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ABSTRACT: Polycyclic aromatic hydrocarbons (PAHs) are among
the most toxic and bioavailable components found in petroleum and
represent a high risk to aquatic organisms. The aryl hydrocarbon
receptor (Ahr) is a ligand-activated transcription factor that mediates
the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other
planar aromatic hydrocarbons, including certain PAHs. Ahr acts as a
xenosensor and modulates the transcription of biotransformation
genes in vertebrates, such as cytochrome P450 1A (cyp1a). Atlantic
cod (Gadus morhua) possesses two Ahr proteins, Ahr1a and Ahr2a,
which diverge in their primary structure, tissue-specific expression,
ligand affinities, and transactivation profiles. Here, a luciferase reporter
gene assay was used to assess the sensitivity of the Atlantic cod Ahrs to
31 polycyclic aromatic compounds (PACs), including two- to five-ring
native PAHs, a sulfur-containing heterocyclic PAC, as well as several methylated, methoxylated, and hydroxylated congeners.
Notably, most parent compounds, including naphthalene, phenanthrene, and partly, chrysene, did not act as agonists for the Ahrs,
while hydroxylated and/or alkylated versions of these PAHs were potent agonists. Importantly, the greater potencies of substituted
PAH derivatives and their ubiquitous occurrence in nature emphasize that more knowledge on the toxicity of these environmentally
and toxicologically relevant compounds is imperative.
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■ INTRODUCTION

Polycyclic aromatic compounds (PACs) are a diverse group of
chemicals that contain aromatic rings organized in linear,
angular, or clustered structures. PACs include polycyclic
aromatic hydrocarbons (PAHs) and also nitrogen-, oxygen-,
or sulfur-containing heterocyclic aromatic compounds (NSO-
PACs), as well as compounds with heteroatoms containing
functional groups (such as quinones, nitro-PAHs, and hydroxy-
PAHs).1−3 PAHs originating from fossil fuels (petrogenic) and
incomplete combustion of organic matter (pyrogenic) are
frequently present in aquatic environments.4 Petrogenic PAHs
often originate from manmade sources like discharges of
industrial and urban effluents, shipping, offshore oil drilling, oil
refineries, and accidental oil spills.5,6 Historically, pyrogenic
PAHs have originated from wood treatment facilities, where
creosote was used.7

In general, PACs have low water solubility and are mainly
found associated with suspended particulate matter in water
and do eventually accumulate in sediments.4 However, some
PAHs (with Kow > 6) tend to bioaccumulate in fish.
Nevertheless, these PAHs have relatively short half-lives due

to efficient metabolism and excretion and thus do not
biomagnify.8 In vertebrates, such as fish, birds, and mammals,
hepatic cytochrome P450 monooxygenase enzyme systems are
mostly responsible for this rapid metabolism. Due to the
carcinogenic and mutagenic properties of PAH metabolites,
PAHs can cause adverse effects in aquatic organisms and
potentially to humans through fish and shellfish consump-
tion.9−15 For these reasons, they have been regarded as high
priority compounds for environmental pollution monitoring,
and a priority list of 16 PAHs (PAH-16) was made by the US
Environmental Protection Agency (EPA).16 Today, PAH-16
are routinely analyzed in environmental monitoring programs
and risk assessments of PAH-polluted sites.
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In addition to the unsubstituted parent compounds,
substituted PAHs, such as alkylated PAH derivatives, can be
found in the environment, and these have been reported to be
more toxic than their unsubstituted congeners.5,17 Substituted
PAHs have been shown to contribute to the toxicity of both
pyrolytic and petrolytic PAH mixtures in the early life stages of
rainbow trout (Oncorhynchus mykiss), Japanese medaka
(Oryzias latipes), and zebrafish (Danio rerio).18−22 Hydrox-
ylation of alkylated phenanthrenes has also been shown to
enhance early life stage toxicity in Japanese medaka,23 further
emphasizing the importance of considering the contribution of
substituted PAHs in mediating toxicity in fishes and other
aquatic organisms. Furthermore, as most PAHs are subject to
metabolic activation by cytochrome P450s and epoxide
hydrolases, epoxide and diol metabolites are formed in vivo
in vertebrates.5,24,25 The major PAH oxidation products
formed in fish are trans-dihydrodiols, including (1R,2R)-1,2-
dihydrochrysene-1,2-diol, (1R,2R)-1,2-dihydrophenantrene-
1,2-diol, and (1R,2R)-1,2-dihydronaphthalene-1,2-diol, which
are some of the trans-dihydrodiols derived from chrysene,
phenanthrene, and naphthalene, respectively.11,26,27 In addition
to being formed during biotransformation, hydroxylated PAHs
may also be produced during incomplete combustion of, e.g.,
fire wood.28 Notably, the toxic potential of alkylated and
oxygenated PACs has received less attention compared to the
16 PAHs prioritized for environmental monitoring.1 As the
PAH-16 only encompass parent PAHs, the importance of
expanding our knowledge of the toxicities of heterocycles and
alkyl derivatives and include such compounds in a more
extensive panel of PACs for environmental monitoring has
been proposed.29

The toxicity of PACs has, to a large extent, been attributed
to the activation of the aryl hydrocarbon receptor (AHR) and
the subsequent alteration of its target gene expression.30−33

AHR is a ligand-activated transcription factor and a member of
the basic helix−loop−helix PER-ARNT-SIM (bHLH-PAS)
superfamily, which has been widely studied because of its
important role in mediating cellular responses to halogenated
aromatic hydrocarbons. 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) has been established as the most potent exogenous
agonist for various AHR orthologs. AHR-dependent toxicities
are both species- and tissue-specific and can cause a wide
spectrum of effects, including teratogenicity, immuno-,
hepato-, cardio- and dermal toxicity, modulation of cell
growth, proliferation and differentiation, endocrine disruption,
and tumor promotion.33 Accordingly, several adverse outcome
pathways involving AHR and/or activation of AHR as the
molecular initiating event have been described and are
currently being developed (e.g., AOP21 and AOP150,
https://aopwiki.org/aops/). To abide to different nomencla-
ture rules for mammalian and fish proteins,34,35 abbreviated
protein names have two different formats in scientific
publications. Thus, AHR or Ahr is used when referring to
mammalian or fish aryl hydrocarbon receptor orthologs,
respectively. Ligand-activated AHR heterodimerizes with the
aryl hydrocarbon receptor nuclear translocator (ARNT) and
specifically binds to xenobiotic response elements (XREs)
upstream of the AHR target genes, modulating the tran-
scription of a battery of genes encoding enzymes involved in
the biotransformation of xenobiotics, including CYP1A.
Atlantic cod is a culturally, ecologically, and economically

important teleost species residing in the Barents Sea, the North
Atlantic Ocean, and the Baltic Sea.36 Recently, two Ahr

proteins were identified and functionally characterized in
Atlantic cod, i.e., Ahr1a and Ahr2a. The Ahr paralogs differ in
both tissue-specific and spatiotemporal gene expression,
ligand-binding affinities, and transactivation activities, suggest-
ing that Ahr1a and Ahr2a have acquired different functional
roles in Atlantic cod through a process of subfunction
partitioning.37,38 Moreover, current data suggests that Ahr2a
is the main subtype involved in mediating responses to
xenobiotics, while Ahr1a appears to be important in the
development of the eye in cod embryos and larvae. However,
the high sensitivity of Ahr1a to different ligands, including
benzo[a]pyrene, suggests that Ahr1a activity can be modulated
by pollutants.
As the AHR/Ahr pathway plays a central role in PAH-

mediated toxicity, it is necessary to obtain knowledge of the
sensitivities of Atlantic cod Ahrs to the wide array of PACs
present in the environment. In this study, a total of 31
compounds were tested for their ability to transactivate the
Atlantic cod Ahr1a and Ahr2a in vitro, and their sensitivities
and efficacies were compared. Among the 31 PACs, seven were
unsubstituted and represented congeners previously detected
in Atlantic cod liver and bile, as well as PACs that are major
constituents of crude oil, such as naphthalene, phenanthrene,
fluorene, and chrysene.5,39 Moreover, substituted versions of
chrysene and phenanthrene are abundant constituents of
petrogenic substances present in marine environments, and an
extensive library of alkylated phenanthrenes and substituted
chrysenes, including dimethylated phenanthrenes as well as
methylated, methoxylated, and hydroxylated chrysene con-
geners, has therefore been assessed in this study. Finally, trans-
diols of naphthalene and phenanthrene, which are considered
the most prominent biotransformation products of these
compounds commonly found in fish bile, are included in these
analyses, and to our knowledge, this is the first time these
metabolites have been evaluated as agonists for Ahr.40

Importantly, although in vitro Ahr activation not necessarily
correlates to adverse outcomes in organisms, reporter gene
assays as applied in this study may still expand our
understanding of PAC-mediated toxicities. Such data could
also prove important for future risk assessment and further
reveal functional differences between receptors and receptor
subtypes and potentially divergences in species susceptibility to
PAC exposure.5,39

■ MATERIALS AND METHODS

Chemicals. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
was purchased from LGC Standards (Teddington, U.K.).
The PAHs chrysene (CHR), 5-methylchrysene (5-MC),
phenanthrene (PHE), naphthalene (NAP), pyrene (PYR),
benzo[a]pyrene (BAP), fluorene (FLU), (1R,2R)-1,2-dihy-
dronaphthalene-1,2-diol (R,R-1,2-DHN), and dibenzothio-
phene (DBT) were purchased from Merck KGaA (Darmstadt,
Germany). The synthesis of (1R,2R)-1,2-dihydrophenan-
threne-1,2-diol (R,R-1,2-DHP),11 1-,2-,3-,4-methoxychrysene
(1-,2-,3-,4-MOC) and chrysene-1-ol,-2-ol,-3-ol,-4-ol (1-,2-,3-,4-
COH),41 1-,2-,3-,4-,6-methylchrysene (1-,2-,3-,4-,6-MC),42 3-
ethylphenanthrene (3-EP), and 3-propylphenanthrene (3-
PP)43 is described elsewhere. 1,7-, 2,3-, and 2,7-dimethylphe-
nanthrene (1,7-, 2,3-, and 2,7-DMP) were prepared as
described by Böhme et al.,44 and the preparation of 2,3-
dimethoxychrysene (2,3-DMOC) is described in the Support-
ing Information.
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Table 1. In Vitro Transactivation of Atlantic Cod Aryl Hydrocarbon Receptors (Ahrs), Ahr1a and Ahr2a, in a Luciferase-Based
Ligand Activation Assaya
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Table 1. continued
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Transfection, Exposure, Luciferase Reporter Gene
Assay, and Viability Assay. COS-7 simian kidney cells were
seeded onto 96 well plates (10 000 cells/well) in Dulbecco’s
modified Eagle’s medium (DMEM) with phenol red,
supplemented with 10% fetal bovine serum (FBS), 4 mM L-
glutamate, 1 mM sodium pyruvate, and 100 U/mL penicillin−
streptomycin (Merck KGaA, Darmstadt, Germany), and
cultivated at 37 °C with 5% CO2 for 24 h. Cells were
transiently co-transfected with a eukaryotic expression plasmid

(pcDNA3.1/Zeo(+), 31 ng/well), pcDNA3.1/Zeo(+)-based
plasmids encoding gmAhr1a or gmAhr2a (3 ng/well),
gmArnt1 (6 ng/well),37 a luciferase reporter plasmid
containing four DREs (pGudLuc6.1, 30 ng/well), and a β-
galactosidase normalization plasmid (pCMV-βGAL, 30 ng/
well),45,46 using a Mirus TransIT LT-1 transfection reagent
according to the recommendations of the supplier. COS-7 cells
were seeded and cultivated in DMEM (4500 mg/L glucose),
supplemented with 10% FBS, 1 mM sodium pyruvate, and 4

Table 1. continued

aCells expressing either Ahr1a or Ahr2a were exposed to single polycyclic aromatic compounds and a control agonist (TCDD). Response curves
were fitted by nonlinear regression using GraphPad Prism 7.0. Efficacies produced by the tested compounds are expressed in percent of the
maximum efficacy determined for TCDD (relative Emax), while potencies were calculated as half-maximal effective concentration (EC50) and
relative potencies 25 (REP25). For response curves that did not reach a plateau for the range of selected concentrations, the efficacy was given as the
relative response at the highest tested concentration, and for these responses, the EC50 was not calculated (indicated with *). Exposures that did
not produce agonistic responses significantly different from solvent-exposed cells have been denoted “None”.

Figure 1. Calculated efficacies for the in vitro transactivation of Atlantic cod aryl hydrocarbon receptors (Ahr1a (blue) and Ahr2a (red)) by PACs
as indicated. Responses produced by PACs were compared to the maximum effect (Emax) mediated by TCDD. Emax was determined from data
originating from three or more individual experiments with three technical replicates using three-parameter nonlinear regression (GraphPad Prism,
v7.0) and is presented as means with 95% confidence intervals.
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mM L-glutamine. In the exposure medium, FBS was
substituted with 10% charcoal-stripped FBS (VWR Interna-
tional, Radnor). To create the exposure media with the highest
test concentration, compounds solved in dimethyl sulfoxide
(DMSO) were diluted 1:200 in exposure medium, resulting in
exposure media with 1× test compound and 0.5% DMSO. The
highest concentration exposure media were serially diluted five
times (1:2 for the first dilution, then 1:5) in exposure medium
supplemented with 0.5% DMSO. Following transfection, cells
were incubated in exposure media containing PACs or solvent
control (0.5% DMSO) for 24 h. Reporter gene assays were
repeated at least three times and with three technical replicates
per exposure. TCDD (30 pM to 100 nM) was used as a known
agonist in each experiment. Absorbance and luminescence
measurements were performed on an EnSpire Multimode plate
reader (PerkinElmer, Waltham, MA). While no wavelength
filtering was used to measure firefly luciferase activity by
luminescence, absorbance measurements to quantify β-
galactosidase activity were performed at 420 nm wavelength.
The viability of exposed cells was evaluated using the resazurin
reduction assay as previously described.47,48

Data Analysis and Statistics. Recorded luminescence was
normalized for variation in transfection efficiencies using β-
galactosidase enzyme activity. The difference in normalized
light units measured in lysates from exposed cells to solvent-

exposed cells was calculated and expressed relative to the
maximum response in TCDD-exposed cells. Response curves
were prepared by nonlinear regression analyses in Prism v7 and
used for the determination of half-maximal effective concen-
tration values (EC50) and maximum efficacies (Emax). EC50

values were only determined for compounds that produced a
sigmoidal concentration−response curve. Relative effect
potencies 25 (REP25) were determined by dividing the EC25

of TCDD by the concentration of PAC necessary to produce a
response equal to 25% of the response of TCDD with gmAhrs,
essentially as described by Villeneuve et al. and Lam et al.49,50

The D’Agostino−Pearson (Ahr activation data) or Kolmogor-
ov−Smirnov (viability data) normality tests were used to
confirm the normal distribution of the data. One-way analysis
of variance (ANOVA) and Dunnett′s test were used to
compare responses at different concentrations of compounds
and solvent control mediated via the same Ahr, in addition to
comparing metabolic activity in PAC-exposed cells and cells
exposed to solvent control in the resazurin reduction assay.
Welch′s t-test was used to compare the maximum Ahr-
mediated response and potency (Emax and EC50) between
Ahr1a or Ahr2a produced by the same test compound (Prism
v7).

Figure 2. Calculated potencies for the in vitro transactivation of Atlantic cod aryl hydrocarbon receptors (Ahr1a (blue) and Ahr2a (red)) by PACs
as indicated. Half-maximal effective concentration 50 (EC50) was determined from data from three or more individual experiments with three
technical replicates using three-parameter nonlinear regression (GraphPad Prism, v7.0) and is presented as mean with corresponding 95%
confidence intervals.
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■ RESULTS

In Vitro Transactivation of Atlantic Cod Ahrs.
Luciferase reporter gene assays were used to assess the ability
of 31 PACs to transactivate the Atlantic cod Ahr1a and Ahr2a
in vitro. The test panel consisted of seven unsubstituted two- to
five-ring PACs, including NAP, FLU, PHE, CHR, PYR, BAP,
and the heterocyclic sulfur-containing dibenzothiophene, as
well as 24 methylated, hydroxylated, and methoxylated

derivatives of chrysene, phenanthrene, and naphthalene
(Table 1). The transactivation profiles of the unsubstituted
and substituted PAHs were calculated relative to the Emax
determined for TCDD (Suppporting Figure S1).
Twenty-one and 20 PACs were found to activate Ahr1a and

Ahr2a, respectively (Supporting Tables S1−S5). Eleven PACs
(NAP, FLU, PYR, DBT, PHE, 3-EP, 1,4-, 1,7-, 2,3- 2,7-, and
3,6-DMP) did not activate either Ahr1a or Ahr2a. Receptor
efficacies (Emax) and potencies (EC50 and REP25) are visualized

Figure 3. In vitro transactivation of Atlantic cod aryl hydrocarbon receptors (Ahrs) by unsubstituted and substituted chrysenes. Response curves
were recorded with luciferase-based Ahr1a and Ahr2a ligand activation assays for unsubstituted chrysene, methyl- (A, B) hydroxy- (C, D), and
methoxychrysenes (E, F). Responses are expressed relative to the maximum response induced by TCDD (equals 100%).
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in Figures 1 and 2 and summarized in Table 1. Notably, BAP
and CHR were the only unsubstituted compounds that acted
as Ahr agonists. In accordance with previous data, BAP was an
agonist for both Ahrs,37 while chrysene was shown here to
solely activate Ahr1a (Supporting Figure S2 and Figure 3).
Intriguingly, most of the substituted PACs activated the two
Ahr proteins. Moreover, the hydroxylated or propylated two-
and three-ring PACs, including R,R-1,2-DHN, R,R-1,2-DHP,
and 3-PP, activated both Ahr1a and Ahr2a, in contrast to their
parent compounds (Supporting Figure S3). Furthermore, six
monomethylated chrysenes, four chrysenols, four methoxy-
chrysenes, and 2,3-DMOC also activated the two Ahrs (Figure
3A−F). The substituted chrysenes demonstrated, in general,
higher efficacy and potency in comparison to chrysene-
mediated Ahr1a activation (Figures 1 and 2, Supporting
Tables S2−S4).
BAP and three substituted PACs (i.e., 2-MC, 4-MC, and 1-

COH) produced higher efficacies (superefficacies) than
TCDD with Ahr1a (Table 1, Supporting Figure S2, Supporting
Table S6), while 3-MC, 5-MC, 6-MC, 2-COH, 4-COH, 1-
MOC, and 2-MOC were agonists with efficacies similar to that
of TCDD. In contrast, CHR, 1-MC, 3-COH, 3-MOC, 4-MOC,
and 2,3-DMOC produced lower efficacies than TCDD via
Ahr1a (Supporting Table S6). Similarly, for responses via
Ahr2a, two of the tested compounds (2-MC and 2-MOC)
elicited superefficacies that were 127 and 115% of the TCDD
maximum induction, while five of the tested compounds (3-
MC, 6-MC, 4-COH, 4-MOC, and BAP) produced similar
efficacies (Table 1, Supporting Table S6). Ten PACs (CHR, 1-
MC, 4-MC, 5-MC, 1-COH, 2-COH, 3-COH, 1-MOC, 3-
MOC, and 2,3-DMOC) demonstrated lower efficacies in
comparison to TCDD (Table 1, Supporting Table S6). REP25
values were calculated to express relative potencies of the
PACs to TCDD with the two cod Ahrs, and as expected, none
of the PACs were more potent agonists than TCDD for either
Ahr1a or Ahr2a (Table 1). However, BAP approached TCDD
with a REP25 of 0.97 (TCDD = 1.0) with Ahr2a. With this
subtype, five compounds (2-MC, 3-MC, 2-MOC, 4-MOC, and
BAP) demonstrated REP25 values of 0.17−0.97, whereas with
Ahr1a, only 2-MC and 2-MOC were in the same range (Table
1). In general, REP25 values were comparable among the two
receptors, with the exception of 5-MC, 6-MC, 3-MOC, 4-
MOC, R,R-1,2-DHN, and BAP, which all displayed a 5- to 10-
fold higher REP25 with Ahr2a compared to Ahr1a.
The resazurin reduction assay was used to monitor potential

effects on the metabolic activities in COS-7 cells after PAC
exposure. While the majority of the compounds did not affect
cell viability, a slight reduction in metabolic activities in cells
exposed to the highest concentrations used of 5-MC, 6-MC, 1-
COH, 3-COD, 3-MOC, 4-MOC, and 2,3-DMP was observed
(Supporting Figure S4).

■ DISCUSSION
The cloning of Atlantic cod Ahr1a and Ahr2a was recently
described, along with the activation of these receptors by
several well-known mammalian and teleost AHR/Ahr agonists,
including TCDD, β-naphthoflavone, BAP, FICZ, and PCB-
126.37 In the current study, a selection of 31 PACs, consisting
of 6 unsubstituted, 24 substituted, and 1 heterocyclic PAC, was
assessed for their ability to activate cod Ahra1a and Ahr2a, and
their efficacies and potencies were compared. The recorded
transactivation data revealed that most of the PACs activated
the two Ahrs and that the list of compounds that activated

Ahr1a or Ahr2a was largely overlapping. The only exception
was unsubstituted chrysene, which only activated Ahr1a. Most
importantly, monomethylation, monohydroxylation, and
mono- and dimethoxylation of chrysenes, as well as
hydroxylation of naphthalenes and phenanthrenes, appear to
significantly increase their agonistic potential. In several cases,
including NAP and PHE, the unsubstituted congener did not
act as an Ahr agonist, which is in agreement with previous data
reporting that two- and three-ring unsubstituted PAHs are
generally inactive in fish, avian, and mammalian systems.40,51

Environmental exposures to PAHs most often involve
mixtures rather than single compounds, and dependent on
their sources, the content of substituted and unsubstituted
PAHs varies to a large extent.5 While pyrogenic PAHs usually
are unsubstituted, petrogenic PAHs are largely alkyl-
substituted and parental PAHs only comprise a minor fraction
of such mixtures. Phenanthrene and its derivatives are major
components in crude oil and occur in sediments at high
concentrations.52,53 Both phenanthrene and its alkyl deriva-
tives, such as retene, have been shown to affect early life stages
of fish, while chronic exposures to these compounds have
resulted in deformities, edemas, and embryo mortality in
zebrafish.54,55 While phenanthrene is considered a poor AHR/
Ahr agonist and phenanthrene-mediated toxicities in early life
stages of fish are assumed to be Ahr independent,56−59 it has
been demonstrated in vitro that mono- and dimethylated
phenanthrene are more potent agonists of rat and human AHR
than phenanthrene.60,61 Although examined in a limited
number of teleost species, monomethylated phenanthrenes,
including 1-methylphenanthrene and 4-methylphenanthrene,
appear not to be able to efficiently activate Ahr or induce
Cyp1a activity in fish.62,63 Similarly, none of the five
dimethylated phenanthrenes assessed in this study were able
to activate the two Ahrs, including 3,6-DMP that previously
was shown to activate human AHR.60 The alkylated
phenanthrene structures, 2-ethylphenanthrene and 9-ethyl-
phenanthrene, have previously been characterized as weak
inducers of ethoxyresorufin-O-dealkylase (EROD) activity in
waterborne exposures of juvenile rainbow trout.64 However,
the related 3-ethylphenanthrene compound was not able to
transactivate the Ahrs in the current study. Notably, 3-PP
transactivated both Ahr1a and Ahr2a as a weak agonist,
supporting that some alkylated phenanthrenes can activate the
Ahr-signaling pathway in fish.
CHR and methylchrysenes originate from both pyrogenic

and petrogenic sources, and methylchrysenes can also be
formed from chrysene by bioalkylation.65,66 CHR has
previously been found in mollusks, crustaceans, and fish and
appears to be diluted in the marine food webs.67−69 CHR and
its derivatives have been shown to activate rat and human AHR
in vitro70−73 and to induce Cyp1a activity in desert topminnow
(Poeciliopsis lucida) hepatoma cells,49 and in vivo studies have
indicated that CHR can activate both Ahr1 and Ahr2 in
zebrafish.74 Unsubstituted CHR, in the current study, was
found to act solely as an agonist of Ahr1a. However, each of
the assessed monomethylated chrysenes was found to activate
both Ahr1a and Ahr2a. Furthermore, all of the monomethy-
lated chrysenes that were assessed produced increased
efficacies in comparison to unsubstituted CHR. The high
activities of the methylated chrysenes are in line with previous
studies, where 1-MC and 5-MC have been shown to contribute
significantly to the total TEQ value of PAH-contaminated
environmental samples.66 When expressing the toxic potential
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of CHR and its derivatives relative to the toxicity of BAP (toxic
equivalent factor; TEF), Richter-Brockmann and Achten noted
that 1-MC and 5-MC had an agonistic potential of 10 and 100
times higher than CHR (TEFChr = 0.01, TEF1‑MC = 0.1,
TEF5‑MC = 1.0).66 While our data showed that the six
methylchrysenes were moderate to strong agonists of the Ahrs,
we did not observe an evident correlation between efficacies
and potencies of chrysene and methylated chrysenes and the
previously reported TEF values for these compounds.
However, these discrepancies may be ascribed to species-
specific differences in ligand recognition and binding affinities
between Atlantic cod Ahrs and human AHR. 1−6 MCs have
also previously been demonstrated to activate rat AHR in the
H4IIE-luc reporter gene assay, and REP25 values were
calculated for these compounds.50,73 As REPx values are
based on internal relative comparisons of potency (ECx values)
to that of a reference compound (here, TCDD) with an assay-
specific receptor, comparing REP values across studies and
receptors is problematic. Both assay conditions, reporter
system, and the sensitivity of the species studied will influence
the baseline EC50. The EC50 for rat AHR with TCDD in the
H4IIE-luc reporter assay is, in most cases, reported to be in the
8−18 pM range,75,76 whereas in our assay, we determined a
TCDD EC50 of 1.7 and 6.2 nM with cod Ahr1a and Ahr2a,
respectively, in the same range, as reported by Aranguren-
Abadiá et al.37 Taking this into account, REPs are still useful in
comparing the relative transactivating potency of compounds
across studies, species, and receptors. It is, for example,
interesting to note that with the 1−6 MC series, Machala et al.
found 3-MC to give the highest REP values, followed by 6-
MC, 4-MC, 2-MC, 5-MC, and 1-MC. In our study, with cod
Ahr2a, we found 2-MC to be the most potent, followed by 3-
MC, 5-MC, 1-MC, 4-MC, and 6-MC. The REPs observed for
MCs with cod Ahr2a also covered a larger range (150-fold)
compared to that for rat AHR (40-fold). These differences in
REPs between compounds may point to interesting differences
in the structural features of the ligand-binding pocket of cod
Ahrs versus rat AHR.
Furthermore, we also demonstrated that intermediates

formed in the synthesis of chrysenols, such as mono- and
dimethoxylated chrysene, produced high efficacies and were
potent Atlantic cod Ahr agonists. This is also in accordance
with a previous report, where 2-MOC has been shown to be a
stronger agonist of rat AHR than chrysene.50

Fish have a high capacity to metabolize PAHs,77 and PAH-
mediated activation of Ahr induces the expression of phase 1
and phase 2 biotransformation enzymes important for their
elimination.78 trans-dihydrodiol metabolites formed by CYP-
mediated oxygenation are major hepatic oxidation products of
PAHs and are excreted in the bile of bony fishes.40,79,80 The
most abundant trans-dihydrodiols identified in Atlantic cod
exposed to crude oil are R,R-1,2-DHP and R,R-1,2-DHN that
are derived from phenanthrene and naphthalene, respec-
tively.11,26 Noteworthy, we found that the trans-dihydrodiols of
naphthalene and phenanthrene can act as agonists for the Ahrs,
which was in contrast to their parent compounds that did not
activate either Ahr1a or Ahr2a. To our knowledge, this is the
first time that the biotransformation products of two- and
three-ring compounds have been shown to act as Ahr agonists
in a vertebrate organism. This observation emphasizes the
promiscuity of the Atlantic cod Ahr ligand-binding pockets,
which accommodate the recognition and binding of PAHs
ranging from two- to at least five-ring structures. Intriguingly,

activation of the Ahr-signaling pathway by the nonactive
naphthalene and phenanthrene may thus occur after in vivo
exposure, while their Ahr-activating properties should probably
be ascribed to the trans-dihydrodiol metabolites formed after
CYP-mediated hydroxylation of the two mother compounds.
Chrysenols, such as 1-COH, 4-COH, and 6-COH, are other

examples of PAH metabolites that have been detected in fish.
Chrysene-1-ol was detected in the bile of juvenile turbot
(Scophthalmus maximus) that were exposed to various PAH
mixtures,77 while 4-COH and 6-COH were found to constitute
6−9% of the metabolites detected in liver microsomes
prepared from rainbow trout exposed to CHR.81 Notably, it
has been reported that the exposure of zebrafish embryos to 2-
COH and 6-COH caused circulatory, cardiac, and ocular
effects, in contrast to their parent compound, which did not
induce any toxicities.82 All of the chrysenols assessed in our
study, including 1-COH, 2-COH, 3-COH, and 4-COH, were
stronger agonists of both Ahr subtypes than unsubstituted
chrysene. While it is tempting to explain the observed
differences in toxicity of CHR and chrysenols in zebrafish by
differences in potential to activate Ahr, this is not
straightforward due to the number of possible Ahr-dependent
and Ahr-independent mechanisms that could be involved.74

However, our findings demonstrated that several chrysenol
congeners can act as potent Ahr agonists and may potentially
cause toxic effects in Atlantic cod via activation of the Ahr-
signaling pathway.
Many of the PACs assessed in this study produced different

activation profiles for Ahr1a and Ahr2a. In accordance with our
previous findings for β-naphthoflavone and PCB-126,37 we
found that eight PACs produced the highest efficacies with
Ahr1a, while only 2-MOC and 3-MOC produced the highest
efficacies with Ahr2a. However, when comparing potencies,
Ahr2a displayed higher REP25 for several PACs compared to
Ahr1a. The observed discrepancies in activation profiles may
be ascribed to the relatively low conservation between the two
Ahrs. While 31% of the amino acids overall have been
conserved between Ahr1a and Ahr2a, 61% have been
conserved in the ligand-binding domain (LBD). Interestingly,
their TCDD activation profiles also differ, even though the
amino acids known to bind and coordinate TCDD are
conserved between the two Ahrs,37 suggesting that the
observed differences must be attributed to features located
elsewhere in these proteins. In a similar vein, the observed
differences in affinities to TCDD of Ahr variants from different
populations of Atlantic tomcod (Microgadus tomcod) from
Hudson River (NY, USA) could not be ascribed to differences
in the LBD but rather to other structural differences that affect
the stability of the protein and result in lesser affinity of
TCDD.83

Molecular mechanisms and physiological effects of PAH
exposure have been shown to differ among individual PAH/
PAC congeners. Hence, three modes of action have previously
been described in teleost species, including Ahr-independent,
Ahr-dependent, and Cyp1a metabolism-dependent.55,74,84,85

While adverse effects on Atlantic cod have been demonstrated
after crude oil and produced water exposure,86−88 limited
information exists for this species regarding the toxicity
mediated by the individual chemical constituents, such as
unsubstituted and substituted PACs. However, it was shown in
juvenile Atlantic haddock (Melanogrammus aeglefinus), which is
another Gadiform species, that among 12 injected unsub-
stituted heavy PAHs, including BAP, benz[a]anthracene,
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dibenz[a,h,]anthracene, and CHR, produced high levels of
DNA adducts in the liver.89 Furthermore, it has also been
shown that intramuscular injections of NAP, CHR, and their
corresponding dihydrodiol metabolites R,R-1,2-DHN and
(1R,2R)-1,2-dihydrochrysene-1,2-diol result in the formation
of PAH-protein adducts in the Atlantic cod plasma proteome
and possibly a triggered immune response.90 Importantly, it
was recently demonstrated that BAP activated the Ahr-
signaling pathway in early life stages of Atlantic cod.38 Ahr2a
expression was induced in the cardiovascular system in both
cod embryos and larvae, indicating cardiotoxicity responses in
an Ahr-dependent mode of action. This is similar to
observations of BAP-mediated activation of Ahr2 in zebrafish
embryos, which produced cardiotoxic effects via induction of
cyp1a expression.91 Thus, as several PACs are demonstrated in
this study to act as Ahr2a agonists with potencies and efficacies
in the same range as BAP, including 2-MC, 3-MC, 2-MOC,
and 4-MOC, it is not unlikely that exposure to such PAHs
during early life stages of cod produces cardiotoxic effects. In
contrast to ahr2, ahr1a transcripts were solely detected in the
eye of cod embryos and larvae, and its expression was
unaffected by BAP exposure, supporting that Ahr2a is the
major subtype involved in mediating PAH-induced responses
during early life stages.38 Thus, although Ahr1a was shown
here to be sensitive toward a wide array of substituted and
unsubstituted PACs in vitro, it appears that Ahr1a does not
have a prominent role in producing adverse effects of PAH
exposure during early development. However, it cannot be
excluded that activation of Ahr1a may produce adverse effects
in Atlantic cod via modulation of yet undescribed Ahr1a-
regulated pathways.
In conclusion, we have shown that substituted PAHs,

including methylated, mono- and dihydroxylated and methoxy-
lated PACs, are strong agonists of the Atlantic cod Ahrs. The
substituted PAHs are also more potent and produce higher
efficacies in comparison to their unsubstituted parent
compounds. Ahr1a and Ahr2a were mostly activated by the
same PACs, but Ahr2a was, in general, the most sensitive
receptor, displaying the highest potencies of the compounds.
Importantly, our results strongly support that substituted PACs
may contribute significantly to the biological effects of PAHs in
the environment, and their contribution should be considered
when assessing the risk and hazards of PACs. Usually,
assessments of the risk and hazard, as well as monitoring of
PACs, are based solely on the quantification of the 16 priority
PAHs. However, as substituted PACs may contribute
significantly to Ahr-mediated toxicity of environmental
samples, it becomes apparent that measurement of the 16
priority PAHs is insufficient for predicting PAH-induced
toxicity in aquatic environments. Complementing chemical
analyses with reporter gene assays as used in this study could
significantly aid the risk assessment of environmental samples.
Such assays can integrate individual potencies and mixture
interactions of compounds that act via a common mode of
action. As toxicological data on substituted and heterocyclic
PACs is still limited, further studies are necessary to elucidate
their mode of action and their joint potencies in mixtures.
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