B).

We compared unsupervised hierarchical clustering of the aSMA/CD34 polarization genes 

(Figure 3C) to local MRSS (Figure 3C top color bar), gene expression subset, and 

immunophenotypic assessments of CD34 and aSMA (Figure 3C bottom color bar). 

Pathway analysis confirmed these genes relate to fibroblast activation state, including 

FGF13, COL4A4, MMP3, TNFSF4 (OX40L), THY1 (CD90), and JAK3. The top ten 

most highly differentially expressed genes includes COL8A1, COL10A1, SERPINE2, 

SYNDIG1, TNFSF4, MATN3, and HAPLN1. Supplemental Table 3 summarizes the 

functional enrichment analysis for 47 aSMA/CD34 polarization genes. Significant GO 

biologic pathways include “extracellular matrix organization” (adjusted p-value<0.0001), 

“cell adhesion” (adjusted p-value<0.001), “regulation of leukocyte activation” (adjusted 
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p-value=0.017), “interleukin-12 production” (adjusted p-value=0.011), and “skeletal system 

development” (adjusted p-value<0.001).

Expression of aSMA/CD34 polarization genes and clinical improvement.

We compared gene expression of 47 aSMA/CD34 polarization genes at baseline versus 

52-weeks in 18 improvers and six non-improvers (Figure 4A). Among improvers, 30 of 

the 47 aSMA/CD34 polarization genes were significantly differentially expressed between 

baseline and 52-weeks. There were no significant differences in baseline versus 52-week 

expression of any gene in non-improvers. Average expression of the 47 aSMA/CD34 

polarization genes was plotted for improvers vs. non-improvers for baseline and 52-week 

samples. Average gene expression in improvers (vs. non-improvers) was higher at baseline 

and lower at 52-weeks (Figure 4B). A heat map of the 30 significant genes differentially 

expressed from baseline to 52-weeks further demonstrates the increased expression at 

baseline relative to 52-weeks in improvers but not non-improvers (Figure 4C). Of these 

30 genes, MMP3, TNFRSF11B, and THBS1 were most strongly correlated with CRISS, that 

is, the more these decreased from baseline to 52-weeks, the more likely a patient was to have 

clinically improved (Supplemental Figure 4). Taken together, this work indicates clinically 

severe scleroderma skin harbors aSMA high and CD34 low fibroblasts with associated 

high inflammatory gene expression, and these histologic and gene expression signatures of 

fibroblast polarization can reverse with clinical improvement (Figure 5).

Discussion:

There has been an unmet need to standardize the approach to skin histology assessment in 

SSc research. We report that of seven tested histologic/immunophenotypic features, global 

severity, aSMA, and collagen negatively correlated with clinical improvement, measured by 

CRISS, while CD34 positively correlated. In a parallel, unbiased machine learning analysis, 

two fibroblast markers (aSMA and CD34) also emerged as most strongly predictive of 

gene expression subset. These findings are consistent with prior investigations that describe 

positive correlations between aSMA and collagen with local MRSS [8] and decreased CD34 

in SSc and morphea [23, 24]. Further, in a cross-sectional study of individuals with morphea 

(N=50) and healthy controls (N=50), Lee et al. found that individuals with morphea (vs. 

healthy controls) had higher aSMA and lower CD34 scores, and these were associated with 

assessments of fibrosis severity (mild vs. severe [25]) [26]. We add to the literature by 

demonstrating that baseline aSMA/CD34 immunophenotype among improvers changes to 

resemble at 52-weeks the aSMAlow/CD34high immunophenotype of normal skin.

The aSMA/CD34 polarization transcripts included genes under investigation as possible 

SSc treatment targets: TNFSF4 [27], JAK3 [28], CDH11 [29], and TGF-β regulated genes 

[30]. TNFSF4/OX40L, a costimulatory molecule expressed on antigen presenting cells [31] 

and SSc fibroblasts, is a genetic risk factor for dcSSc and SSc-associated autoantibodies 

[32], and its blockade leads to fibrosis regression in mice [27]. Additionally, several TGF-β 
regulated genes (e.g., THBS1, SERPINE2, and CTGF) were increased in samples with 

aSMAhigh/CD34low immunophenotype. Expression of THBS1 (thrombospondin-1) has been 

shown to correlate with MRSS [33]. SERPINE2/PN-1 is induced by TGF-β in models 

Showalter et al. Page 7

Ann Rheum Dis. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of cardiac fibrosis [34] and induces collagen promoter activity in 3T3 fibroblasts [35]. 

In an open-label study, 15 individuals with dcSSc received fresolimumab, a neutralizing 

antibody against TGF-β, and post-treatment (vs. baseline) dermal SERPINE2 and CTGF 

expression decreased and MRSS improved [36]. We also identified DEGs involved in 

MEK/ERK signaling: Integrin Subunit Alpha 1 (ITGA1) and Hyaluronan And Proteoglycan 

Link Protein 1 (HAPLN1). Inhibiting MEK/ERK pathway in vitro, reduces fibroblast 

contractility, suggesting that the MEK/ERK pathway is dysregulated in SSc fibroblasts 

[37]. Nazari et al. described an inverse staining pattern between CD34 and two other 

fibroblast markers: podoplanin and CD90/Thy1 [9]. We similarly observed significantly 

decreased expression of CD90/Thy1 in CD34 high vs. low samples. Together these studies 

suggest fibroblasts can be polarized towards an inflammatory fibroblast/myofibroblast state 

in the context of scleroderma-related inflammation. Indeed, this transition can be induced 

in vitro in response to tumor necrosis factor, IL-1β, or acute skin injury [9]. Our data 

add to the growing literature implicating inflammatory fibroblasts in SSc by showing that 

inflammatory fibroblast polarization can be reversed as scleroderma improves clinically.

Our data also suggest that gene expression profiles might be useful for identifying patients 

more likely to improve, as demonstrated by higher baseline expression of aSMA/CD34 

polarization genes in improvers vs. non-improvers. Lofgren et al. developed an SSc-specific 

415-gene expression signature and defined a SSc skin severity score (4S) based upon these 

genes [38]. The study results showed that the 4S score correlated with MRSS, and the 

4S score at 12-months predicted 24-month MRSS. The aSMA/CD34 polarization genes 

identified herein includes eight overlapping genes with the 4S gene expression signature: 

CHST11, FPR1, GSN, HAPLN1, LUM, PRSS23, THY1, and TNFSF4. Our results may 

help to refine the 415-gene signature and improve the ability for gene expression to 

function as an outcome measure and predictive tool. By synchronizing histology with 

gene expression and clinical data, we also suggest that fibroblast polarization is the likely 

foundation of this gene expression signature.

Study strengths include dermatopathologist collaboration and use of a histology-centered 

approach to gene expression analysis to better understand disease heterogeneity and clinical 

improvement. We also acknowledge study limitations. Data was retrospectively analyzed 

from single-center trials for early, dcSSc with a high proportion of RNA polymerase III 

autoantibody positivity. This limits generalizability. Also, while there was no statistically 

significant batch bias, minor batch effects could still exist and potentially influence results 

of downstream analyses. The majority (18 of 26) of individuals were classified as 52-week 

improvers. As a result, our analysis of non-improvers was likely underpowered and findings 

regarding these individuals can only be considered descriptive. We used the provisional 

classification of CRISS ≥0.6 to distinguish clinical improvers vs. non-improvers; however, 

CRISS does not allow us to describe histologic and gene expression features of clinical 

stability versus worsening, and this cutoff may evolve over time as clinical trials aggregate 

data. Additionally, it is not possible to know the precise cell types that express each 

inflammatory gene identified. Future approaches using single-cell RNA sequencing are 

needed to better understand the cellular sources of these genes.
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In conclusion, histologic features reflect disease severity, while dually enhancing our 

understanding of fibroblasts as contributors to SSc disease heterogeneity and behavior over 

time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Messages:

What is known about this subject?

• Systemic sclerosis (SSc) histologic features (collagen score, alpha-smooth 

muscle actin (aSMA), and biopsy weight) have been shown to correlate with 

the modified Rodnan skin score (MRSS).

What does this study add?

• CD34 staining decreases with worsening clinical severity and subsequently 

increases with clinical improvement. Conversely, alpha-smooth muscle actin 

(aSMA) staining increases with worsening clinical severity and subsequently 

decreases with clinical improvement.

• Fibroblast polarization, according to aSMA and CD34 staining intensity, can 

be used to distinguish between scleroderma gene expression subsets.

• We identify a robust fibroblast polarization gene expression signature that 

decreases over time in those with clinical improvement, but not in those who 

do not improve.

How might this impact clinical practice or future developments?

• Dermal fibroblast polarization between aSMA and CD34 may be used to 

measure clinical improvement among individuals with diffuse cutaneous SSc.
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Figure 1. Clinical and histologic correlates of the Combined Response Index in Systemic 
Sclerosis (CRISS) ≥ 0.6 (N=18).
Among 18 individuals with diffuse cutaneous systemic sclerosis with 52-week CRISS ≥ 

0.6, (A) clinical and (B) histologic changes in paired baseline and 52-week samples are 

demonstrated. Boxplots have whiskers from minimum to maximum values, a horizontal line 

at median value, and box edges at lower (Q1) and upper quartiles (Q3). P-values represent 

results of Wilcoxon signed-rank test. ****indicates p≤0.0001, ***p≤0.001, **p≤0.01, 

*p≤0.05. Adjusting for multiple comparisons, local MRSS, total MRSS, physician global 

assessment, patient global assessment, global histologic severity and CD34 remain 

statistically significant.
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Figure 2. Clinical and histologic correlates of three gene expression subsets among 26 individuals 
with diffuse cutaneous systemic sclerosis.
A. Clinical features of samples assigned to each gene expression subset (N = normal-like, 

FP = fibroproliferative, I = inflammatory). Box displays 52-week Combined Response Index 

in Systemic Sclerosis (CRISS), stratified by baseline and 52-week gene expression subset 

for 24 individuals with paired biopsy samples. Boxplots have whiskers from minimum 

to maximum values, a horizontal line at median value, and box edges at lower (Q1) and 

upper quartiles (Q3). B. Histologic features of samples assigned to each gene expression 

subset. C. Support vector machine learning was performed using gene expression subset as 

classifiers and the seven histology feature scores (global severity, aSMA, CD34, collagen 

density, infiltrate, follicle count, and thickness) as inputs. For continuous variables (i.e., 

thickness), quantiles were generated. Area under the curve (AUC) of the receiver operating 

characteristic curves assessed algorithm performance and are shown in the lower right 

legend. The p-values for the AUC for normal-like, inflammatory, and fibroproliferative 
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subsets are 0.02, 0.003, and 0.58, respectively. D. Support vector mean absolute weights 

for each binarized histology score from „w-vector‟ model identified histologic features most 

predictive of subset assignment. P-values represent results of Mann-Whitney U-test, adjusted 

for multiple comparisons using Bonferroni correction. ***indicates p≤0.001, **p≤0.01, 

*p≤0.05.
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Figure 3. Gene expression according to fibroblast polarization.
A. aSMA and CD34 scores with corresponding gene expression subset assignments for 

N=58 samples. aSMA scores (red vertical lines) were sorted in descending order and 

associated CD34 scores (blue vertical lines) were visualized for each patient sample. 

The horizonal bar below depicts each sample‟s gene expression subset assignment. B. 

Upper panel: Three sample gating strategies according to aSMA and CD34 staining. 

aSMAhigh vs. aSMAlow (N=58 samples), CD34high vs. CD34low (N=58 samples), and 

aSMAlow/CD34high vs. aSMAhigh/CD34low (N=40 samples). Lower panel: Volcano plots of 

significantly differentially expressed genes according to aSMA and CD34 scores. Significant 

differentially expressed genes are highlighted in green and quantified in top right corner. The 

threshold for significance (horizonal red line) was 0.000003, determined using Bonferroni 
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correction for multiple comparisons of 16645 genes evaluated. C. Unsupervised hierarchical 

clustering using single linkage method and Euclidean distance metric of 47 aSMA/CD34 

polarization genes identified in analysis outlined in B. Top horizontal bar indicates local 

MRSS for each skin biopsy sample. Bottom horizontal bars indicate gene expression subset, 

aSMA score (red), and CD34 score (blue) for each sample.
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Figure 4. Change in 47 aSMA/CD34 polarization genes from baseline to 52 weeks among 
individuals with and without 52-week clinical improvement.
A. Volcano plot of 47 aSMA/CD34 polarization genes (log2 fold change of baseline 

vs. 52-weeks) in 18 individuals with diffuse cutaneous systemic sclerosis who were 

classified as clinical improvers (CRISS ≥0.6; N=36 samples), upper panel, or 6 individuals 

classified as non-improvers (CRISS <0.6; N=12 samples), lower panel. The threshold 

for significance (horizontal red line) was 0.001, determined using Bonferroni correction 

for multiple comparisons of 47 aSMA/CD34 polarization genes evaluated. Significant 

differently expressed genes are highlighted in green and quantified in top corner. B. Average 
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expression of 47 aSMA/CD34 polarization genes at baseline and 52-weeks by clinical 

improvement status. C. Hierarchical clustering using single linkage method and Euclidean 

distance metric, supervised by either baseline or 52-weeks, of 30 significant differentially 

expressed genes identified in A in improvers and non-improvers.
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Figure 5. Model integrating analysis of clinical, histologic and gene expression features of clinical 
improvement.
A. Baseline (left) and 52-week (right) total and local modified Rodnan skin score (MRSS) 

among 18 individuals with diffuse cutaneous systemic sclerosis (SSc) who experienced 

52-week clinical improvement, defined by the Combined Response Index in SSc (CRISS) 

≥0.6. Baseline median total MRSS is 25 and local MRSS is 2; 52-week median total 

MRSS is 14 and local MRSS is 1. B. Representative fibroblast stains (magnification 40X) 

at baseline (aSMA high and CD34 low) and 52-weeks (aSMA low and CD34 high) in 

an individual who experienced clinical improvement. C. Gene expression heatmap of 30 
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significant aSMA/CD34 polarization genes differentially expressed from baseline to 52 

weeks (N=18 skin samples) from individuals who experienced clinical improvement from 

baseline to 52 weeks. D. Model proposing that fibroblast polarization is a hallmark of 

clinical severity in SSc. ECM=extracellular matrix.
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Table 1.

Baseline characteristics of study cohort

Patient Characteristics Total Cohort (N=26)

Age, mean (SD) 50.7 (13.6)

Disease duration* (years), (median, IQR) 0.8 [0.6, 1.2]

Sex, female, n (%) 20 (77%)

Race, n (%)

 White 19 (73%)

 Black 5 (19%)

 Asian 2 (8%)

SSc-specific autoantibodies, positive, n (%)

 Anti-topoisomerase I (Scl-70) 6 (23%)

 Anti-centromere 2 (8%)

 Anti-RNA polymerase III 15 (58%)

ILD present, n (%) 8 (31%)

FVC %-predicted, mean (SD) 86 (16)

DLCO %-predicted, mean (SD) 79 (17)

History of renal crisis, n (%) 2 (8%)

MRSS, total, median (IQR) 25 [22, 31]

MRSS, forearm (local), mean (SD) 2 (0.75)

Physician Global Assessment (0–10), median (IQR) 5.8 [5.0, 6.8]

Patient Global Assessment (0–10), median (IQR) 2.9 [1.1, 4.7]

HAQ-DI, mean (SD) 0.85 (0.59)

*
Time since first non-Raynaud’s disease symptom. SSc=systemic sclerosis; ILD=interstitial lung disease; FVC=forced vital capacity; 

DLCO=diffusing capacity for carbon monoxide in the lungs; MRSS=modified Rodnan skin score; HAQ-DI=Health Assessment Questionnaire 
Disability Index; CRISS=Combined Response Index in Systemic Sclerosis; IQR=interquartile range.
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Table 2.

Histologic features underlying local (biopsy-site) modified Rodnan skin scores for 26 individuals with diffuse 

cutaneous systemic sclerosis contributing 58 skin biopsy samples

Histologic Feature Local MRSS = 0
(N=3)

Local MRSS = 1
(N=23)

Local MRSS = 2
(N=17)

Local MRSS = 3
(N=15)

Global 0.5 [0, 2.5] 1.5 [0.5, 2.5] 2 [2, 2.5] 2 [2, 3]

aSMA 0 [0, 1] 0.5 [0, 1.5] 1 [0, 2] 2 [1, 2]

CD34 3 [1.5, 3] 2 [1, 3] 1 [1, 2] 1 [0, 1]

Collagen 0 [0, 2.5] 1 [0.5, 2] 2 [1.5, 2.5] 2.5 [2, 3]

Infiltrate 0.5 [0.5, 1] 0.5 [0, 1] 0.5 [0.5, 1] 0.5 [0.5, 1]

Follicles 2 [2, 3] 1 [0, 2] 0 [0, 1] 0 [0, 1]

Thickness 1.9 [1.3, 2] 2.6 [2.1, 3.0] 2.4 [2.1, 2.7] 2.8 [2.2, 3.0]

MRSS=modified Rodnan skin score; aSMA=alpha-smooth muscle actin. Thickness is measured in micrometers from epidermis to subcutis. 
Median [interquartile range] is reported.
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Table 3.

Correlation of 52-week histology change
‡
 with CRISS and change in clinical findings among 24 individuals 

with diffuse cutaneous systemic sclerosis

Histology CRISS Total MRSS Physician Global Patient Global HAQ-DI FVC

Global −0.52* 0.43 * 0.11 0.07 0.27 −0.31

aSMA −0.44* 0.46 * 0.20 0.30 0.14 −0.02

CD34 0.53 * −0.30 −0.42* −0.46* −0.51* 0.35

Collagen −0.44* 0.32 0.09 0.22 0.12 −0.25

Infiltrate −0.09 0.11 0.04 0.14 0.08 −0.16

Follicles −0.09 0.23 0.26 0.10 −0.21 0.39

Thickness −0.20 0.25 0.33 0.41 * 0.13 −0.10

*
Denotes significant p-value <0.05. Spearman correlation coefficients reported.

‡
Histology change categorized as decreased, unchanged, or increased score from baseline to 52-weeks. CRISS=Combined Response Index in 

Systemic Sclerosis; MRSS=modified Rodnan skin score; HAQ-DI=Health Assessment Questionnaire Disability Index; FVC=%-predicted force 
vital capacity; aSMA=alpha-smooth muscle actin.
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