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Abstract 

Background:  Temporomandibular disorders (TMD) are a group of painful and debilitating disorders, involving the 
masticatory muscles and/or the temporomandibular joint (TMJ). Chronic TMD pain can be associated with genetic 
changes in the key muscle development genes.

Objective:  To evaluate the association between polymorphisms in the PAX7 (paired box 7) gene and masticatory 
myalgia in patients with temporomandibular disorders (TMD).

Materials and methods:  This is a case-control study. Patients with TMD were divided into two groups: (a) presence 
of muscular TMD (n = 122) and (b) absence of muscular TMD (n = 49). Genomic DNA was obtained from saliva sam‑
ples from all participants to allow for genotyping single nucleotide polymorphisms in PAX7 (rs766325 and rs6659735). 
Over-representation of alleles was tested using chi-square or Fisher’s exact tests. Values of p < 0.05 were considered to 
be statistically significant.

Results:  Individuals without muscular TMD were less likely to have the PAX7 rs6659735 GG genotype (p = 0.03). No 
associations were found for PAX7 rs766325.

Conclusions:  Alterations in PAX7 may influence muscular pathophysiology and individuals with TMD and the 
rs6659735 homozygous genotype (GG) are seemingly associated with muscular involvement of the disorder. No asso‑
ciations were found in the region rs766325.
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Background
Temporomandibular disorders (TMD) are a group of 
painful and debilitating disorders, involving the mas-
ticatory muscles and/or the temporomandibular joint 
(TMJ). Among the pain-suffering TMD patients, 50 to 
70% present the diagnosis of masticatory myalgia [1], 

a heterogeneous pathologic condition established as a 
result of phenotypes, derived from a genetic mosaic, that 
interact with environmental factors [2].

Oral parafunction habits, such as clenching teeth dur-
ing waking time, are the major clinical orofacial charac-
teristics that predict TMD incidence [3]. During waking 
hours, the sustained tonic activity of the masseter muscle 
was significantly higher in the group of patients with oro-
facial pain history [4]. Experimental maximal voluntary 
clenching of the masseter was reported to induce nearly a 
five-fold reduction of oxygen saturation in the group with 
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the high parafunction as compared to the low parafunc-
tion group, indicating that apparently healthy individuals 
at risk for TMD can have abnormalities in the masseter 
oxygenation [5]. Structural abnormalities in the mastica-
tory muscles may be also involved, as reported in a study 
of two independent cohorts that compared chronic mus-
cular TMD patients to controls [6]. Repair and regen-
eration of the attained tissues may be thus required, 
involving mobilization and activation of the resident 
muscle progenitor cells.

Recent studies on muscle functions have proposed 
that maintenance of the TMD chronic pain can also 
depend upon the patient’s genetic profile and the pres-
ence of locally produced or circulating tissue factors, 
which may result in chronic inflammation of muscles [7]. 
There is direct evidence for increased levels of the pro-
inflammatory cytokines in the skeletal muscle perform-
ing low force tasks, suggesting that chronic repetitive 
activities could initiate a chronic inflammatory response 
in the working muscles [8]. While acute inflammation 
can result in muscle edema, a chronic inflammation can 
result in muscle destruction [9]. Hypo-oxygenation of 
muscles suffering chronic inflammation may increase tis-
sue damage, predisposing the muscle to further injury, 
thus minimizing the probability of adequate repair [10].

While many cells are involved in chronic inflammation, 
macrophages, through their association with skeletal 
muscle stem cell, satellite cell (SC) activation, may be one 
of the major players in the control of injury and impaired 
muscle regeneration. An imbalance of M1 and M2 mac-
rophages may lead to impaired SC activation in skeletal 
muscle regeneration after damage. Therefore, strategies 
reverting chronic inflammation into a pro-regenerative 
reaction appear to be appropriate. Recent studies suggest 
that muscular manual acupuncture produces a pheno-
typic switch in macrophages and increases IL-10 concen-
trations in muscle, reducing pain and inflammation [11]. 
Conversely, the manual massage facilitates membrane 
permeability, which can be associated with an increase in 
satellite cell number [12].

Satellite cells (SC), the stem cells of skeletal muscle, are 
required for skeletal muscle recovery. Their functionality 
is modulated by intrinsic signaling pathways as well as by 
their interactions with the stem cell niche [13]. Following 
muscle injury, SC are activated, proliferate extensively, 
and ultimately differentiate into myoblasts, fusing with 
existing fibers or other SC to form new myofibers [14]. In 
healthy individuals, expansion of the SC pool was identi-
fied in the cervical muscles after heavy resistance train-
ing [15], as well as low-force muscle loads [16]. Repetitive 
muscle overloading may also result in increased inflam-
matory and myogenic activity, and painful muscle fibers 
may require higher numbers of SC than muscle fibers not 

exposed to this recruitment. Craniofacial muscles have 
a higher proportion of SC as compared to other skeletal 
muscles, which may increase their capacity for regenera-
tion in response to tissue damage under normal condi-
tions [17].

At the lesion site, growth factors are required for acti-
vating SC. Expression of the transcription factor PAX7 
(paired box 7) is fundamental to the control of muscle cell 
differentiation [18, 19]. Quiescent resident SC expressing 
PAX7 can be induced to migrate into the lesion site, then 
becoming proliferative and expressing, in addition to 
PAX7, the myogenic regulatory factor, MyoD (myogenic 
differentiation). The final differentiation of these SC into 
myoblasts is marked by reduction of PAX7 that is sub-
stituted progressively by an increased MyoD expression. 
The fusion of differentiated myoblasts generates new 
myofibrils or repairs the damaged ones [20].

Reduced MyoD expression and the maintenance of a 
high PAX7 expression is required for the maintenance 
and self-renewal of SC [21]. When the SC population is 
activated, its fraction undergoes a terminal differentia-
tion while the other one remains in the pool of quiescent 
satellite cells, which can be induced again to proliferate, 
to be activated and to participate in regeneration and 
control of inflammation. The size of this resident pool 
of SC and its capacity to attend the local demands may 
control the response to injury in qualitative and quantita-
tive terms, and this is known to be regulated by the PAX7 
activity [22].

These data were the basis of the here-proposed hypoth-
esis that polymorphisms in the PAX7 gene could modu-
late the activity of this gene to influence the regenerative 
role played by SC in the muscular environment. We 
believe that this genetic pattern may influence the devel-
opment and chronic persistence of muscle disorders, 
including the masticatory ones. However, more recent 
studies indicate that the involved mechanisms are almost 
exclusively attributed to facilitation, peripheral and cen-
tral, in processing pain. As far as we are aware, the pres-
ence of polymorphisms in genes associated with muscle 
tissue embryogenesis and tissue regeneration processes 
have not yet been investigated with respect to the devel-
opment of masticatory myalgia.

The objective of the present study was to test the 
hypothesis that polymorphisms in the PAX7 gene are 
associated with the presence of masticatory myalgia in 
patients with TMD.

Materials and methods
The present clinical study is descriptive and cross-sec-
tional, being evaluated and approved by the Research 
Ethics Committee of the Antônio Pedro University Hos-
pital of the Fluminense Federal University on September 
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25, 2016 (protocol number 1.744.837). All of the sub-
jects consented freely to participate in this project. 
Informed consent forms were received and signed by 
the participants before the research was conducted. All 
methods were carried out in accordance with relevant 
guidelines and regulations. The design development of 
this study followed the recommendations of Strengthen-
ing the Reporting of Observational Studies in Epidemiol-
ogy (STROBE) [23].

The study included patients attended at the Flumin-
ense Federal University (18 to 65 years) as previously 
described [24]. They were randomly selected over a 
period of 6 months. Exclusion criteria were the history of 
macro trauma and/or surgery in the temporomandibular 
region, diagnosis of rheumatoid arthritis, fibromyalgia, or 
other types of systemic musculoskeletal diseases, and/or 
previous treatment for TMD. The inclusion criteria were 
the presence of one or multiple TMD diagnoses.

All participants were clinically examined by the same 
evaluator (co-author L.L.B.), using the Research Diag-
nostic Criteria for Temporomandibular Disorders (RDC/
TMD) – Axis I [25], validated for the physical diagnosis 
of TMD, and enabling classification of participants in 
one of the following diagnostic subgroups: (0) absence 
of TMD; (1) myofascial pain; (2) changes in the posi-
tion of the articular disc; (3) painful and/or degenerative 
TMJ conditions. This process occurred in a non-mutually 
exclusive manner, allowing each participant to belong to 
more than one diagnostic sub-group. Participants were 
then grouped into three groups: (a) control (absence of 
TMD); (b) with muscular TMD; (c) without muscular 
TMD.

The decision of including patients with absence of 
TMD as a control group assumed that they were prob-
ably not strongly subjected to the common risk factors 
for the development of these disorders, such as muscu-
lar and joint overloading by oral parafunctional habits. 
This is not a study of TMD risk, but a study of muscular 
involvement predisposition in patients with TMD.

Genomic DNA was obtained from saliva samples from 
all participants, as previously described [26]. The con-
centration and purity of the DNA were analyzed using 
the NanoDrop® spectrophotometer (Thermo Scientific, 
Wilmington, DE, USA). All samples had to present an 
A260 nm / A280 nm ratio higher than 1.9.

Two polymorphisms of a single nucleotide (SNP) in 
the PAX7 gene (rs766325, rs6659735) were selected, 
considering the linkage disequilibrium and gene struc-
ture relationships. These SNPs were previously identified 
and included in the database of the National Center for 
Biotechnology Information (http://​www.​ncbi.​nlm.​nih.​
gov/​SNP/), with the lowest allele frequency having to be 
> 012. All procedures followed the recommendations of 

the Strengthening the Reporting of Genetic Association 
Studies (STREGA) [27].

For a better understanding, the methodology steps are 
illustrated in Fig. 1.

Data processing and statistical analyses were done 
using STATA 12.0 (Stata Corp., College Station, TX, 
USA). The sample size included the spontaneous demand 
of patients over 6 months, respecting the inclusion cri-
teria. Using data from a previous study under conditions 
of a 95% confidence interval and 90% power of test, the 
sample was calculated considering a 40% prevalence of 
TMD [28]. Considering a loss of 5%, the estimated num-
ber to produce adequate statistical power was 200 indi-
viduals. Since the main inclusion criterion of the sample 
was the presence of TMD regardless of the type, we 
were able to obtain enough individuals. However, when 
the sample was stratified into different TMD subgroups, 
the number of individuals in each group was below the 
size of the calculated sample, therefore the differences 
between the groups were considered to be significant 
only after the statistical analysis using Fisher’s exact test 
with an alpha of 0.05.

Differences between groups in the frequency of geno-
types and alleles were analyzed using the chi-square test 
after assembly for the Hardy-Weinberg equilibrium. Sta-
tistical differences between groups were calculated using 
the chi-square or Fisher’s exact tests. To calculate linkage 
disequilibrium and diplotypes, the ARLEQUIN software 
program was used (http://​cmpg.​unibe.​ch/​softw​are/​arleq​
uin3/). Values of p < 0.05 were considered to be statisti-
cally significant, and the risks associated with individual 
alleles and genotypes were calculated as odds ratio (OR) 
with a 95% confidence interval (CI).

Results
From the 337 volunteers evaluated over the six-month 
period, after the adoption of the exclusion criteria, 325 
were included in the study. A total of 154 (47.3%) did not 
have a TMD diagnosis, 122 (37.5%) patients had muscu-
lar TMD while 49 (15%) had only non-muscular TMD.

The group with muscular TMD consisted of 85 women 
and 37 men, and the group without muscular TMD con-
sisted of 32 women and 17 men. The mean age found 
was 45.1 ± 12.3 years. There was no significant differ-
ence between gender and the risk of developing muscular 
(p = 0.17) or other type disorders (p = 0.71). The charac-
teristics of the two polymorphisms studied in the PAX7 
gene are presented in Table 1.

The integrity rate of the genomic DNA was 92.3%, with 
a high correspondence rate between replicate samples, 
indicating a highlevel of confidence in accurate and unbi-
ased genotyping. The frequencies of the genotypes and 
alleles are shown in Table 2.

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://cmpg.unibe.ch/software/arlequin3/
http://cmpg.unibe.ch/software/arlequin3/
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The analysis of the PAX7 rs6659735 marker showed a 
lower-representation of the GG genotype among indi-
viduals with non-muscular TMD, when compared to the 
muscular TMD group (p = 0.03) (Table 2).

Discussion
The present clinical study analyzed the possible associa-
tions of the polymorphisms observed in the gene cod-
ing PAX7 transcription-factor with the presence and 
with clinical aspects of the muscular TMD. The results 
showed that the patients not bearing the GG genotype of 

rs6659735 were apparently protected from the muscular 
involvement in the TMD disorders.

Being concerned with multiple testing, we avoided 
applying the strict Bonferroni correction, increasing the 
Type II error. Using this correction, we would have low-
ered the alpha to 0.025 (0.05/2). It has been previously 
shown that the known associations are missed when cor-
rection for multiple testing is implemented [29].

The PAX7 rs766325 SNP was associated with crani-
ofacial skeletal variations in patients with malocclusions 
[30]. This polymorphism was described in two studies, 

Fig. 1  Flow chart showing the inclusion of patients, groups and SNP in this study

Table 1  Characteristics of the PAX7 gene polymorphisms studied

SNP Single nucleotide polymorphism. / a Base change according to Applied Biosystems. / b MAF: minor allele frequency according to GenBank

Gene symbol Gene name SNP Chromosome Base pair position* SNP type Base changea MAFb

Major Minor

PAX7 paired box 7 rs766325 1 18,629,964 Upstream A G 0.48

rs6659735 18,657,203 Intragenic A G 0.26
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which investigated their relationship with palate and 
lip clefts [31, 32]. The SNP is located upstream of the 
gene and does not influence formation of the protein. 
Conversely, the less common homozygous genotype of 
rs6659735 showed a suggestive effect on the muscular 
TMD.

The major functions of the PAX7 gene in skeletal 
muscle are control of the basal reserve population of 
resident muscular SC, and of their mobilization when 
attending to a need for regeneration after injury, as well 
as in the case of muscular volume increase in response 
to sustained efforts. These SC reside in the sub-fascial 
and perivascular niches within muscles, remaining in 
the phase zero of the cell cycle. They can be activated 
rapidly in response to injury [33]. In this case, SC re-
enter the cell cycle upon activation, migrate from their 
niche into the regenerating region and engage in for-
mation and maintenance through a controlled renewal 
of the proliferating myoblast pool. These cells are sub-
sequently engaged in their terminal differentiation 
into myocytes, which merge into preexisting damaged 
muscle fibers or fuse with other cells to generate new 

muscle fibers [21]. The cell regeneration requires the 
progressive interruption of the PAX7 gene expression 
and its substitution by expression of MyoD, which is 
required for the myocyte differentiation.

Alternatively, depending upon intensity and dura-
tion of injuries, a portion of activated SC can re-enter 
into quiescence, return to their niche and again express 
PAX7. This is a self-renewal of the muscular SC pool, 
and it is required for a long-term maintenance of the 
basal SC pool that remains available for the new waves 
of a regenerative supply of myoblasts, when required. 
The PAX7 gene activity is thus in charge of the delicate 
controls within the cells that supply new myoblasts 
that engage into the myocyte terminal differentiation, 
and resident cells that remain available for subsequent 
waves of regenerative production of new myoblasts 
[34]. In chronic or repetitive aggressions of muscle tis-
sue, the equilibrated PAX7 activity has to grant both 
the immediate and efficient tissue regeneration and the 
long-term maintenance of the resident SC pool provid-
ing regeneration for the future demands.

Table 2  Distribution of the genotypes and alleles of the PAX7 gene

No significant associations were found in the gene haplotype analysis (Table 3)

Gene SNP Genotypes Control
N = 154

With Muscular TMD
N = 122

Without 
Muscular 
TMD
N = 49

P-value* (OR;CI)

Control x With Muscular TMD With Muscular TMD 
x Without Muscular 
TMD

PAX7 rs766325 AA-AG-GG 40–53-52 32–34-42 16–14-17 0.7 0.86

AG + GG 105 76 31 0.82 (0.9 (0.5–1.5) 0.71 (0.8 (0.3–1.6)

A 133 98 46 0.49 (0.9 (0.6–1.3) 0.64 (1.1 (0.7–1.8)

G 157 118 48

rs6659735 AA-AG-GG 73–58-11 64–42-8 32–14-0 0.75 0.03
AG + GG 69 50 14 0.53 (0.82 (0.5–1.3) 0.16 (0.5 (0.2–1.1)

A 204 170 78 0.55 (1.1 (0.7–1.7) 0.06 (1.9 (1–3.6)

G 80 58 14

Table 3  Analysis of diplotypes

Gene Diplotype Frequency P-value

Control
N = 154

With Muscular 
TMD
N = 122

Without 
Muscular TMD
N = 49

Control x With 
Muscular TMD

With 
Muscular 
TMD x
Without 
Muscular 
TMD

PAX7– Ch1 (rs766325; rs6659735) AA 0.43 0.43 0.47 – –

GA 0.27 0.31 0.36 0.53 0.5

GG 0.26 0.23 0.14 0.58 0.08

AG 0.02 0.01 0.01 0.76 0.75
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Our study does not supply information on the prop-
erties and activities of the PAX7 gene in the context of 
the GG genotype polymorphism. Since it has clearly a 
long-term effect on the muscular involvement in the 
TMD disorder, we may raise the hypotheses of either 
decreased or increased responses of the PAX7 gene 
activity to the tissue environment in the context of 
TMD, as compared to controls.

In the former case, the decreased operational activity 
of PAX7 in muscular SC populations, before or along 
their engagement into myoblast differentiation, will 
potentially lead to an increased or accelerated supply 
of PAX7-negative and MyoD-positive myocytes to be 
engaged in the muscle fiber repair. In acute lesions this 
can lead to a more rapid and efficient tissue response 
and regeneration. In chronic and repetitive lesions, 
we can expect an association with a low reposition or 
exhaustion of the resident SC pool, which requires a 
high level of PAX7 activity. Conversely, in the case of 
increased total activity of PAX7 within the muscular SC 
population, we can expect a somewhat delayed substi-
tution of PAX7 by the MyoD expression, with a poten-
tial delay in myocyte differentiation. However, this can 
lead to a permanent increase of the resident SC pool, 
with an increased long-term capacity to respond to 
chronic or repetitive injuries, and an increased capacity 
for repair and regeneration.

The similar rationale may be applied to the question 
of the relationship with the inflammatory processes 
that are associated with TMD that can be one of the 
causes of the associated pain. The PAX-7 activity has 
limited direct relationship with mobilization and activ-
ity of inflammatory cell populations. However, muscle 
SC can interfere with maturing macrophages by insu-
lin-like growth factor-2, inducing M1-M2 macrophage 
conversion and an overall anti-inflammatory protection 
[35]. A more robust resident SC population can thus 
have an increased basal anti-inflammatory capacity. 
The PAX-7 controls of the resident muscle SC popula-
tion can potentially influence a broad set of tissue reac-
tions to stress. The proposed hypotheses should be 
addressed in experimental in  vitro and in  vivo models 
and are the object of ongoing studies.

Conclusion
Alterations in the PAX7 may influence muscular 
pathophysiology since individuals with TMD and the 
rs6659735 homozygous genotype (GG) seem to be asso-
ciated with muscular involvement of the disorder. This 
result leads to the proposal of an unexplored stem cell 
related genetic predisposition to muscular TMD.

Abbreviations
PAX7: Transcription factor PAX7 (paired box 7); TMD: Temporomandibular disor‑
ders; TMJ: Temporomandibular joint; SC: Satellite cells; SNP: Single nucleotide 
polymorphism.
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